- (1) Inspection procedure. Examine visually for the conditions indicated, using a blunt instrument if necessary to probe cuts and abrasions. - (e) Special purpose tires. Tires marked "Not For Highway Use" or "Farm Use Only" or other such restrictions shall not be used on any motor vehicles operating on public highways. - (1) Inspection procedure. Examine visually for tires labeled with specific restrictions. #### § 570.63 Wheel assemblies. - (a) Wheel integrity. A tire rim, wheel disc or spider shall have no visible cracks, elongated bolt holes, or indications of in-service repair by welding. - (1) Inspection procedure. Examine visually for the conditions indicated. - (b) Cast wheels. Cast wheels shall not be cracked or show evidence of excessive wear in the clamp area. - (1) Inspection procedure. Examine visually for the conditions indicated. - (c) Mounting. All wheel nuts shall be in place and tight. - (1) Inspection procedure. Check wheel retention for the conditions indicated. #### PART 571—FEDERAL MOTOR VEHICLE SAFETY STANDARDS #### Subpart A—General Sec. - 571.1 Scope. - 571.3 Definitions. - Explanation of usage. 571.4 - Matter incorporated by reference. 571.5 - 571.7 Applicability. - Effective date. 571.8 - 571.9 Separability. #### Subpart B—Federal Motor Vehicle Safety Standards - 571.101 Standard No. 101; Controls and displays. - 571.102 Standard No. 102; Transmission shift lever sequence, starter interlock, and transmission braking effect. - 571.103 Standard No. 103; Windshield de- - frosting and defogging systems. 571.104 Standard No. 104; Windshield wiping and washing systems. - 571.105 Standard No. 105; Hydraulic and electric brake systems. - 571.106 Standard No. 106; Brake hoses. - 571 107 [Reserved] - 571.108 Standard No. 108; Lamps, reflective devices, and associated equipment. - 571.109 Standard No. 109; New pneumatic tires - 571.110 Standard No. 110; Tire selection and rims - Standard No. 111; Rearview mirrors. 571.111 - 571.112 [Reserved] - 571.113 - Standard No. 113; Hood latch system. Standard No. 114; Theft protection. 571.114 - [Reserved] 571.115 - 571.116 Standard No. 116; Motor vehicle brake fluids. - 571.117 Standard No. 117; Retreaded pneumatic tires. - 571.118 Standard No. 118; Power-operated window, partition, and roof panel systems. - 571.119 Standard No. 119; New pneumatic tires for vehicles other than passenger - 571.120 Standard No. 120; Tire selection and rims for motor vehicles other than passenger cars. - 571.121 Standard No. 121; Air brake systems. 571.122 Standard No. 122; Motorcycle brake - systems. 571.123 Standard No. 123; Motorcycle controls and displays. - 571.124 Standard No. 124; Accelerator control systems. - 571.125 Standard No. 125; Warning devices. - 571.126—571.128 [Reserved] - 571.129 Standard No. 129; New non-pneumatic tires for passenger cars - 571.131 Standard No. 131; School bus pedestrian safety devices. - 571.135 Standard No. 135; Passenger car brake systems. - 571.201 Standard No. 201; Occupant protection in interior impact. - 571.202 Standard No. 202; Head restraints. - 571.203 Standard No. 203; Impact protection for the driver from the steering control system. - 571.204 Standard No. 204; Steering control rearward displacement. - 571.205 Standard No. 205; Glazing materials. - 571.206 Standard No. 206; Door locks and door retention components. - 571.207 Standard No. 207; Seating systems. - 571.208 Standard No. 208; Occupant crash protection - 571.209 Standard No. 209; Seat belt assemblies - 571.210 Standard No. 210; Seat belt assembly anchorages. - 571.211 [Reserved] - 571.212 Standard No. 212; Windshield mounting. - 571.213 Standard No. 213; Child restraint systems. - 571.214 Standard No. 214; Side impact protection. - 571 215 [Reserved] - Standard No. 216; Roof crush resist-571.216 ance. - 571.217 Standard No. 217; Bus emergency exits and window retention and release. - 571.218 Standard No. 218: Motorcycle helmets. - 571.219 Standard No. 219: Windshield zone intrusion. - 571.220 Standard No. 220: School bus rollover protection. - 571.221 Standard No. 221; School bus body ioint strength. - 571.222 Standard No. 222; School bus passenger seating and crash protection. - 571.223 Standard No. 223; Rear impact - guards. 571.224 Standard No. 224; Rear impact protection. - 571.301 Standard No. 301; Fuel system integ- - rity. 571.302 Standard No. 302; Flammability of - interior materials. 571.303 Standard No. 303; Fuel system integrity of compressed natural gas vehicles. - 571.304 Standard No. 304; Compressed natural gas fuel container integrity. - 571.500 Standard No. 500; Low-speed vehicles AUTHORITY: 49 U.S.C. 322, 30111, 30115, 30177, 30166; delegation of authority at 49 CFR 1.50. #### Subpart A—General #### §571.1 Scope. This part contains the Federal Motor Vehicle Safety Standards for motor vehicles and motor vehicle equipment established under section 103 of the National Traffic and Motor Vehicle Safety Act of 1966 (80 Stat. 718). [33 FR 19703, Dec. 25, 1968. Redesignated at 35 FR 5118, Mar. 26, 1970] #### § 571.3 Definitions. - (a) Statutory definitions. All terms defined in section 102 of the Act are used in their statutory meaning. - (b) Other definitions. As used in this chapter- Act means the National Traffic and Motor Vehicle Safety Act of 1966 (80 Stat. 718). Approved, unless used with reference to another person, means approved by the Secretary. Boat trailer means a trailer designed with cradle-type mountings to transport a boat and configured to permit launching of the boat from the rear of the trailer. Bus means a motor vehicle with motive power, except a trailer, designed for carrying more than 10 persons. Curb weight means the weight of a motor vehicle with standard equipment; maximum capacity of engine fuel, oil, and coolant; and, if so equipped, air conditioning and additional weight optional engine. Designated seating capacity means the number of designated seating positions provided. Designated seating position means any plan view location capable of accommodating a person at least as large as a 5th percentile adult female, if the overall seat configuration and design and vehicle design is such that the position is likely to be used as a seating position while the vehicle is in motion, except for auxiliary seating accommodations such as temporary or folding jump seats. Any bench or splitbench seat in a passenger car, truck or multipurpose passenger vehicle with a GVWR less than 4,536 kilograms (10,000 pounds), having greater than 127 centimeters (50 inches) of hip room (measured in accordance with SAE Standard J1100(a)) shall have not less than three designated seating positions, unless the seat design or vehicle design is such that the center position cannot be used for seating. For the sole purpose of determining the classification of any vehicle sold or introduced into interstate commerce for purposes that include carrying students to and from school or related events, any location in such vehicle intended for securement of an occupied wheelchair during vehicle operation shall be regarded as four designated seating positions. Driver means the occupant of a motor vehicle seated immediately behind the steering control system. Emergency brake means a mechanism designed to stop a motor vehicle after a failure of the service brake system. 5th percentile adult female means a person possessing the dimensions and weight of the 5th percentile adult female specified for the total age group in Public Health Service Publication No. 1000, Series 11, No. 8, "Weight, Height, and Selected Body Dimensions of Adults." Firefighting vehicle means a vehicle designed exclusively for the purpose of fighting fires. Fixed collision barrier means a flat, vertical, unyielding surface with the following characteristics: - (1) The surface is sufficiently large that when struck by a tested vehicle, no portion of the vehicle projects or passes beyond the surface. - (2) The approach is a horizontal surface that is large enough for the vehicle to attain a stable attitude during its approach to the barrier, and that does not restrict vehicle motion during impact. - (3) When struck by a vehicle, the surface and its supporting structure absorb no significant portion of the vehicle's kinetic energy, so that a performance requirement described in terms of impact with a fixed collision barrier must be met no matter how small an amount of energy is absorbed by the barrier. Forward control means a configuration in which more than half of the engine length is rearward of the foremost point of the windshield base and the steering wheel hub is in the forward quarter of the vehicle length. Full trailer means a trailer, except a pole trailer, that is equipped with two or more axles that support the entire weight of the trailer. Gross axle weight rating or GAWR means the value specified by the vehicle manufacturer as the load-carrying capacity of a single axle system, as measured at the tire-ground interfaces. *Gross combination weight rating* or *GCWR* means the value specified by the manufacturer as the loaded weight of a combination vehicle. *Gross vehicle weight rating* or *GVWR* means the value specified by the manufacturer as the loaded weight of a single vehicle. H point means the mechanically hinged hip point of a manikin which simulates the actual pivot center of the human torso and thigh, described in SAE Recommended Practice J826, "Manikins for Use in Defining Vehicle Seating Accommodations," November 1962. Head impact area means all nonglazed surfaces of the interior of a vehicle that are statically contactable by a 6.5-inch diameter spherical head form of a measuring device having a pivot point to "top-of-head" dimension infinitely adjustable from 29 to 33 inches in accordance with the following procedure, or its graphic equivalent: - (a) At each designated seating position, place the pivot point of the measuring device— - (1) For seats that are adjustable fore and
aft, at— - (i) The seating reference point; and - (ii) A point 5 inches horizontally forward of the seating reference point and vertically above the seating reference point an amount equal to the rise which results from a 5-inch forward adjustment of the seat or 0.75 inch; and - (2) For seats that are not adjustable fore and aft, at the seating reference point. - (b) With the pivot point to "top-of-head" dimension at each value allowed by the device and the interior dimensions of the vehicle, determine all contact points above the lower windshield glass line and forward of the seating reference point. - (c) With the head form at each contact point, and with the device in a vertical position if no contact points exists for a particular adjusted length, pivot the measuring device forward and downward through all arcs in vertical planes to 90° each side of the vertical longitudinal plane through the seating reference point, until the head form contacts an interior surface or until it is tangent to a horizontal plane 1 inch above the seating reference point, whichever occurs first. Interior compartment door means any door in the interior of the vehicle installed by the manufacturer as a cover for storage space normally used for personal effects. Longitudinal or longitudinally means parallel to the longitudinal centerline of the vehicle. Low-speed vehicle means a 4-wheeled motor vehicle, other than a truck, whose speed attainable in 1.6 km (1 mile) is more than 32 kilometers per hour (20 miles per hour) and not more than 40 kilometers per hour (25 miles per hour) on a paved level surface. Motorcycle means a motor vehicle with motive power having a seat or saddle for the use of the rider and designed to travel on not more than three wheels in contact with the ground. *Motor-driven cycle* means a motor-cycle with a motor that produces 5-brake horsepower or less. Multipurpose passenger vehicle means a motor vehicle with motive power, except a low-speed vehicle or trailer, designed to carry 10 persons or less which is constructed either on a truck chassis or with special features for occasional off-road operation. Open-body type vehicle means a vehicle having no occupant compartment top or an occupant compartment top that can be installed or removed by the user at his convenience. Outboard designated seating position means a designated seating position where a longitudinal vertical plane tangent to the outboard side of the seat cushion is less than 12 inches from the innermost point on the inside surface of the vehicle at a height between the design H-point and the shoulder reference point (as shown in fig. 1 of Federal Motor Vehicle Safety Standard No. 210) and longitudinally between the front and rear edges of the seat cushion. Overall vehicle width means the nominal design dimension of the widest part of the vehicle, exclusive of signal lamps, marker lamps, outside rearview mirrors, flexible fender extensions, and mud flaps, determined with doors and windows closed and the wheels in the straight-ahead position. Parking brake means a mechanism designed to prevent the movement of a stationary motor vehicle. Passenger car means a motor vehicle with motive power, except a low-speed vehicle, multipurpose passenger vehicle, motorcycle, or trailer, designed for carrying 10 persons or less. Pelvic impact area means that area of the door or body side panel adjacent to any outboard designated seating position which is bounded by horizontal planes 7 inches above and 4 inches below the seating reference point and vertical transverse planes 8 inches forward and 2 inches rearward of the seating reference point. Pole trailer means a motor vehicle without motive power designed to be drawn by another motor vehicle and attached to the towing vehicle by means of a reach or pole, or by being boomed or otherwise secured to the towing vehicle, for transporting long or irregularly shaped loads such as poles, pipes, or structural members capable generally of sustaining themselves as beams between the supporting connections. School bus means a bus that is sold, or introduced in interstate commerce, for purposes that include carrying students to and from school or related events, but does not include a bus designed and sold for operation as a common carrier in urban transportation. Seating reference point (SgRP) means the unique design H-point, as defined in SAE J1100 (June 1984), which: - (a) Establishes the rearmost normal design driving or riding position of each designated seating position, which includes consideration of all modes of adjustment, horizontal, vertical, and tilt, in a vehicle; - (b) Has X, Y, and Z coordinates, as defined in SAE J1100 (June 1984), established relative to the designed vehicle structure; - (c) Simulates the position of the pivot center of the human torso and thigh; and - (d) Is the reference point employed to position the two-dimensional drafting template with the 95th percentile leg described in SAE J826 (May 1987), or, if the drafting template with the 95th percentile leg cannot be positioned in the seating position, is located with the seat in its most rearward adjustment position. Semitrailer means a trailer, except a pole trailer, so constructed that a substantial part of its weight rests upon or is carried by another motor vehicle. Service brake means the primary mechanism designed to stop a motor vehicle. Speed attainable in 1 mile means the speed attainable by accelerating at maximum rate from a standing start for 1 mile, on a level surface. Speed attainable in 2 miles means the speed attainable by accelerating at maximum rate from a standing start for 2 miles, on a level surface. Torso line means the line connecting the "H" point and the shoulder reference point as defined in SAE Recommended Practice J787g, "Motor Vehicle Seat Belt Anchorage," September 1966. Trailer means a motor vehicle with or without motive power, designed for carrying persons or property and for being drawn by another motor vehicle. Trailer converter dolly means a trailer chassis equipped with one or more axles, a lower half of a fifth wheel and a drawbar. *Truck* means a motor vehicle with motive power, except a trailer, designed primarily for the transportation of property or special purpose equipment. Truck tractor means a truck designed primarily for drawing other motor vehicles and not so constructed as to carry a load other than a part of the weight of the vehicle and the load so drawn. Unloaded vehicle weight means the weight of a vehicle with maximum capacity of all fluids necessary for operation of the vehicle, but without cargo, occupants, or accessories that are ordinarily removed from the vehicle when they are not in use. 95th percentile adult male means a person possessing the dimensions and weight of the 95th percentile adult male specified in Public Health Service Publication No. 1000, Series 11, No. 8, "Weight, Height, and Selected Body Dimensions of Adults." Vehicle fuel tank capacity means the tank's unusable capacity (i.e., the volume of fuel left at the bottom of the tank when the vehicle's fuel pump can no longer draw fuel from the tank) plus its usable capacity (i.e., the volume of fuel that can be pumped into the tank through the filler pipe with the vehicle on a level surface and with the unusable capacity already in the tank). The term does not include the vapor volume of the tank (i.e., the space above the fuel tank filler neck) nor the volume of the fuel tank filler neck. [33 FR 19703, Dec. 25, 1968. Redesignated at 35 FR 5118, Mar. 26, 1970] EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §571.3, see the List of CFR Sections Affected in the Finding Aids section of this volume. #### §571.4 Explanation of usage. The word *any*, used in connection with a range of values or set of items in the requirements, conditions, and procedures of the standards or regulations in this chapter, means generally the totality of the items or values, any one of which may be selected by the Administration for testing, except where clearly specified otherwise. Examples: "The vehicle shall meet the requirements of S4.1 when tested at any point between 18 and 22 inches above the ground." This means that the vehicle must be capable of meeting the specified requirements at every point between 18 and 22 inches above the ground. The test in question for a given vehicle may call for a single test (a single impact, for example), but the vehicle must meet the requirement at whatever point the Administration selects, within the specified range "Each tire shall be capable of meeting the requirements of this standard when mounted on any rim specified by the manufacturer as suitable for use with that tire." This means that, where the manufacturer specifies more than one rim as suitable for use with a tire, the tire must meet the requirements with whatever rim the Administration selects from the specified group. "Any one of the items listed below may, at the option of the manufacturer, be substituted for the hardware specified in S4.1." Here the wording clearly indicates that the selection of items is at the manufacturer's option. [36 FR 2511, Feb. 5, 1971] ### § 571.5 Matter incorporated by reference. (a) Incorporation. There are hereby incorporated, by reference, into this part, all materials referred to in any standard in subpart B of this part that are not set forth in full in the standard. These materials are thereby made part of this regulation. The Director of the FEDERAL REGISTER has approved the materials incorporated by reference. For materials subject to change, only the specific version approved by the Director of the FEDERAL REGISTER and specified in the standard are incorporated. A notice of any change in these materials will be published in the FEDERAL REGISTER. As a convenience to the reader, the materials incorporated by reference are listed in the Finding Aid Table found at the end of this volume of the Code
of Federal Regulations. (b) Availability. The materials incorporated by reference, other than acts of Congress and matter published elsewhere in the FEDERAL REGISTER, are available as follows: - (1) Standards of the Society of Automotive Engineers (SAE). They are published by the Society of Automotive Engineers, Inc. Information and copies may be obtained by writing to: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, Pennsylvania 15096. - (2) Standards of the American Society for Testing and Materials. They are published by the American Society for Testing and Materials. Information on copies may be obtained by writing to the American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103. - (3) Standards of the American National Standards Institute. They are published by the American National Standards Institute. Information and copies may be obtained by writing to: American National Standards Institute, 1430 Broadway, New York, New York 10018. - (4) Data from the National Health Survey, Public Health Publication No. 1000, Series 11, No. 8. This is published by the U.S. Department of Health, Education, and Welfare. Copies may be obtained for a price of 35 cents from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. - (5) Test methods of the American Association of Textile Chemists and Colorists. They are published by the American Association of Textile Chemists and Colorists. Information and copies can be obtained by writing to: American Association of Textile Chemists and Colorists, Post Office Box 886, Durham, NC. - (6) Test methods of the Illuminating Engineering Society of North America (IES). They are published by the Illuminating Engineering Society of North America. Copies can be obtained by writing to: Illuminating Engineering Society of North America, 345 East 47th St., New York, NY 10017. - (7) Standards of Suppliers of Advanced Composite Materials Association (SACMA). They are published by Suppliers of Advanced Composite Materials Association. Information and copies may be obtained by writing to: Suppliers of Advanced Composite Materials Association, 1600 Wilson Blvd., Suite 1008, Arlington, VA 22209. - (8) Standards of the American Society of Mechanical Engineers (ASME). They are published by The American Society of Mechanical Engineers. Information and copies may be obtained by writing to: The American Society of Mechanical Engineers, 345 East 47th Street, New York, NY 10017. - (9) [Reserved] - (10) All of the above materials, as well as any other materials incorporated by reference, are available for inspection and copying at the Office of Vehicle Safety Standards, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 20590. The materials are also available for inspection and copying at the Office of the FEDERAL REGISTER, 800 North Capitol Street, NW., suite 700, Washington, DC. [33 FR 19704, Dec. 25, 1968. Redesignated at 35 FR 5118, Mar. 26, 1970, and amended at 35 FR 5120, Mar. 26, 1970; 36 FR 1148, Jan. 23, 1971; 41 FR 52880, Dec. 2, 1976; 41 FR 56812, Dec. 30, 1976; 47 FR 7254, Feb. 18, 1982; 48 FR 30141, June 30, 1983; 54 FR 20083, May 9, 1989; 59 FR 49021, Sept. 26, 1994; 60 FR 37843, Jul. 24, 1995] #### § 571.7 Applicability. - (a) General. Except as provided in paragraphs (c) and (d) of this section, each standard set forth in subpart B of this part applies according to its terms to all motor vehicles or items of motor vehicle equipment the manufacture of which is completed on or after the effective date of the standard. - (b) [Reserved] - (c) *Military vehicles*. No standard applies to a vehicle or item of equipment manufactured for, and sold directly to, the Armed Forces of the United States in conformity with contractual specifications. - (d) *Export.* No standard applies to a vehicle or item of equipment in the circumstances provided in section 108(b)(5) of the Act (15 U.S.C. 1397 (b)(5)). - (e) Combining new and used components. When a new cab is used in the assembly of a truck, the truck will be considered newly manufactured for purposes of paragraph (a) of this section, the application of the requirements of this chapter, and the Act, unless the engine, transmission, and drive axle(s) (as a minimum) of the assembled vehicle are not new, and at least two of these components were taken from the same vehicle. - (f) Combining new and used components in trailer manufacture. When new materials are used in the assembly of a trailer, the trailer will be considered newly manufactured for purposes of paragraph (a) of this section, the application of the requirements of this chapter, and the Act, unless, at a minimum, the trailer running gear assembly (axle(s), wheels, braking and suspension) is not new, and was taken from an existing trailer— - (1) Whose identity is continued in the reassembled vehicle with respect to the Vehicle Identification Number; and - (2) That is owned or leased by the user of the reassembled vehicle. [33 FR 19703, Dec. 25, 1968. Redesignated at 35 FR 5118, Mar. 26, 1970, and amended at 36 FR 7855, Apr. 27, 1971; 38 FR 12808, May 16, 1973; 40 FR 49341, Oct. 22, 1975; 41 FR 27074, July 1, 1976] #### §571.8 Effective date. Notwithstanding the effective date provisions of the motor vehicle safety standards in this part, the effective date of any standard or amendment of a standard issued after September 1, 1971, to which firefighting vehicles must conform shall be, with respect to such vehicles, either 2 years after the date on which such standard or amendment is published in the rules and regulations section of the FEDERAL REG-ISTER, or the effective date specified in the notice, whichever is later, except as such standard or amendment may otherwise specifically provide with respect to firefighting vehicles. [36 FR 13927, July 28, 1971] #### §571.9 Separability. If any standard established in this part or its application to any person or circumstance is held invalid, the remainder of the part and the application of that standard to other persons or circumstances is not affected thereby. [33 FR 19705, Dec. 25, 1968. Redesignated at 35 FR 5118, Mar. 26, 1970] #### Subpart B—Federal Motor Vehicle Safety Standards SOURCE: 36 FR 22902, Dec. 2, 1971, unless otherwise noted. ### §571.101 Standard No. 101; Controls and displays. - S1. *Scope.* This standard specifies requirements for the location, identification, and illumination of motor vehicle controls and displays. - S2. Purpose. The purpose of this standard is to ensure the accessibility and visibility of motor vehicle controls and displays and to facilitate their selection under daylight and nighttime conditions, in order to reduce the safety hazards caused by the diversion of the driver's attention from the driving task, and by mistakes in selecting controls. - S3. *Application*. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses. S4. Definitions. Telltale means a display that indicates the actuation of a device, a correct or defective functioning or condition, or a failure to function. Gauge means a display that is listed in S5.1 or in Table 2 and is not a tell-tale. - S5. Requirements. Each passenger car, multipurpose passenger vehicle, truck and bus manufactured with any control listed in S5.1 or in column 1 of Table 1, and each passenger car, multipurpose passenger vehicle and truck or bus less than 4,536 kg. GVWR with any display listed in S5.1 or in column 1 of Table 2, shall meet the requirements of this standard for the location, identification, and illumination of such control or display. - S5.1 *Location*. Under the conditions of S6, each of the following controls that is furnished shall be operable by the driver and each of the following displays that is furnished shall be visible to the driver. Under the conditions of S6, telltales are considered visible when activated. #### HAND-OPERATED CONTROLS - (a) Steering wheel. - (b) Horn. - (c) Ignition. - (d) Headlamp. - (e) Taillamp. - (f) Turn signal. - (g) Illumination intensity. (h) Windshield wiper. - (i) Windshield washer. - (j) Manual transmission shift lever, except transfer case. - (k) Windshield defrosting and defogging system. - (l) Rear window defrosting and defogging system. - (m) Manual choke. - (n) Driver's sun visor. - (o) Automatic vehicle speed system. - (p) Highbeam. - (q) Hazard warning signal. - (r) Clearance lamps. - (s) Hand throttle. - (t) Identification lamps. #### FOOT-OPERATED CONTROLS - (a) Service brake. - (b) Accelerator. - (c) Clutch. - (d) Highbeam - (e) Windshield washer. - (f) Windshield wiper. #### DISPLAYS - (a) Speedometer. - (b) Turn signal. - (c) Gear position. (d) Brake failure warning. - (e) Fuel. - (f) Engine coolant temperature. (g) Oil. - (h) Highbeam. - (i) Electrical charge. #### S5.2 Identification. S5.2.1 Vehicle controls shall be identified as follows: (a) Except as specified in S5.2.1(b), any hand-operated control listed in column 1 of Table 1 that has a symbol designated for it in column 3 of that table shall be identified by either the symbol designated in column 3 (or symbol substantially similar in form to that shown in column 3) or the word or abbreviation shown in column 2 of that table. Any such control for which no symbol is shown in Table 1 shall be identified by the word or abbreviation shown in column 2. Words or symbols in addition to the required symbol, word or abbreviation may be used at the manufacturer's discretion for the purpose of clarity. Any such control for which column 2 of Table 1 and/or column 3 of Table 1 specifies "Mfr. Option" shall be identified by the manufacturer's choice of a symbol, word or abbreviation, as indicated by that spec- ification in column 2 and/or column 3. The identification shall be placed on or adjacent to the control. The identification shall, under the conditions of S6, be visible to the driver and,
except as provided in S5.2.1.1, S5.2.1.2, and S5.2.1.3, appear to the driver perceptually upright. (b) S5.2.1(a) does not apply to a turn signal control which is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving position and which is located on the left side of the steering column so that it is the control on that side of the column nearest to the steering wheel face plane. S5.2.1.1 The identification of the following need not appear to the driver perceptually upright: (a) A master lighting switch or headlamp and tail lamp control that adjusts control and display illumination by means of rotation, or any other rotating control that does not have an off position. #### (b) A horn control. S5.2.1.2 The identification of a rotating control other than one described by S5.2.1.1 shall appear to the driver perceptually upright when the control is in the off position. S5.2.1.3 The identification of an automatic vehicle speed control located on the steering wheel, including the steering wheel hub and spokes, need not appear to the driver perceptually upright except when the vehicle, aligned to the manufacturer's specifications, has its wheels positioned for the vehicle to travel in a straight forward direction. S5.2.2 Identification shall be provided for each function of any automatic vehicle speed system control and any heating and air conditioning system control, and for the extreme positions of any such control that regulates a function over a quantitative range. If this identification is not specified in Table 1 or 2, it shall be in word or symbol form unless color coding is used. If color coding is used to identify the extreme positions of a temperature control, the hot extreme shall be identified by the color red and the cold extreme by the color blue. Example 1. A slide lever controls the temperature of the air in the vehicle heating system over a continuous range, from no heat to maximum heat. Since the control regulates a single function over a quantitative range, only the extreme positions require identification. *Example 2.* A switch has three positions, for heat, defrost, and air conditioning. Since each position regulates a different function, each position must be identified. S5.2.3 Any display located within the passenger compartment and listed in column 1 of Table 2 that has a symbol designated in column 4 of that table shall be identified by either the symbol designated in column 4 (or symbol substantially similar in form to that shown in column 4) or the word or abbreviation shown in column 3. Additional words or symbols may be used at the manufacturer's discretion for the purpose of clarity. Any telltales used in conjuction with a gauge need not be identified. The identification required or permitted by this section shall be placed on or adjacent to the display that it identifies. The identification of any display shall, under the conditions of S6, be visible to the driver and appear to the driver perceptually upright. S5.3 Illumination. S5.3.1 Except for foot-operated controls or hand-operated controls mounted upon the floor, floor console, or steering column, or in the windshield header area, the identification required by S5.2.1 or S5.2.2 of any control listed in column 1 of Table 1 and accompanied by the word "yes" in the corresponding space in column 4 shall be capable of being illuminated whenever the headlights are activated. However, control identification for a heating and airconditioning system need not be illuminated if the system does not direct air directly upon windshield. If a gauge is listed in column 1 of Table 2 and accompanied by the word "yes" in column 5, then the gauge and its identification required by S5.2.3 shall be illuminated whenever the ignition switch and/or the headlamps are activated. Controls, gauges, and their identifications need not be illuminated when the headlamps are being flashed. A telltale shall not emit light except when identifying the malfunction or vehicle condition for whose indication it is designed or during a bulb check upon vehicle starting. S5.3.2. Each telltale shall be of the color shown in column 2 of Table 2. The identification of each telltale shall be in a color that contrasts with the background. S5.3.3 (a) Means shall be provided for making controls, gauges, and the identification of those items visible to the driver under all driving conditions. - (b) The means for providing the required visibility— - (1) Shall be adjustable to provide at least two levels of brightness, one of which is barely discernible to a driver who has adapted to dark ambient roadway conditions. - (2) May be operable manually or automatically, and - (3) May have levels of brightness at which those items and identification are not visible. - (c) If the level of brightness is adjusted by automatic means to a point where those items or their identification are not visible to the driver, a means shall be provided to enable the driver to restore visibility. - S5.3.4 (a) Means shall be provided that are capable of making telltales and their identification visible to the driver under all driving conditions. - (b) The means for providing the required visibility may be adjustable manually or automatically, except that the telltales and identification for brakes, highbeams, turn signals, and safety belts may not be adjustable under any driving condition to a level that is invisible. S5.3.5 Any source of illumination within the passenger compartment which is forward of a transverse vertical plane 110 mm rearward of the manikin "H" point with the driver's seat in its rearmost driving position, which is not used for the controls and displays regulated by this standard, which is not a telltale, and which is capable of being illuminated while the vehicle is in motion, shall have either (1) light intensity which is manually or automatically adjustable to provide at least two levels of brightness, (2) a single intensity that is barely discernible to a driver who has adapted to dark ambient roadway conditions, or (3) a means of being turned off. This requirement does not apply to buses that are normally operated with the passenger compartment illuminated. - S5.4 A common space may be used to display messages from any sources, subject to the following requirements: - (a) The telltales for the brake, high beam, and turn signal, and the safety belt telltale required by S4.5.3.3 of Standard No. 208 may not be shown on the common space. - (b) Except as provided in S5.4(e), the telltales listed in Table 2 shall be displayed at the initiation of any underlying condition. - (c) When the underlying condition exists for actuation of two or more messages, the messages shall be either— - (1) Repeated automatically in sequence, or - (2) Indicated by visible means and capable of being selected by the driver for viewing. - (d) Messages may be cancellable automatically or by the driver. - (e) The safety belt telltale must be displayed and visible during the time specified in S7.3 of Standard No. 208. - S6. Conditions. The driver is restrained by the crash protection equipment installed in accordance with the requirements of §571.208 of this part (Standard No. 208), adjusted in accordance with the manufacturer's instructions. Table 1 Identification and Illustration of Controls | Column 1 | Column 2 | Column 3 | Column 4 | |--|--|------------------------------------|--------------| | Hand Operated Controls | ldentifying Words
or Abbreviation | ldentifying
Symbol | Illumination | | Master Lighting Switch | Lights | -¦∴5 | | | Headlamps and Tail Lamps | (Manufacturer Option) ² | (Manufacturer Option) ² | | | Horn | Horn | b 4 | | | Turn Signal | | | | | Hazard Warning
Signal | Hazard | <u>\$</u> 5 | Yes | | Windshield Wiping
System | Wiper or Wipe | \square | Yes | | Windshield Washing
System | Washer or Wash | \Leftrightarrow | Yes | | Windshield Washing
and Wiping Combined | Wash-Wipe
or Washer-Wiper | | Yes | | Heating and or Air
Conditioning Fan | Fan | * or E5 | Yes | | Windshield Defrosting
and Defogging System | Defrost, Defog
or Def. | (*) | Yes | | Rear Window Defrosting
and Defogging System | Rear Defrost,
Rear Defog.
Rear Def., or R-Def. | | Yes | | Identification, Side
Marker and or
Clearance Lamps | Marker Lamps
or MK Lps | -DO-3 | Yes | | Manual Choke | Choke | | | | Engine Start | Engine Start ¹ | | | | Engine Stop | Engine Stop ¹ | | Yes | | Hand Throttle | Throttle | | | | Automatic Vehicle Speed | (Manufacturer Option) | | Yes | | Heating and Air Conditioning
System | (Manufacturer Option) | (Manufacturer Option) | Yes | ¹ Use when engine control is separate from the key locking system. ² Separate idenfication not required if controlled by master lighting switch. ³ The pair of arrows is a single symbol. When the controls for left and right turn operate independently, however, the two arrows may be considered separate symbols and be spaced accordingly. ⁴ Identification not required for vehicles with a GVWR greater than 4536 kg; or for narrow ring-type controls. ⁵ Framed areas may be filled. Table 2 Identification and Illustration of Displays | Column 1 | Column 2 | Column 3 | Column 4 | Column 5 | |---|--------------------|--|-----------------------|--------------| | Display | Telltale
Color | Identifying Words
or Abbreviation | ldentifying
Symbol | Illumination | | Turn Signal
Telltale | Green | Also see
FMVSS 108 | | | | Hazard Warning
Telltale | | Also see
FMVSS 108 | A 2 6 | | | Seat Belt
Telltale | 7 | Fasten Belts or
Fasten Seat Belts
Also see FMVSS 208 | | | | Fuel
Level
Telltale
Gauge | - <u></u> - | Fuel | □ } " □ | Yes | | <u>Qil Pressure</u>
Telltale
Gauge | | Oil | 45% | Yes | | Coolant <u>Temperature</u>
Telltale
Gauge | | Temp | }
{} | Yes | | Electrical Charge
Telltale
Gauge | | Volts, Charge
or Amp | <u>-</u> + | Yes | | Highbeam
Telltale | Blue or
Green 4 | Also see
FMVSS 108 | | | | Brake System 8 | Red 4 | Brake, Also see
FMVSS 105 and 135 | | | | Malfunction in
Anti-Lock or | Yellow | Antilock, Anti-lock,
or ABS. Also see
FMVSS 105 and 135 | | | | Variable Brake
Proportioning System ⁸ | Yellow | Brake Proportioning,
Also see FMVSS 135 | | | | Parking Brake
Applied ⁸ | Red ⁴ | Park or Parking Brake,
Also see FMVSS 105
and 135 | | | | Malfunction in
Anti-Lock | Yellow | ABS, or Antilock; Trailer
ABS, or Trailer Antilock,
Also see FMVSS 121 | | | | Brake Air Pressure
Position Telltale | | Brake Air,
Also see FMVSS 121 | | | | Speedometer | | MPH and or km/h 5 | | Yes | | Odometer | | 3 | | | | Automatic Gear Position | | Also see FMVSS 102 | - | Yes | ¹ The pair of arrows is a single symbol. When the indicator for left and right turn operate independently, however, the two arrows will be considered separate symbols and may be spaced accordingly. [43 FR 27542, June 26, 1978, as amended at 44 FR 55583, Sept. 27, 1979; 45 FR 71804, Oct. 30, 1980; 47 FR 2998, Jan. 21, 1982; 49 FR 30196, July 27, 1984; 50 FR 23431, June 4, 1985; 52 FR 3247, Feb. 3, 1987; 52 FR 7157, Mar. 9, 1987; 52 FR 19874, May 28, 1987; 52 FR 33417, Sept. 3, 1987; 56 FR 51848, Oct. 16, 1991; 60 FR 63977, Dec. 13, 1995; 62 FR 32542, 32543, June 16, 1997; 63 FR 28926, May 27, 1998; 63 FR 50997, Sept. 24, 1998] ² Not required when arrows of turn signal tell-tales that otherwise operate independently flash simultaneously as hazard warning tell-tale. ³ If the odometer indicates kilometers, then "KILOMETERS" or "km" shall appear, otherwise, no identification is required. ⁴ Red can be red-orange. Blue can be blue-green. ⁵ If the speedometer is graduated in miles per hour and in kilometers per hour, the identifying words or abbreviations shall be "MPH and km/h" in any combination of upper or lower case letters. ⁶ Framed areas may be filled ⁷ The color of the telltale required by \$4.5.3.3 of Standard No 208 is red; the color of the telltale required by \$7.3 of Standard No. 208 is not specified. ⁸ In the case where a single telltale indicates more than one brake system condition, the word for Brake System shall be used. EFFECTIVE DATE NOTE: At 63 FR 28926, May 27, 1998, §571.101 was amended by revising S5, S5.3.5, and Tables 1 and 2, effective May 27, 1999. At 63 FR 50997, Sept. 24, 1998, S5 and Tables 1 and 2 were revised, effective May 27, 1999. For the convenience of the user, the superseded text is set forth as follows: ### §571.101 Standard No. 101, Controls and displays. * * * * * * S5. Requirements. Each passenger car, multipurpose passenger vehicle, truck and bus manufactured with any control listed in S5.1 or in column 1 of Table 1, and each passenger car, multipurpose passenger vehicle and truck or bus less than 10,000 pounds GVWR with any display listed in S5.1 or in column 1 of Table 2, shall meet the requirements of this standard for the location, identification, and illumination of such control or display. the passenger compartment which is forward of a transverse vertical plane 4.35 inch (110.6 mm) rearward of the manikin "H" point with the driver's seat in its rearmost driving position, which is not used for the controls and displays regulated by this standard, which is not a telltale, and which is capable of being illuminated while the vehicle is in motion, shall have either (1) light intensity which is manually or automatically adjustable to provide at least two levels of brightness, (2) a single intensity that is barely discernible to a driver who has adapted to dark ambient roadway conditions, or (3) a means of being turned off. This requirement does not apply to buses that are normally operated with the passenger compartment illuminated. S5.3.5 Any source of illumination within n of such control or display. Table 1 Identification and Illumination of Controls | Column 1 | Column 2 | Column 3 | Column 4 | |--|--|---|--------------| | Hand Operated Controls | Identifying Words or Abbreviation Symbol | | Illumination | | Master Lighting
Switch | Lights | - :\[\bar{\bar{\bar{\bar{\bar{\bar{\bar{ | | | Headlamps and
Tail lamps | (Mfr. Option) ² | (Mfr. Option) ² | | | Horn | Horn | b ⁴ | | | Turn Signal | | \$ | | | Hazard Warning
Signal | Hazard | A 5 | Yes | | Windshield Wiping
System | Wiper or Wipe | P | Yes | | Windshield Washing
System | Washer or Wash | ⇔ | Yes | | Windshield Washing and Wiping Combined | Wash-Wipe
or Washer-Wiper | \$ | Yes | | Heating and or Air
Conditioning Fan | Fan | \$ & | Yes | | Windshield Defrosting and Defogging System | Defrost, Defog or Def. | (#) | Yes | | Rear Window Defrosting
and Defogging System | Rear Defrost, Rear Defog,
Rear Def., or R-Def | []]] | Yes | | Identification, Side
Marker and or Clearance
Lamps | Marker Lamps
or MK Lps | ₹00€°, | Yes | | Manual Choke | Choke | | | | Engine Start | Engine Start ¹ | | | | Engine Stop | Engine Stop ¹ | | Yes | | Hand Throttle | Throttle | | | | Automatic Vehicle Speed | (Mfr. Option) | | Yes | | Heating and Air
Conditioning
System | (Mfr. Option) | (Mfr. Option) | Yes | ¹ Use when engine control is separate from the key locking system. 2 Separate identification not required if controlled by master lighting switch. 3 The pair of arrows is a single symbol. When the controls for left and right turn operate independently, however, the two arrows may be considered separate symbols and be spaced accordingly. 4 Identification not required for vehicles with a GVWR greater than 10,000 lbs., or for narrow ring-type controls. 5 Framed areas may be filled. Table 2 Identification and Illustration of Displays | Column 1 | Column 2 | Column 3 | Column 4 | Column 5 | |---|--------------------|--|-----------------------|--------------| | Display | Telltale
Color | Identifying Words
or Abbreviation | ldentifying
Symbol | Illumination | | Turn Signal
Telltale | Green | Aiso see FMVSS 108 | | | | Hazard Warning
Telitale | | Aiso see
FMVSS 108 | <u></u> 6 | | | Seat Beit
Telitale | 7 | Fasten Beits or
Fasten Seat Beits
Also see
FMVSS 208 | 4 • & | | | , <u>Fuel Level</u>
Telltale
Gauge | | Fuel | □ 0 | Yes | | Qil Pressure
Teiltale
Gauge | | Oil | مير. | Yes | | Coolant Température
Telitale
Gauge | | Тетр | Ŀ | Yes | | Electrical Charge Telltale Gauge | | Volts, Charge
or Amp | | | | Highbeam
Telitale | Blue or
Green 4 | Also see
FMVSS 108 | ≣ O° | | | Brake System ⁸ | Red 4 | Brake, Also see
FMVSS 105 & 135 | | | | Malfunction in
Anti-Lock or | Yellow | Antilock, Anti-lock,
or ABS. Also see
FMVSS 105 & 135 | | | | Variable Brake
Proportioning System ⁸ | Yellow | Brake Proportioning
Also see FMVSS 135 | | | | Parking Brake
Applied ⁶ | Red ⁴ | Park or Parking Brake Also see | | | | Malfunction in
Antilock | Yellow | ABS, or Antilock; Trailer
ABS, or Trailer Antilock.
Also see FMVSS 121 | | | | Brake Air Pressure
Position Telltale | | Brake Air,
Also see FMVSS 121 | | | | Speedometer | | MPH 5 | | Yes | | Odometer | | 3 | 3 | | | Automatic Gear Position | | Also see FMVSS 102 | | Yes | The pair of arrows is a single symbol. When the indicator for left and right turn operate independently, however, the two arrows will be considered separate symbols and may be spaced accordingly. Not required when arrows of turn signal tell-tales that otherwise operate independently flash simultaneously as hazard warring tellate. If the odometer indicates kiometers, then "KILOMETERS" or "km" shall appear, otherwise, no identification is required. Had can be red-orange. Blue can be blue-green. If the speedometer is graduated in miles per hour and in kiometers per hour, the identifying words or abbreviations shall be "MPH and km/h" in any combination of upper or lower case letters. Framed areas may be filled. The color of the tellitate required by \$4.5.3.3 of Standard No 208 is red; the color of the tellitate reduced by \$7.3 of Standard No, 208 is not specified. In the case where a single telltake indicates more than one brake system condition, the word for Brake System shall be used. # §571.102 Standard No. 102; Transmission shift lever sequence, starter interlock, and transmission braking effect. S1. Purpose and scope. This standard specifies the requirements for the transmission shift lever sequence, a starter interlock, and for a braking effect of automatic transmissions, to reduce the likelihood of shifting errors, starter engagement with vehicle in drive position, and to provide supplemental braking at speeds below 40 kilometers per hour. S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses. S3. Requirements. S3.1 Âutomatic transmissions. S3.1.1 Location of transmission shift lever positions on passenger cars. A neutral position shall be located between forward drive and reverse drive positions. If a steering-column-mounted transmission shift lever is used, movement from neutral position to forward drive position shall be clockwise. If the transmission shift lever sequence includes a park position, it shall be located at the end, adjacent to the reverse drive position. S3.1.2 Transmission braking effect.
In vehicles having more than one forward transmission gear ratio, one forward drive position shall provide a greater degree of engine braking than the highest speed transmission ratio at vehicle speeds below 40 kilometers per hour. speeds below 40 kilometers per hour. S3.1.3 Starter interlock. The engine starter shall be inoperative when the transmission shift lever is in a forward or reverse drive position. S3.1.4 Identification of shift lever positions. S3.1.4.1 Except as specified in S3.1.4.3, if the transmission shift lever sequence includes a park position, identification of shift lever positions, including the positions in relation to each other and the position selected, shall be displayed in view of the driver whenever any of the following conditions exist: (a) The ignition is in a position where the transmission can be shifted. (b) The transmission is not in park. S3.1.4.2 Except as specified in S3.1.4.3, if the transmission shift lever sequence does not include a park posi- tion, identification of shift lever positions, including the positions in relation to each other and the position selected, shall be displayed in view of the driver whenever the ignition is in a position in which the engine is capable of operation. S3.1.4.3 Such information need not be displayed when the ignition is in a position that is used only to start the vehicle. S3.1.4.4 Effective September 23, 1991, all of the information required to be displayed by S3.1.4.1 or S3.1.4.2 shall be displayed in view of the driver in a single location. At the option of the manufacturer, redundant displays providing some or all of the information may be provided. S3.2 Manual transmissions. Identification of the shift lever pattern of manual transmissions, except three forward speed manual transmissions having the standard "H" pattern, shall be displayed in view of the driver at all times when a driver is present in the driver's seating position. [36 FR 22902, Dec. 2, 1971, as amended at 54 FR 29045, July 11, 1989; 56 FR 12471, Mar. 26, 1991; 60 FR 13642, March 14, 1995] # § 571.103 Standard No. 103; Windshield defrosting and defogging systems. S1. *Scope.* This standard specifies requirements for windshield defrosting and defogging systems. S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses. S3. Definitions. Road load means the power output required to move a given motor vehicle at curb weight plus 180 kilograms on level, clean, dry, smooth portland cement concrete pavement (or other surface with equivalent coefficient of surface friction) at a specified speed through still air at 20 degrees Celsius, and standard barometric pressure (101.3 kilopascals) and includes driveline friction, rolling friction, and air resistance. S4. Requirements. (a) Except as provided in paragraph (b) of this section, each passenger car shall meet the requirements specified in S4.1, S4.2, and S4.3, and each multipurpose passenger vehicle, truck, and bus shall meet the requirements specified in §4.1. - (b) Each passenger car, multipurpose passenger vehicle, truck, and bus manufactured for sale in the noncontinental United States may, at the option of the manufacturer, have a windshield defogging system which operates either by applying heat to the windshield or by dehumidifying the air inside the passenger compartment of the vehicle, in lieu of meeting the requirements specified by paragraph (a) of this section. - S4.1 Each vehicle shall have a windshield defrosting and defogging system. - S4.2 Each passenger car windshield defrosting and defogging system shall meet the requirements of section 3 of SAE Recommended Practice J902, "Passenger Car Windshield Defrosting Systems," August 1964, when tested in accordance with S4.3, except that "the critical area" specified in paragraph 3.1 of SAE Recommended Practice J902 shall be that established as Area C in accordance with Motor Vehicle Safety Standard No. 104, "Windshield Wiping and Washing Systems," and "the entire windshield" specified in paragraph 3.3 of SAE Recommended Practice J902 shall be that established as Area A in accordance with §571.104. - S4.3 Demonstration procedure. The passenger car windshield defrosting and defogging system shall be tested in accordance with the portions of paragraphs 4.1 through 4.4.7 of SAE Recommended Practice J902, August 1964, or SAE Recommended Practice J902a, March 1967, applicable to that system, except that— - (a) During the first 5 minutes of the test: - (1) For a passenger car equipped with a heating system other than a heat exchanger type that uses the engine's coolant as a means to supply the heat to the heat exchanger, the warm-up procedure is that specified by the vehicle's manufacturer for cold weather starting, except that connection to a power or heat source external to the vehicle is not permitted. - (2) For all other passenger cars, the warm-up procedure may be that recommended by the vehicle's manufacturer for cold weather starting. - (b) During the last 35 minutes of the test period (or the entire test period if the 5-minute warm-up procedure speci- - fied in paragraph (a) of this section is not used). - (1) For a passenger car equipped with a heating system other than a heat exchanger type that uses the engine's coolant as a means to supply the heat to the heat exchanger, the procedure shall be that specified by the vehicle's manufacturer for cold weather starting, except that connection to a power or heat source external to the vehicle is not permitted. - (2) For all other passenger cars, either— - (i) The engine speed shall not exceed 1,500 r.p.m. in neutral gear; or - (ii) The engine speed and load shall not exceed the speed and load at 40 kilometers per hour in the manufacturer's recommended gear with road load; - (c) A room air change of 90 times per hour is not required; - (d) The windshield wipers may be used during the test if they are operated without manual assist; - (e) One or two windows may be open a total of 25 millimeters; - (f) The defroster blower may be turned on at any time; and - (g) The wind velocity is at any level from 0 to 3 kilometers per hour. - (h) The test chamber temperature and the wind velocity shall be measured, after the engine has been started, at the forwardmost point of the vehicle or a point 914 millimeters from the base of the windshield, whichever is farther forward, at a level halfway between the top and bottom of the windshield on the vehicle centerline. [36 FR 22902, Dec. 2, 1971, as amended at 40 FR 12992, Mar. 24, 1975; 40 FR 32336, Aug. 1, 1975; 50 FR 48775, Nov. 27, 1985; 59 FR 11006, Mar. 9, 1994; 60 FR 13642, Mar. 14, 1995] # §571.104 Standard No. 104; Windshield wiping and washing systems. - S1. *Scope.* This standard specifies requirements for windshield wiping and washing systems. - S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses. - S3. Definitions. The term seating reference point is substituted for the terms manikin H point, manikin H point with seat in rearmost position and H point wherever any of these terms appear in any SAE Standard or SAE Recommended Practice referred to in this standard. Daylight opening means the maximum unobstructed opening through the glazing surface, as defined in paragraph 2.3.12 of section E, Ground Vehicle Practice, SAE Aerospace-Automotive Drawing Standards, September 1963. Glazing surface reference line means the line resulting from the intersection of the glazing surface and a horizontal plane 635 millimeters above the seating reference point, as shown in Figure 1 of SAE Recommended Practice J903a, "Passenger Car Windshield Wiper Systems," May 1966. Overall width means the maximum overall body width dimension "W116", as defined in section E, Ground Vehicle Practice, SAE Aerospace-Automotive Drawing Standards, September 1963. Plan view reference line means- - (a) For vehicles with bench-type seats, a line parallel to the vehicle longitudinal centerline outboard of the steering wheel centerline 0.15 times the difference between one-half of the shoulder room dimension and the steering wheel centerline-to-car-centerline dimension as shown in Figure 2 of SAE Recommended Practice J903a, May 1966; or - (b) For vehicles with individual-type seats, either— - (i) A line parallel to the vehicle longitudinal centerline which passes through the center of the driver's designated seating position; or - (ii) A line parallel to the vehicle longitudinal centerline located so that the geometric center of the 95 percent eye range contour is positioned on the longitudinal centerline of the driver's designated seating position. Shoulder room dimension means the front shoulder room dimension "W3" as defined in section E, Ground Vehicle Practice, SAE Aerospace-Automotive Drawing Standards, September 1963. 95 percent eye range contour means the 95th percentile tangential cutoff specified in SAE Recommended Practice J941, "Passenger Car Driver's Eye Range," November 1965. S4. Requirements. S4.1 *Windshield wiping system.* Each vehicle shall have a power-driven wind- shield wiping system that meets the requirements of S4.1.1. S4.1.1 Frequency. S4.1.1.1 Each windshield wiping system shall have at least two frequencies or speeds. S4.1.1.2 One frequency or speed shall be at least 45 cycles per minute regardless of engine load and engine speed. S4.1.1.3 Regardless of engine speed and engine load, the highest and one lower frequency or speed shall differ by at least 15 cycles per minute. Such lower frequency or speed shall be at least 20 cycles per minute regardless of engine speed and engine load. S4.1.1.4 Compliance with subparagraphs S4.1.1.2 and S4.1.1.3 may be demonstrated by testing under the conditions specified in sections 4.1.1 and 4.1.2 of SAE Recommended Practice J903a, May 1966. S4.1.2 Wiped area. When tested wet in accordance with SAE Recommended Practice J903a, May 1966, each
passenger car windshield wiping system shall wipe the percentage of Areas A, B, and C of the windshield (established in accordance with S4.1.2.1) that (1) is specified in column 2 of the applicable table following subparagraph S4.1.2.1 and (2) is within the area bounded by a perimeter line on the glazing surface 25 millimeters from the edge of the daylight opening. S4.1.2.1 Areas A, B, and C shall be established as shown in Figures 1 and 2 of SAE Recommended Practice J903a, May 1966, using the angles specified in Columns 3 through 6 of Table I, II, III, or IV, as applicable. TABLE I—PASSENGER CARS OF LESS THAN 1520 MILLIMETERS IN OVERALL WIDTH | | Col- | Angles in degrees | | | | |-------------------|------|-----------------------|----------------------------|---------------------|---------------------------| | Column 1—
Area | | Col-
umn
3—Left | Col-
umn
4—
Right | Col-
umn
5—Up | Col-
umn
6—
Down | | Α | 80 | 16 | 49 | 7 | 5 | | В | 94 | 13 | 46 | 4 | 3 | | C | 99 | 7 | 15 | 3 | 1 | Table II—Passenger Cars of 1520 or More But Less Than 1630 Millimeters in Overall Width | | Col-
umn | Angles in degrees | | | | | |-------------------|--------------------|-----------------------|----------------------------|---------------------|---------------------------|--| | Column 1—
Area | Column 1— 2— Mini- | Col-
umn
3—Left | Col-
umn
4—
Right | Col-
umn
5—Up | Col-
umn
6—
Down | | | A
B
C | 80
94
99 | 17
13
7 | 51
49
15 | 8
4
3 | 5
3
1 | | Table III—Passenger Cars of 1630 or More But Less Than 1730 MILLIMETERS IN OVERALL WIDTH | to be | | Angles in degrees | | | | |-------------|----------------|-----------------------|----------------------------|---------------------|---------------------------| | | 2—
Mini- | Col-
umn
3—Left | Col-
umn
4—
Right | Col-
umn
5—Up | Col-
umn
6—
Down | | A
B
C | 80
94
99 | 17
14
8 | 53
51
15 | 9
5
4 | 5
3
1 | TABLE IV—PASSENGER CARS OF 1730 OR MORE MILLIMETERS IN OVERALL WIDTH | | Col- | Angles in degrees | | | | | |-------------------|--------------------------------------|-----------------------|----------------------------|---------------------|---------------------------|--| | Column 1—
Area | umn 2— Mini- mum percent to be wiped | Col-
umn
3—Left | Col-
umn
4—
Right | Col-
umn
5—Up | Col-
umn
6—
Down | | | A
B
C | 80
94
99 | 18
14
10 | 56
53
15 | 10
5
5 | 5
3
1 | | S4.2 Windshield washing system. S4.2.1 Each passenger car shall have a windshield washing system that meets the requirements of SAE Recommended Practice J942, "Passenger Car Windshield Washer Systems," November 1965, except that the reference to "the effective wipe pattern defined in SAE J903, paragraph 3.1.2" in paragraph 3.1 of SAE Recommended Practice J942 shall be deleted and "the areas established in accordance with subparagraph S4.1.2.1 of Motor Vehicle Safety Standard No. 104" shall be inserted in lieu thereof. S4.2.2 Each multipurpose passenger vehicle truck, and bus shall have a windshield washing system that meets the requirements of SAE Recommended Practice J942, November 1965, except that the reference to "the effective wipe pattern defined in SAE J903, paragraph 3.1.2" in paragraph 3.1 of SAE Recommended Practice J942 shall be deleted and "the pattern designed by the manufacturer for the windshield wiping system on the exterior surface of the windshield glazing" shall be inserted in lieu thereof. [36 FR 22902, Dec. 2, 1971, as amended at 58 FR 13023, Mar. 9, 1993; 60 FR 13643, Mar. 14, 1995; 63 FR 51000, Sept. 24, 1998] EFFECTIVE DATE NOTE: At 63 FR 51000, Sept. 24, 1998, §571.104 was amended in S3, by revising the definition of "Glazing surface reference line" effective May 27, 1999. For the convenience of the user, the superseded text is set forth as follows: ### § 571.104 Standard No. 104; Windshield wiping and washing systems. * * * * * * S3. * * * Glazing surface reference line means the line resulting from the intersection of the glazing surface and a horizontal plane 625 millimeters above the seating reference point, as shown in Figure 1 of SAE Recommended Practice J903a, "Passenger Car Windshield Wiper Systems," May 1966. ## §571.105 Standard No. 105; Hydraulic and electric brake systems. S1. *Scope.* This standard specifies requirements for hydraulic and electric service brake systems, and associated parking brake systems. S2. *Purpose*. The purpose of this standard is to insure safe braking performance under normal and emergency conditions. S3. Application. This standard applies to hydraulically-braked vehicles with a GVWR greater than 3,500 kilograms (7,716 pounds). This standard applies to hydraulically-braked passenger cars manufactured before September 1, 2000, and to hydraulically-braked multipurpose passenger vehicles, trucks and buses with a GVWR of 3,500 kilograms or less that are manufactured before September 1, 2002. At the option of the manufacturer, hydraulically-braked passenger cars manufactured before September 1, 2000, and hydraulically-braked multipurpose passenger vehicles, trucks and buses with a GVWR of 3,500 kilograms (7,716 pounds) or less manufactured before September 1, 2002, may meet the requirements of Federal Motor Vehicle Safety Standard No. 135, Light Vehicle Brake Systems instead of this standard. S4. *Definitions. Antilock system* means a portion of a service brake system that automatically controls the degree of rotational wheel slip at one or more road wheels of the vehicle during braking. Antilock brake system or ABS means a portion of a service brake system that automatically controls the degree of rotational wheel slip during braking by: - (1) Sensing the rate of angular rotation of the wheels; - (2) Transmitting signals regarding the rate of wheel angular rotation to one or more controlling devices which interpret those signals and generate responsive controlling output signals; and - (3) Transmitting those controlling signals to one or more modulators which adjust brake actuating forces in response to those signals. Backup system means a portion of a service brake system, such as a pump, that automatically supplies energy, in the event of a primary brake power source failure. Brake power assist unit means a device installed in a hydraulic brake system that reduces the operator effort required to actuate the system, and that if inoperative does not prevent the operator from braking the vehicle by a continued application of muscular force on the service brake control. Brake power unit means a device installed in a brake system that provides the energy required to actuate the brakes, either directly or indirectly through an auxiliary device, with the operator action consisting only of modulating the energy application level. Directly Controlled Wheel means a wheel for which the degree of rotational wheel slip is sensed, either at that wheel or on the axle shaft for that wheel and corresponding signals are transmitted to one or more modulators that adjust the brake actuating forces at that wheel. Each modulator may also adjust the brake actuating forces at other wheels that are on the same axle or in the same axle set in response to the same signal or signals. Electric vehicle or EV means a motor vehicle that is powered by an electric motor drawing current from rechargeable storage batteries, fuel cells, or other portable sources of electrical current, and which may include a non-electrical source of power designed to charge batteries and components thereof. Electrically-actuated service brakes means service brakes that utilize electrical energy to actuate the foundation brakes. Hydraulic brake system means a system that uses hydraulic fluid as a medium for transmitting force from a service brake control to the service brake, and that may incorporate a brake power assist unit, or a brake power unit. Indirectly Controlled Wheel means a wheel at which the degree of rotational wheel slip is not sensed, but at which the modulator of an antilock braking system adjusts its brake actuating forces in response to signals from one or more sensed wheels. *Initial brake temperature* means the average temperature of the service brakes on the hottest axle of the vehicle 0.2 mi before any brake application. Lightly loaded vehicle weight means: - (a) For vehicles with a GVWR of 10,000 lbs. or less, unloaded vehicle weight plus 400 lbs. (including driver and instrumentation); - (b) For vehicles with a GVWR greater than 10,000 lbs., unloaded vehicle weight plus 500 lbs. (including driver and instrumentation). Motor home means a motor vehicle with motive power that is designed to provide temporary residential accommodations, as evidenced by the presence of at least four of the following facilities: cooking; refrigeration or ice box; self-contained toilet; heating and/or air conditioning; a potable water supply system including a faucet and a sink; and a separate 110–125 volt electric power supply and/or an LP gas supply. Parking mechanism means a component or subsystem of the drive train that locks the drive train when the transmission control is placed in a parking or other gear position and the ignition key is removed. Peak friction coefficient or PFC means the ratio of the maximum value of braking test wheel longitudinal force to the simultaneous vertical force occurring prior to wheel lockup, as the braking torque is progressively increased. *Pressure component* means a brake system component that contains the brake system fluid and controls or senses the fluid pressure. Regenerative braking system or RBS means an electrical energy system that is installed in an EV for recovering or dissipating kinetic energy, and which uses the propulsion motor(s) as a retarder for partial braking of the EV while returning electrical energy to the
propulsion batteries or dissipating electrical energy. Skid number means the frictional resistance of a pavement measured in accordance with American Society for Testing and Materials (ASTM) Method E-274-70 (as revised July, 1974) at 40 mph, omitting water delivery as specified in paragraphs 7.1 and 7.2 of that method. *Snub* means the braking deceleration of a vehicle from a higher reference speed to a lower reference speed that is greater than zero. *Spike stop* means a stop resulting from the application of 200 lbs of force on the service brake control in 0.08 s. Split service brake system means a brake system consisting of two or more subsystems actuated by a single control, designed so that a single failure in any subsystem (such as a leakage-type failure of a pressure component of a hydraulic subsystem except structural failure of a housing that is common to two or more subsystems, or an electrical failure in an electric subsystem) does not impair the operation of any other subsystem. Stopping distance means the distance traveled by a vehicle from the point of application of force to the brake control to the point at which the vehicle reaches a full stop. Tandem axle means a group of two or more axles placed in close arrangement one behind the other with the center lines of adjacent axles not more than 72 inches apart. Variable proportioning brake system means a system that automatically ad- justs the braking force at the axles to compensate for vehicle static axle loading and/or dynamic weight transfer between axles during deceleration. Wheel lockup means 100 percent wheel slip. S5. Requirements. S5.1 Service brake systems. Each vehicle shall be equipped with a service brake system acting on all wheels. Wear of the service brake shall be compensated for by means of a system of automatic adjustment. Each passenger car and each multipurpose passenger vehicle, truck, and bus with a GVWR of 10,000 pounds or less shall be capable of meeting the requirements of S5.1.1 through S5.1.6 under the conditions prescribed in S6, when tested according to the procedures and in the sequence set forth in S7. Each school bus with a GVWR greater than 10,000 pounds shall be capable of meeting the requirements of S5.1.1 through S5.1.5 under the conditions prescribed in S6, when tested according to the procedures and in the sequence set forth in S7. Each multipurpose passenger vehicle, truck, and bus (other than a school bus) with a GVWR greater than 10,000 pounds shall be capable of meeting the requirements of S5.1.1, S5.1.2, and S5.1.3 under the conditions prescribed in S6, when tested according to the procedures and in the sequence set forth in S7. Except as noted in S5.1.1.2 and S5.1.1.4, if a vehicle is incapable of attaining a speed specified in S5.1.1, S5.1.2, S5.1.3, or S5.1.6, its service brakes shall be capable of stopping the vehicle from the multiple of 5 mph that is 4 to 8 mph less than the speed attainable in 2 miles, within distances that do not exceed the corresponding distances specified in Table II. If a vehicle is incapable of attaining a speed specified in S5.1.4 in the time or distance interval set forth, it shall be tested at the highest speed attainable in the time or distance interval specified. S5.1.1 Stopping distance. (a) The service brakes shall be capable of stopping each vehicle with a GVWR of less than 8,000 pounds, and each school bus with a GVWR between 8,000 pounds and 10,000 pounds in four effectiveness tests within the distances and from the speeds specified in S5.1.1.1, S5.1.1.2, S5.1.1.3, and S5.1.1.4. (b) The service brakes shall be capable of stopping each vehicle with a GVWR of between 8,000 pounds and 10,000 pounds, other than a school bus, in three effectiveness tests within the distances and from the speeds specified in S5.1.1.1, S5.1.1.2, and S5.1.1.4. (c) The service brakes shall be capable of stopping each vehicle with a GVWR greater than 10,000 pounds in two effectiveness tests within the distances and from the speeds specified in S5.1.1.2 and S5.1.1.3. Each school bus with a GVWR greater than 10,000 pounds manufactured after January 12, 1996 and before March 1, 1999 and which is equipped with an antilock brake system may comply with paragraph S5.1.1.2 and S5.5.1 rather than the first effectiveness test, as specified in S5.1.1.1. Each school bus with a GVWR greater than 10,000 pounds manufactured on or after March 1, 1999 shall be capable of meeting the requirements of S5.1.1 through S5.1.5, under the conditions prescribed in S6, when tested according to the procedures and in the sequence set forth in S7. S5.1.1.1 In the first (preburnished) effectiveness test, the vehicle shall be capable of stopping from 30 mph and 60 mph within the corresponding distances specified in column I of table II. S5.1.1.2 In the second effectiveness test, each vehicle with a GVWR of 10,000 pounds or less and each school bus with a GVWR greater than 10,000 pounds shall be capable of stopping from 30 mph and 60 mph, and each vehicle with a GVWR greater than 10,000 pounds (other than a school bus) shall be capable of stopping from 60 mph, within the corresponding distances specified in Column II of Table II. If the speed attainable in 2 miles is not less than 84 mph, a passenger car or other vehicle with a GVWR of 10,000 pounds or less shall also be capable of stopping from 80 mph within the corresponding distances specified in Column II of Table II. S5.1.1.3 In the third effectiveness test the vehicle shall be capable of stopping at lightly loaded vehicle weight from 60 mph within the corresponding distance specified in column III of table II. S5.1.1.4 In the fourth effectiveness test, a vehicle with a GVWR of 10,000 pounds or less shall be capable of stop- ping from 30 and 60 mph within the corresponding distances specified in column I of table II. If the speed attainable in 2 miles is not less than 84 mph, a passenger car, or other vehicle with a GVWR of 10,000 lbs., or less, shall also be capable of stopping from 80 mph within the corresponding distance specified in column I of table II. If the speed attainable in 2 miles is not less than 99 mph, a passenger car shall, in addition, be capable of stopping from the applicable speed indicated below, within the corresponding distance specified in column I of table II For an EV, the speed attainable in 2 miles is determined with the propulsion batteries at a state of charge of not less than 95 percent at the beginning of the run. S5.1.2 Partial failure. S5.1.2.1 In vehicles manufactured with a split service brake system, in the event of a rupture or leakage type of failure in a single subsystem, other than a structural failure of a housing that is common to two or more subsystems, the remaining portion(s) of the service brake system shall continue to operate and shall be capable of stopping a vehicle from 60 mph within the corresponding distance specified in column IV of table II. S5.1.2.2 In vehicles not manufactured with a split service brake system, in the event of any one rupture or leakage type of failure in any component of the service brake system the vehicle shall, by operation of the service brake control, be capable of stopping 10 times consecutively from 60 mph within the corresponding distance specified in column IV of table II. S5.1.2.3 For a vehicle manufactured with a service brake system in which the brake signal is transmitted electrically between the brake pedal and some or all of the foundation brakes, regardless of the means of actuation of the foundation brakes, the vehicle shall be capable of stopping from 60 mph within the corresponding distance specified in Column IV of Table II with any single failure in any circuit that electrically transmits the brake signal, and with all other systems intact. S5.1.2.4 For an EV manufactured with a service brake system that incorporates RBS, the vehicle shall be capable of stopping from 60 mph within the corresponding distance specified in Column IV of Table II with any single failure in the RBS, and with all other systems intact. S5.1.3 Inoperative brake power assist unit or brake power unit. A vehicle equipped with one or more brake power assist units shall meet the requirements of either S5.1.3.1, S5.1.3.2, or S5.1.3.4 (chosen at the option of the manufacturer), and a vehicle equipped with one or more brake power units shall meet the requirements of either S5.1.3.1, S5.1.3.3, or S5.1.3.4 (chosen at the option of the manufacturer). S5.1.3.1 The service brakes on a vehicle equipped with one or more brake power assist units or brake power units, with one such unit inoperative and depleted of all reserve capability, shall be capable of stopping a vehicle from 60 mph within the corresponding distance specified in column IV of table II. S5.1.3.2 Brake power assist units. The service brakes on a vehicle equipped with one or more brake power assist units, with one such unit inoperative, shall be capable of stopping a vehicle from 60 mph: (a) In six consecutive stops at an average deceleration for each stop that is not lower than that specified in column I of table III, when the inoperative unit is not initially depleted of all reserve capability; and (b) In a final stop, at an average deceleration that is not lower than 7 FPSPS for passenger cars (equivalent stopping distance 554 feet) or 6 FPSPS for vehicles other than passenger cars (equivalent stopping distance 646 feet), as applicable, when the inoperative unit is depleted of all reserve capacity. S5.1.3.3 Brake power units. The service brakes of a vehicle equipped with one or more brake power units with an accumulator-type reserve system, with any one failure in any one unit shall be capable of stopping the vehicle from 60 mph— (a) In 10 consecutive stops at an average deceleration for each stop that is not lower than that specified in column II of table III, when the unit is not initially depleted of all reserve capability; and (b) In a
final stop, at an average deceleration that is not lower than 7 FPSPS for passenger cars (equivalent stopping distance 554 feet) or 6 FPSPS for vehicles other than passenger cars (equivalent stopping distance 646 feet), as applicable, when the inoperative unit is depleted of all reserve capacity. S5.1.3.4 Brake power assist and brake power units. The service brakes of a vehicle equipped with one or more brake power assist units or brake power units with a backup system, with one brake power assist unit or brake power unit inoperative and depleted of all reserve capability and with only the backup system operating in the failed subsystem, shall be capable of stopping the vehicle from 60 mph in 15 consecutive stops at an average deceleration for each stop that is not lower than 12 fpsps (equivalent stopping distance 323 feet). S5.1.3.5 *Electric brakes.* Each vehicle with electrically-actuated service brakes (brake power unit) shall comply with the requirements of S5.1.3.1 with any single electrical failure in the electrically-actuated service brakes and all other systems intact. S5.1.4 Fade and recovery. The service brakes shall be capable of stopping each vehicle in two fade and recovery tests as specified below. S5.1.4.1 The control force used for the baseline check stops or snubs shall be not less than 10 pounds, nor more than 60 pounds, except that the control force for a vehicle with a GVWR of 10,000 pounds or more may be between 10 pounds and 90 pounds. S5.1.4.2 (a) Each vehicle with GVWR of 10,000 lbs or less shall be capable of making 5 fade stops (10 fade stops on the second test) from 60 mph at a deceleration not lower than 15 fpsps for each stop, followed by 5 fade stops at the maximum deceleration attainable from 5 to 15 fpsps. (b) Each vehicle with a GVWR greater than 10,000 pounds shall be capable of making 10 fade snubs (20 fade snubs on the second test) from 40 mph to 20 mph at 10 fpsps for each snub. S5.1.4.3 (a) Each vehicle with a GVWR of 10,000 pounds or less shall be capable of making five recovery stops from 30 mph at 10 fpsps for each stop, with a control force application that falls within the following maximum and minimum limits: - (1) A maximum for the first four recovery stops of 150 pounds, and for the fifth stop, of 20 pounds more than the average control force for the baseline check; and - (2) A minimum of- - (A) The average control force for the baseline check minus 10 pounds, or - (B) The average control force for the baseline check times 0.60, - whichever is lower (but in no case lower than 5 pounds). - (b) Each vehicle with a GVWR of more than 10,000 pounds shall be capable of making five recovery snubs from 40 mph to 20 mph at 10 fpsps for each snub, with a control force application that falls within the following maximum and minimum limits: - (1) A maximum for the first four recovery snubs of 150 pounds, and for the fifth snub, of 20 pounds more than the average control force for the baseline check (but in no case more than 100 pounds); and - (2) A minimum of— - (A) The average control force for the baseline check minus 10 pounds, or - (B) The average control force for the baseline check times 0.60, - whichever is lower (but in no case lower than 5 pounds). - S5.1.5 *Water recovery.* The service brakes shall be capable of stopping each vehicle in a water recovery test, as specified below. - S5.1.5.1 The control force used for the baseline check stops or snubs shall be not less than 10 pounds, nor more than 60 pounds, except that the control force for a vehicle with a GVWR of 10,000 pounds or more may be between 10 and 90 pounds. S5.1.5.2(a) After being driven for 2 minutes at a speed of 5 mph in any combination of forward and reverse directions through a trough having a water dept of 6 inches, each vehicle with a GVWR of 10,000 pounds or less shall be capable of making five recovery stops from 30 mph at ten fpsps for each stop with a control force application that falls within the following maximum and minimum limits: - (1) A maximum for the first four recovery stops of 150 pounds, and for the fifth stop, of 45 pounds more than the average control force for the baseline check (but in no case more than 90 pounds, except that the maximum control force for the fifth stop in the case of a vehicle manufactured before September 1, 1976, shall be not more than plus 60 pounds of the average control force for the baseline check (but in no case more than 110 pounds). - (2) A minimum of— - (A) The average control force for the baseline check minus 10 pounds, or - (B) The average control force for the baseline check times 0.60, whichever is lower (but in no case lower than 5 pounds). - (b) After being driven for 2 minutes at a speed of 5 mph in any combination of forward and reverse directions through a trough having a water depth of 6 inches, each vehicle with a GVWR of more than 10,000 pounds shall be capable of making five recovery stops from 30 mph at 10 fpsps for each stop with a control force application that falls within the following maximum and minimum limits: - (1) A maximum for the first four recovery stops of 150 pounds, and for the fifth stop, of 60 pounds more than the average control force for the baseline check (but in no case more than 110 pounds); and - (2) A minimum of— - (A) The average control force for the baseline check minus 10 pounds, or - (B) The average control force for the baseline check times 0.60, - whichever is lower (but in no case lower than 5 pounds). - S5.1.6 *Spike stops.* Each vehicle with a GVWR of 10,000 lbs. or less shall be capable of making 10 spike stops from 30 mph, followed by 6 effectiveness (check) stops from 60 mph, at least one of which shall be within a corresponding stopping distance specified in column I of table II. S5.2 Parking brake system. Each vehicle with a GVWR of 10,000 lbs. or less and each school bus with a GVWR greater than 10,000 lbs., shall be manufactured with a parking brake system of a friction type with a solely mechanical means to retain engagement, which shall under the conditions of S6., when tested according to the procedures specified in S7., meet the requirements specified in S5.2.1, S5.2.2, or S5.2.3 as appropriate, with the system engaged— (a) In the case of a vehicle with a GVWR of 10,000 lbs. or less, with a force applied to the control not to exceed 125 pounds for a foot-operated system and 90 pounds for a hand-operated system; and (b) In the case of a school bus with a GVWR greater than 10,000 lbs. with a force applied to the control not to exceed 150 pounds for a foot-operated system and 125 pounds for a hand-operated system. S5.2.1. Except as provided in §5.2.2, the parking brake system on a passenger car and on a school bus with a GVWR of 10,000 pounds or less shall be capable of holding the vehicle stationary (to the limit of traction on the braked wheels) for 5 minutes in both a forward and reverse direction on a 30 percent grade. S5.2.2 A vehicle of a type described in S5.2.1 at the option of the manufacturer may meet the requirements of S5.2.2.1, S5.2.2.2, and S5.2.2.3 instead of the requirements of S5.2.1 if: (a) The vehicle has a transmission or transmission control which incorporates a parking mechanism, and (b) The parking mechanism must be engaged before the ignition key can be removed. S5.2.2.1 The vehicle's parking brake and parking mechanism, when both are engaged, shall be capable of holding the vehicle stationary (to the limit of traction of the braked wheels) for 5 minutes, in both forward and reverse directions, on a 30 percent grade. S5.2.2.2 The vehicle's parking brake, with the parking mechanism not engaged, shall be capable of holding the vehicle stationary for 5 minutes, in both forward and reverse directions, on a 20 percent grade. S5.2.2.3 With the parking mechanism engaged and the parking brake not engaged, the parking mechanism shall not disengage or fracture in a manner permitting vehicle movement, when the vehicle is impacted at each end, on a level surface, by a barrier moving at $2\frac{1}{2}$ mph. S5.2.3. The parking brake system on a multipurpose passenger vehicle, truck and bus (other than a school bus) with a GVWR of 10,000 pounds or less and a school bus with a GVWR greater than 10,000 pounds shall be capable of holding the vehicle stationary for 5 minutes, in both forward and reverse directions, on a 20 percent grade. S5.3 Brake system indicator lamp. Each vehicle shall have a brake system indicator lamp or lamps, mounted in front of and in clear view of the driver, which meet the requirements of S5.3.1 through S5.3.5. A vehicle with a GVWR of 10,000 pounds or less may have a single common indicator lamp. A vehicle with a GVWR of greater than 10,000 pounds may have an indicator lamp which is common for gross loss of pressure, drop in the level of brake fluid, or application of the parking brake, but shall have a separate indicator lamp for antilock brake system malfunction. However, the options provided in S5.3.1(a) shall not apply to a vehicle manufactured without a split service brake system; such a vehicle shall, to meet the requirements of S5.3.1(a), be equipped with a malfunction indicator that activates under the conditions specified in S5.3.1(a)(4). This warning indicator shall, instead of meeting the requirements of S5.3.2 through S5.3.5, activate (while the vehicle remains capable of meeting the requirements of S5.1.2.2 and the ignition switch is in the "on" position) a continuous or intermittent audible signal and a flashing warning light, displaying the words "STOP-BRAKE FAILURE" in block capital letters not less than one-quarter of an inch in height. S5.3.1 An indicator lamp shall be activated when the ignition (start) switch is in the "on" ("run") position and whenever any of the conditions (a) or (b), (c), (d), (e), (f), and (g) occur: (a) A gross loss of pressure (such as caused by rupture of a brake line but not by a structural failure of a housing
that is common to two or more subsystems) due to one of the following conditions (chosen at the option of the manufacturer): - (1) Before or upon application of a differential pressure of not more than 225 lb/in² between the active and failed brake system measured at a master cylinder outlet or a slave cylinder outlet. - (2) Before or upon application of 50 pounds of control force upon a fully manual service brake. - (3) Before or upon application of 25 pounds of control force upon a service brake with a brake power assist unit. - (4) When the supply pressure in a brake power unit drops to a level not less than one-half of the normal system pressure. - (b) A drop in the level of brake fluid in any master cylinder reservoir compartment to less than the recommended safe level specified by the manufacturer or to one-fourth of the fluid capacity of that reservoir compartment, whichever is greater. - (c) A malfunction that affects the generation or transmission of response or control signals in an antilock brake system, or a total functional electrical failure in a variable proportioning brake system. - (d) Application of the parking brake. (e) For a vehicle with electrically-actuated service brakes, failure of the source of electric power to the brakes, or diminution of state of charge of the batteries to less than a level specified batteries to less than a level specified by the manufacturer for the purpose of warning a driver of degraded brake performance. (f) For a vehicle with electric transmission of the service brake control signal, failure of a brake control circuit. (g) For an EV with RBS that is part of the service brake system, failure of the RBS. An amber lamp may be used displaying the symbol "RBS." RBS failure in a system that is part of the service brake system may also be indicated by an amber lamp that also indicates ABS failure and displays the symbol "ABS/RBS". S5.3.2 (a) Except as provided in paragraph (b) of this section, all indicator lamps shall be activated as a check of lamp function either when the ignition (start) switch is turned to the "on" (run) position when the engine is not running, or when the ignition (start) switch is in a position between "on" (run) and "start" that is designated by the manufacturer as a check position. (b) The indicator lamps need not be activated when a starter interlock is in operation. S5.3.3 (a) Each indicator lamp activated due to a condition specified in S5.3.1 shall remain activated as long as the malfunction exists, whenever the ignition (start) switch is in the "on" (run) position, whether or not the engine is running. (b) For vehicles with a GVWR greater than 10,000 pounds, each message about the existence of a malfunction, as described in S5.3.1(c), shall be stored in the antilock brake system after the ignition switch is turned to the "off" sition and the indicator lamp shall be automatically reactivated when the ignition switch is again turned to the "on" position. The indicator lamp shall also be activated as a check of lamp function whenever the ignition is turned to the "on" (run) position. The indicator lamp shall be deactivated at the end of the check of lamp function unless there is a malfunction or a message about a malfunction that existed when the key switch was last turned to the "off" position. S5.3.4 When an indicator lamp is activated it may be steady burning or flashing. S5.3.5 (a) Each indicator lamp shall display word, words or abbreviation, in accordance with the requirements of Standard No. 101 (49 CFR 571.101) and/or this section, which shall have letters not less than 1/8-inch high and be legible to the driver in daylight when lighted. Words in addition to those required by Standard No. 101 and/or this section and symbols may be provided for purposes of clarity. (b) If a single common indicator is used, the lamp shall display the word "Brake". The letters and background of a single common indicator shall be of contrasting colors, one of which is red (c)(1) If separate indicators are used for one or more of the conditions described in S5.3.1(a) through S5.3.1(g) of this standard, the indicator display shall include the word "Brake" and appropriate additional labeling, except as provided in (c)(1) (A) through (D) of this paragraph. - (A) If a separate indicator lamp is provided for gross loss of pressure, the words "Brake Pressure" shall be used for \$5.3.1(a). - (B) If a separate indicator lamp is provided for low brake fluid, the words "Brake Fluid" shall be used for S5.3.1(b), except for vehicles using hydraulic system mineral oil. - (C) If a separate indicator lamp is provided for an anti-lock system, the single word "Antilock" or "Anti-lock", or the abbreviation "ABS", may be used for S5.3.1(c). - (D) If a separate indicator lamp is provided for application of the parking brake, the single word "Park" may be used for S5.3.1(d). - (2) Except for a separate indicator lamp for an anti-lock system, the letters and background of each separate indicator lamp shall be of contrasting colors, one of which is red. The letters and background of a separate indicator lamp for an anti-lock system shall be of contrasting colors, one of which is yellow. S5.4 Reservoirs. S5.4.1 Master cylinder reservoirs. A master cylinder shall have a reservoir compartment for each service brake subsystem serviced by the master cylinder. Loss of fluid from one compartment shall not result in a complete loss of brake fluid from another compartment. S5.4.2 Reservoir capacity. Reservoirs, whether for master cylinders or other type systems, shall have a total minimum capacity equivalent to the fluid displacement resulting when all the wheel cylinders or caliper pistons serviced by the reservoirs move from a new lining, fully retracted position (as adjusted initially to the manufacturer's recommended setting) to a fully worn, fully applied position, as determined in accordance with S7.18(c) of this standard. Reservoirs shall have completely separate compartments for each subsystem except that in reservoir systems utilizing a portion of the reservoir for a common supply to two or more subsystems, individual partial compartments shall each have a minimum volume of fluid equal to at least the volume displaced by the master cylinder piston servicing the subsystem, during a full stroke of the piston. Each brake power unit reservoir servicing only the brake system shall have a minimum capacity equivalent to the fluid displacement required to charge the system piston(s) or accumulator(s) to normal operating pressure plus the displacement resulting when all the wheel cylinders or caliper pistons serviced by the reservoir or accumulator(s) move from a new lining fully retracted position (as adjusted initially to the manufacturer's recommended setting) to a fully worn, fully applied position. S5.4.3 Reservoir labeling—Each vehicle equipped with hydraulic brakes shall have a brake fluid warning statement that reads as follows, in letters at least one-eighth of an inch high: "WARN-ING, Clean filler cap before removing. Use only _____ fluid from a sealed container." (Inserting the recommended type of brake fluid as specified in 49 CFR 571.116, e.g., "DOT 3"). The lettering shall be— (a) Permanently affixed, engraved, or embossed; - (b) Located so as to be visible by direct view, either on or within 4 inches of the brake fluid reservoir filler plug or cap; and - (c) Of a color that contrasts with its background, if it is not engraved or embossed. S5.5 Antilock and variable proportioning brake systems. S5.5.1 Each vehicle with a GVWR greater than 10,000 pounds, except for any vehicle with a speed attainable in 2 miles of not more than 33 mph, shall be equipped with an antilock brake system that directly controls the wheels of at least one front axle and the wheels of at least one rear axle of the vehicle. On each vehicle with a GVWR greater than 10,000 pounds but not greater than 19,500 pounds and motor homes with a GVWR greater than 10,000 pounds but not greater than 22,500 pounds manufactured before March 1, 2001, the antilock brake system may also directly control the wheels of the rear drive axle by means of a single sensor in the driveline. Wheels on other axles of the vehicle may be indirectly controlled by the antilock brake system. S5.5.2 In the event of any failure (structural or functional) in an antilock or variable proportioning brake system, the vehicle shall be capable of meeting the stopping distance requirements specified in S5.1.2 for service brake system partial failure. For an EV that is equipped with both ABS and RBS that is part of the service brake system, the ABS must control the RBS. S5.6 Brake system integrity. Each vehicle shall be capable of completing all performance requirements of S5 without— (a) Detachment or fracture of any component of the braking system, such as brake springs and brake shoe or disc pad facing, other than minor cracks that do not impair attachment of the friction facing. All mechanical components of the braking system shall be intact and functional. Friction facing tearout (complete detachment of lining) shall not exceed 10 percent of the lining on any single frictional element. (b) Any visible brake fluid or lubricant on the friction surface of the brake, or leakage at the master cylinder or brake power unit reservoir cover, seal and filler openings. S6 Test conditions. The performance requirements of S5 shall be met under the following conditions. Where a range of conditions is specified, the vehicle shall be capable of meeting the requirements at all points within the range. Compliance of vehicles manufactured in two or more stages may, at the option of the final-stage manufacturer, be demonstrated to comply with this standard by adherence to the instructions of the incomplete manufacturer provided with the vehicle in accordance with §568.4(a)(7)(ii) and §568.5 of title 49 of the Code of Federal Regulations. S6.1 Vehicle
weight. S6.1.1 Other than tests specified at lightly loaded vehicle weight in S7.7, S7.8, and S7.9, the vehicle is loaded to its GVWR such that the weight on each axle as measured at the tire-ground interface is in proportion to its GAWR, except that each fuel tank is filled to any level from 100 percent of capacity (corresponding to full GVWR) to 75 percent. However, if the weight on any axle of a vehicle at lightly loaded vehi- cle weight exceeds the axle's proportional share of the gross vehicle weight rating, the load required to reach GVWR is placed so that the weight on that axle remains the same as a lightly loaded vehicle weight. S6.1.2 For the applicable tests specified in S7.7, S7.8, and S7.9, vehicle weight is lightly loaded vehicle weight, with the added weight distributed in the front passenger seat area in passenger cars, multipurpose passenger vehicles, and trucks, and in the area adjacent to the driver's seat in buses. S6.2 Electric vehicles and electric brakes. S6.2.1 The state of charge of the propulsion batteries is determined in accordance with SAE Recommended Practice J227a, *Electric Vehicle Test Procedure*, February 1976. The applicable sections of J227a are 3.2.1 through 3.2.4, 3.3.1 through 3.3.2.2, 3.4.1 and 3.4.2, 4.2.1, 5.2, 5.2.1, and 5.3. S6.2.2 At the beginning of the first effectiveness test specified in S7.3, and at the beginning of each burnishing procedure, each EV's propulsion battery is at the maximum state of charge recommended by the manufacturer, as stated in the vehicle operator's manual or on a label that is permanently attached to the vehicle, or, if the manufacturer has made no recommendation, at a state of charge of not less than 95 percent. If a battery is replaced rather than recharged, the replacement battery is to be charged and measured for state of charge in accordance with these procedures. During each burnish procedure, each propulsion battery is restored to the recommended state of charge or a state of charge of not less than 95 percent after each increment of 40 burnish stops until each burnish procedure is complete. The batteries may be charged at a more frequent interval if, during a particular 40-stop increment, the EV is incapable of achieving the initial burnish test speed. During each burnish procedure, the propulsion batteries may be charged by an external means or replaced by batteries that are charged to the state of charge recommended by the manufacturer or a state of charge of not less than 95 percent. For EVs having a manual control for setting the level of regenerative braking, the manual control, at the beginning of each burnish procedure, is set to provide maximum regenerative braking throughout the burnish. S6.2.3 At the beginning of each performance test in the test sequence (S7,3, S7.5, S7.7 through S7.11, and S7.13 through S7.19 of this standard), unless otherwise specified, each propulsion battery of an EV is at the maximum state of charge recommended by the manufacturer, as stated in the vehicle operator's manual or on a label that is permanently attached to the vehicle, or, if the manufacturer has made no recommendation, at a state of charge of not less than 95 percent. If batteries are replaced rather than recharged, each replacement battery shall be charged and measured for state of charge in accordance with these procedures. No further charging of any propulsion battery occurs during any of the performance tests in the test sequence of this standard. If the propulsion batteries are depleted during a test sequence such that the vehicle reaches automatic shut-down, will not accelerate, or the low state of charge warning lamp is illuminated, the vehicle is to be accelerated to brake test speed by auxiliary means. S6.2.4 (a) For an EV equipped with RBS, the RBS is considered to be part of the service brake system if it is automatically controlled by an application of the service brake control, if there is no means provided for the driver to disconnect or otherwise deactivate it, and if it is activated in all transmission positions, including neutral. The RBS is operational during all burnishes and all tests, except for the test of a failed RBS. (b) For an EV equipped with an RBS that is not part of the service brake system, the RBS is operational and set to produce the maximum regenerative braking effect during the burnishes, and is disabled during the test procedures. If the vehicle is equipped with a neutral gear that automatically disables the RBS, the test procedures which are designated to be conducted in gear may be conducted in neutral. S6.2.5 For tests conducted "in neutral," the operator of an EV with no "neutral" position (or other means such as a clutch for disconnecting the drive train from the propulsion motor(s)) does not apply any electromotive force to the propulsion motor(s). Any electromotive force that is applied to the propulsion motor(s) automatically remains in effect unless otherwise specified by the test procedure S6.2.6 A vehicle equipped with electrically-actuated service brakes also performs the following test series. Conduct 10 stopping tests from a speed of 100 kph or the maximum vehicle speed, whichever is less. At least two of the 10 stopping distances must be less than or equal to 70 meters. The vehicle is loaded to GVWR for these tests and the transmission is in the neutral position when the service brake control is actuated and throughout the remainder of the test. The battery or batteries providing power to those electrically-actuated brakes, at the beginning of each test, shall be in a depleted state of charge for conditions (a), (b), or (c) of this paragraph as appropriate. An auxiliary means may be used to accelerate an EV to test speed. (a) For an EV equipped with electrically-actuated service brakes deriving power from the propulsion batteries, and with automatic shut-down capability of the propulsion motor(s), the propulsion batteries are at not more than five percent above the EV actual automatic shut-down critical value. The critical value is determined by measuring the state-of-charge of each propulsion battery at the instant that automatic shut-down occurs and averaging the states-of-charge recorded. (b) For an EV equipped with electrically-actuated service brakes deriving power from the propulsion batteries, and with no automatic shutdown capability of the propulsion motor(s), the propulsion batteries are at an average of not more than five percent above the actual state of charge at which the brake failure warning signal, required by \$5.3.1(e) of this standard, is illuminated. (c) For a vehicle which has an auxiliary battery (or batteries) that provides electrical energy to operate the electrically-actuated service brakes, the auxiliary battery(batteries) is (are) at (at an average of) not more than five percent above the actual state of charge at which the brake failure warning signal, required by \$5.3.1(e) of this standard, is illuminated. S6.3 *Tire inflation pressure.* Tire inflation pressure is the pressure recommended by the vehicle manufacturer for the GVWR of the vehicle. S6.4 Transmission selector control. For S7.3, S7.5, S7.8, S7.15, S7.17, S7.11.1.2, S7.11.2.2, S7.11.3.2, and as required for S7.13, the transmission selector control is in neutral for all decelerations. For all other tests during all decelerations, the transmission selector is in the control position, other than overdrive, recommended by the manufacturer for driving on a level surface at the applicable test speed. To avoid engine stall during tests required to be run in gear a manual transmission may be shifted to neutral (or the clutch disengaged) when the vehicle speed decreases to 20 mph. S6.5 Engine. Engine idle speed and ignition timing settings are according to the manufacturer's recommendations. If the vehicle is equipped with an adjustable engine speed governor, it is adjusted according to the manufacturer's recommendation. S6.6 Vehicle openings. All vehicle openings (doors, windows, hood, trunk, convertible top, cargo doors, etc.) are closed except as required for instrumentation purposes. S6.7 Ambient temperature. The ambient temperature is any temperature between 32° F. and 100° F. S6.8 *Wind velocity.* The wind velocity is zero. S6.9 Road surface. S6.9.1 For vehicles with a GVWR of 10,000 pounds or less, road tests are conducted on a 12-foot-wide, level roadway, having a skid number of 81. Burnish stops are conducted on any surface. The parking brake test surface is clean, dry, smooth, Portland cement concrete. S6.9.2 For vehicles with a GVWR greater than 10,000 pounds, road tests are conducted on a 12-foot-wide, level roadway, having a peak friction coefficient of 0.9 when measured using an American Society for Testing and Materials (ASTM) E 1136 standard reference test tire, in accordance with ASTM Method E 1337-90, at a speed of 40 mph, without water delivery. Burnish stops are conducted on any surface. The parking brake test surface is clean, dry, smooth, Portland cement concrete. S6.10 Vehicle position and wheel lockup restrictions. The vehicle is aligned in the center of the roadway at the start of each brake application. Stops, other than spike stops, are made without any part of the vehicle leaving the roadway. S6.10.1 For vehicles with a GVWR of 10,000 pounds or less, stops are made with wheel lockup permitted only as follows: - (a) At vehicle speeds above 10 mph, there may be controlled wheel lockup on an antilock-equipped axle, and lock-up of not more than one wheel per vehicle, uncontrolled by an antilock system. (Dual wheels on one side of an axle are considered a single wheel.) - (b) At vehicle speeds of 10 mph or less, any wheel may lock up for any duration. - (c) Unlimited wheel lockup is allowed during spike stops (but not spike check stops), partial failure stops, and inoperative brake power or power assist unit stops. S6.10.2 For vehicles with a GVWR greater than 10,000 pounds,
stops are made with wheel lockup permitted only as follows: - (a) At vehicle speeds above 20 mph, any wheel on a nonsteerable axle other than the two rearmost nonliftable, nonsteerable axles may lock up for any duration. The wheels on the two rearmost nonliftable, nonsteerable axles may lock up according to (b). - (b) At vehicle speeds above 20 mph, one wheel on any axle or two wheels on any tandem may lock up for any duration. - (c) At vehicle speeds above 20 mph, any wheel not permitted to lock in (a) or (b) may lock up repeatedly, with each lockup occurring for a duration of one second or less. - (d) At vehicle speeds of 20 mph or less, any wheel may lock up for any duration. - (e) Unlimited wheel lockup is allowed during partial failure stops, and inoperative brake power or power assist stops. S6.11 Thermocouples. The brake temperature is measured by plug-type thermocouples installed in the approximate center of the facing length and width of the most heavily loaded shoe or disc pad, one per brake, as shown in figure 1. A second thermocouple may be installed at the beginning of the test sequence if the lining wear is expected to reach a point causing the first thermocouple to contact the metal rubbing surface of a drum or rotor. For centergrooved shoes or thermocouples are installed within one-eighth of an inch to one-quarter inch of the groove and as close to the center as possible. S6.12 *Initial brake temperature.* Unless otherwise specified the brake temperature is 150° F. to 200° F. S6.13 *Control forces.* Unless otherwise specified, the force applied to a brake control is not less than 15 lb and not more than 150 lb. S7. Test procedures and sequence. Each vehicle shall be capable of meeting all the applicable requirements of S5 when tested according to the procedures and in the sequence set forth below, without replacing any brake system part or making any adjustments to the brake system other than as permitted in the burnish and reburnish procedures and in S7.9 and S7.10. (For vehicles only having to meet the requirements of S5.1.1, S5.1.2 and S5.1.3 in section S5.1, the applicable test procedures and sequence are S7.1, S7.2, S7.4, S7.5, S7.8, \$7.9, \$7.10 and \$7.18. However, at the option of the manufacturer, the following test procedures and sequence may be conducted: S7.1, S7.2, S7.3, S7.4, S7.5, S7.6, S7.7 S7.8, S7.9, S7.10 and S7.18. The choice of this option shall not be construed as adding to the requirements specified in S5.1.2 and S5.1.3.) Automatic adjusters must remain activated at all times. A vehicle shall be deemed to comply with the stopping distance requirements of S5.1 if at least one of the stops at each speed and load specified in each of S7.3, S7.5, S7.8, S7.9, S7.10, S7.15 and S7.17 (check stops) is made within a stopping distance that does not exceed the corresponding distance specified in Table II. When the transmission selector control is required to be in neutral for a deceleration, a stop or snub shall be obtained by the following procedures: - (a) Exceed the test speed by 4 to 8 mph; - (b) close the throttle and coast in gear to approximately 2 mph above the test speed; - (c) shift to neutral; and - (d) when the test speed is reached, apply the service brakes. S7.1 Brake warming. If the initial brake temperature for the first stop in a test procedure (other than S7.7 and S7.16) has not been reached, heat the brakes to the initial brake temperature by making not more than 10 snubs from not more than 40 to 10 mph, at a deceleration not greater than 10 fpsps. S7.2 Pretest instrumentation check. Conduct a general check of instrumentation by making not more than 10 stops from a speed of not more than 30 mph, or 10 snubs from a speed of not more than 40 to 10 mph, at a deceleration of not more than 10 fpsps. If instrument repair, replacement, or adjustment is necessary, make not more than 10 additional stops or snubs after such repair, replacement, or adjustment. S7.3 Service brake system—first (preburnish) effectiveness test. Make six stops from 30 mph. Then make six stops from 60 mph. S7.4 Service brake system—burnish procedure. S7.4.1 Vehicles with GVWR of 10,000 lb or less. S7.4.1.1 *Burnish*. Burnish the brakes by making 200 stops from 40 mph at 12 fpsps (the 150 lb control force limit does not apply here). The interval from the start of one service brake application to the start of the next shall be either the time necessary to reduce the initial brake temperature to between 230° F. and 270° F., or the distance of 1 mile, whichever occurs first. Accelerate to 40 mph after each stop and maintain that speed until making the next stop. S7.4.1.2 Brake adjustment—post burnish. After burnishing, adjust the brakes in accordance with the manufacturer's published recommendations. S7.4.2 Vehicles with GVWR greater than 10,000 pounds. S7.4.2.1 Burnish. Vehicles are burnished according to the following procedures. Make 500 snubs between 40 mph and 20 mph at a deceleration rate of 10 f.p.s.p.s. Except where an adjustment is specified, after each brake application accelerate to 40 mph and maintain that speed until making the next brake application at a point 1 mile from the initial point of the previous brake application. If the vehicle cannot attain a speed of 40 mph in 1 mph, continue to accelerate until the vehicle reaches 40 mph or until the vehicle has traveled 1.5 miles from the initial point of the previous brake application, whichever occurs first. The brakes shall be adjusted three times during the burnish procedure, in accordance with the manufacturer's recommendations, after 125, 250, and 375 S7.4.2.2 Brake adjustment—post burnish. After burnishing, adjust the brakes in accordance with the manufacturer's published recommendations. S7.5 Service brake system-second effectiveness test. Repeat S7.3, except for vehicles with a GVWR greater than 10,000 lbs. Then, for vehicles with a GVWR of 10,000 pounds or less, make four stops from 80 mph if the speed attainable in 2 miles is not less 84 mph. S7.6 First reburnish. Repeat S7.4, except make 35 burnish stops or snubs. In the case of vehicles burnished in accordance with S7.4.2.1(a) of this section, reburnish the vehicle by making 35 snubs from 60 to 20 mph, but if the hottest brake temperature reaches 500° F \pm 50 $^{\circ}$ F, make the remainder of the brake applications from the highest snub condition listed in Table IV that will maintain the hottest brake temperature at 500 $^{\circ}$ F \pm 50 $^{\circ}$ F. If at a snub condition of 40 to 20 mph, the temperature of the hottest brake exceeds 550 ° F, make the remainder of the 35 brake applications from the snub condition without regard to brake temperature. S7.7 Parking brake test. The parking brake tests for any vehicle on different grades, in different directions, and for different loads may be conducted in any order. The force required for actuation of a hand-operated brake system shall be measured at the center of the hand grip area or at a distance of 1½ inches from the end of the actuation lever, as illustrated in Figure II. S7.7.1 Test procedure for requirements of S5.2.1. S7.7.1.1 Condition the parking brake friction elements so that the temperature at the beginning of the test is at any level not more than 150° F. (when the temperature of components on both ends of an axle are averaged). S7.7.1.2 Drive the vehicle, loaded to GVWR, onto the specified grade with the longitudinal axis of the vehicle in the direction of the slope of the grade, stop the vehicle and hold it stationary by application of the service brake control, and place the transmission in neutral S7.7.1.3 With the vehicle held stationary by means of the service brake control, apply the parking brake by a single application of the force specified in (a), (b), or (c) of this paragraph, except that a series of applications to achieve the specified force may be made in the case of a parking brake system design that does not allow the application of the specified force in a single application: - (a) In the case of a passenger car or other vehicle with a GVWR of 10,000 lbs. or less, not more than 125 pounds for a foot-operated system, and not more than 90 pounds for a hand-operated system; and - (b) In the case of a school bus with a GVWR greater than 10,000 lbs. not more than 150 pounds for a foot-operated system, and not more than 125 pounds for a hand-operated system. - (c) For a vehicle using an electrically-activated parking brake, apply the parking brake by activating the parking brake control. S7.7.1.4 Following the application of the parking brake in accordance with S7.7.1.3, release all force on the service brake control and commence the measurement of time if the vehicle remains stationary. If the vehicle does not remain stationary, reapplication of the service brake to hold the vehicle stationary, with reapplication of a force to the parking brake control at the level specified in S7.7.1.3 (a) or (b) as appropriate for the vehicle being tested (without release of the ratcheting or other holding mechanism of the parking brake) may be used twice to attain a stationary position. S7.7.1.5 Following observation of the vehicle in a stationary condition for the specified time in one direction, repeat the same test procedure with the vehicle orientation in the opposite direction on the specified grade. S7.7.1.6 Check the operation of the parking brake application indicator required by S5.3.1(d). S7.7.2 Test procedure for requirements of S5.2.2 (a) Check that transmission must be placed in park position to release key; (b) Test as in S7.7.1, except in addition place the transmission control to engage the parking mechanism; and (c) Test as in S7.7.1 except on a 20 percent grade, with the parking mechanism not engaged. S7.7.3 Lightly loaded vehicle. Repeat S7.7.1 or S7.7.2 as applicable except with the vehicle at lightly loaded vehicle weight. S7.7.4 Non-service brake type parking brake systems. For
vehicles with parking brake systems not utilizing the service brake friction elements, burnish the friction elements of such systems prior to parking brake tests according to the manufacturer's published recommendations as furnished to the purchaser. If no recommendations are furnished, run the vehicle in an unburnished condition. S7.8 Service brake system—lightly loaded vehicle (third effectiveness) test. Make six stops from 60 mph with vehicle at lightly loaded vehicle weight. (This test is not applicable to a vehicle which both has a GVWR of not less than 8,000 pounds and not greater than 10,000 pounds and is not a school bus.) S7.9 Service brake system test—partial failure. S7.9.1 With the vehicle at lightly loaded vehicle weight, alter the service brake system to produce any one rupture or leakage type of failure, other than a structural failure of a housing that is common to two or more subsystems. Determine the control force, pressure level, or fluid level (as appropriate for the indicator being tested) necessary to activate the brake system indicator lamp. Make four stops if the vehicle is equipped with a split service brake system, or 10 stops if the vehicle is not so equipped, each from 60 mph, by a continuous application of the service brake control. Restore the service brake system to normal at completion of this test. S7.9.2 Repeat S7.9.1 for each of the other subsystems. S7.9.3 Repeat S7.9.1 and S7.9.2 with vehicle at GVWR. Restore the service brake system to normal at completion of this test. S7.9.4 (For vehicles with antilock and/or variable proportioning brake systems.) With vehicle at GVWR, disconnect functional power source, or otherwise render antilock system inoperative. Disconnect variable proportioning brake system. Make four stops, each from 60 mph. If more than one antilock or variable proportioning brake subsystem is provided, disconnect or render one subsystem inoperative and run as above. Restore system to normal at completion of this test. Repeat for each subsystem provided. Determine whether the brake system indicator lamp is activated when the electrical power source to the antilock or variable proportioning unit is disconnected. S7.9.5 For a vehicle in which the brake signal is transmitted electrically between the brake pedal and some or all of the foundation brakes, regardless of the means of actuation of the foundation brakes, the tests in S7.9.1 through S7.9.3 of this standard are conducted by inducing any single failure in any circuit that electrically transmits the brake signal, and all other systems intact. Determine whether the brake system indicator lamp is activated when the failure is induced. S7.9.6 For an EV with RBS that is part of the service brake system, the tests specified in S7.9.1 through S7.9.3 are conducted with the RBS disconnected and all other systems intact. Determine whether the brake system indicator lamp is activated when the RBS is disconnected. S7.10 Service brake system—inoperative brake power unit or brake power assist unit test. (For vehicles equipped with brake power unit or brake power assist unit.) S7.10.1 Regular procedure. (This test need not be run if the option in S7.10.2 is selected.) On vehicles with brake power assist units, render the brake power assist unit inoperative, or one of the brake power assist unit subsystems if two or more subsystems are provided, by disconnecting the relevant power supply. Exhaust any residual brake power reserve capability of the disconnected system. On vehicles with brake power units, disconnect the primary source of power. Make four stops, each from 60 mph by a continuous application of the service brake control. Restore the system to normal at completion of this test. For vehicles equipped with more than one brake power unit or brake power assist unit, conduct tests of each in turn. S7.10.2 Optional Procedures. On vehicles with brake power assist units, the unit is charged to maximum prior to start of test. (Engine may be run up in speed, then throttle closed quickly to attain maximum charge on vacuum assist units.) Brake power units shall also be charged to maximum accumulator pressure prior to start of test. No recharging is allowed after start of test. (a) (For vehicles with brake power assist units.) Disconnect the primary source of power. Make six stops each from 60 mph, to achieve the average deceleration for each stop as specified in table III. Apply the brake control as quickly as possible. Maintain control force until vehicle has stopped. At the completion of the stops specified above, deplete the system of any residual brake power reserve capability. Make one stop from 60 mph at an average deceleration of not lower than 7 fpsps for passenger cars (equivalent stopping distance 554 feet), or 6 fpsps for vehicles other than passenger cars (equivalent stopping distance 646 feet) and determine whether the control force exceeds 150 pounds. (b) (For vehicles with brake power units with accumulator type systems.) Test as in S7.10.2(a), except make 10 stops instead of 6 and, at the completion of the 10 stops, deplete the failed element of the brake power unit of any residual brake power reserve capability before making the final stop. - (c) (For vehicles with brake power assist or brake power units with backup systems.) If the brake power or brake power assist unit operates in conjunction with a backup system and the backup system is activated automatically in the event of a primary power failure, the backup system is operative during this test. Disconnect the primary source of power of one subsystem. Make 15 stops, each from 60 mph, with the backup system activated for the failed subsystem, to achieve an average deceleration of 12 fpsps for each stop. - (d) Restore systems to normal at completion of these tests. For vehicles equipped with more than one brakepower assist or brakepower unit, conduct tests of each in turn. - S7.10.3 Electric brakes. - (a) For vehicles with electrically-actuated service brakes, the tests in S7.10.1 or S7.10.2 are conducted with any single electrical failure in the electric brake system instead of the brake power or brake power assist systems, and all other systems intact. - (b) For EVs with RBS that is part of the service brake system, the tests in S7.10.1 or S7.10.2 are conducted with the RBS discontinued and all other systems intact. - S7.11 Service brake system—first fade and recovery test. - S7.11.1 Baseline check stops or snubs. - S7.11.1.1 Vehicles with GVWR of 10,000 lb or less. Make three stops from 30 mph at 10 fpsps for each stop. Control force readings may be terminated when vehicle speed falls to 5 mph. Average the maximum brake control force required for the three stops. - S7.11.1.2 Vehicles with GVWR greater than 10,000 pounds. With transmission in neutral (or declutched), make three snubs from 40 to 20 mph at 10 fpsps for each snub. Average the maximum brake control force required for the three snubs. - S7.11.2 Fade stops or snubs. S7.11.2.1 Vehicles with GVWR of 10,000 pounds or less. Make 5 stops from 60 mph at 15 fpsps followed by 5 stops at the maximum attainable deceleration between 5 and 15 fpsps for each stop. Establish an initial brake temperature before the first brake application of 130° to 150°F. Initial brake temperatures before brake applications for subsequent stops are those occurring at the distance intervals. Attain the required deceleration within 1 second and, as a minimum, maintain it for the remainder of the stopping time. Control force readings may be terminated when vehicle speed falls to 5 mph. Leave an interval of 0.4 mi between the start of brake applications. Accelerate immediately to the initial test speed after each stop. Drive 1 mi at 30 mph after the last fade stop, and immediately follow the recovery procedure specified in S7.11.3.1. S7.11.2.2 Vehicles with GVWR greater than 10,000 lb. With transmission in neutral (or declutched) make 10 snubs from 40 to 20 mph at 10 fpsps for each snub. Establish an initial brake temperature before the first brake application of 130°F. to 150°F. Initial brake temperatures before brake application for subsequent snubs are those occurring in the time intervals specified below. Attain the required deceleration within 1 s and maintain it for the remainder of the snubbing time. Leave an interval of 30s between snubs (start of brake application to start of brake application). Accelerate immediately to the initial test speed after each snub. Drive for 1.5 mi at 40 mph after the last snub and immediately follow the recovery procedure specified in S7.11.3.2. S7.11.3 Recovery stops or snubs. S7.11.3.1 Vehicles with GVWR of 10,000 lb or less. Make five stops from 30 mph at 10 fpsps for each stop. Control force readings may be terminated when vehicle speed falls to 5 mph. Allow a braking distance interval of 1 mi. Immediately after each stop accelerate at maximum rate to 30 mph and maintain that speed until making the next stop. Record the maximum control force for each stop. S7.11.3.2 Vehicles with GVWR greater than 10,000 lb. With transmission in neutral (or declutched) make five snubs from 40 to 20 mph at 10 fpsps for each snub. After each snub, accelerate at maximum rate to 40 mph and maintain that speed until making the next brake application at a point 1.5 mi from the point of the previous brake application. Record the maximum control force for each snub. S7.12 Service brake system—second reburnish. Repeat S7.6. S7.13 Service brake system—second fade and recovery test. Repeat S7.11 except in S7.11.2 run 15 fade stops or 20 snubs instead of 10. S7.14 Third reburnish. Repeat S7.6. S7.15 Service brake system—fourth effectiveness test. Repeat S7.5. Then (for passenger cars) make four stops from either 95 mph if the speed attainable in 2 mi is 99 to (but not including) 104 mph, or 100 mph if the speed attainable in 2 mi is 104 mph or greater. S7.16 Service brake system—water recovery test. S7.16.1
Baseline check stop. Make three stops from 30 mph at 10 fpsps for each stop. Control force readings may be terminated when vehicle speed falls to 5 mph. Average the maximum brake control force required for the three stops. S7.16.2 Wet brake recovery stops. With the brakes fully released at all times, drive the vehicle for 2 min at a speed of 5 mph in any combination of forward and reverse directions, through a trough having a water depth of 6 in. After leaving the trough, immediately accelerate at a maximum rate to 30 mph without a brake application. Immediately upon reaching that speed make five stops, each from 30 mph at 10 fpsps for each stop. After each stop (except the last), accelerate the vehicle immediately at a maximum rate to a speed of 30 mph and begin the next stop. S7.17 Spike stops. Make 10 successive spike stops from 30 mph with the transmission in neutral, with no reverse stops. Make spike stops by applying a control force of 200 lb while recording control force versus time. Maintain control force until vehicle has stopped. At completion of 10 spike stops, make six effectiveness stops from 60 mph. S7.18 Final inspection. Inspect— (a) The service brake system for detachment or fracture of any components, such as brake springs and brake shoes or disc pad facing. (b) The friction surface of the brake, the master cylinder or brake power unit reservoir cover and seal and filler openings, for leakage of brake fluid or lubricant. (c) The master cylinder or brake power unit reservoir for compliance with the volume and labeling requirements of S5.4.2 and S5.4.3. In determining the fully applied worn condition assume that the lining is worn to: (1) Rivet or bolt heads on riveted or bolted linings, or (2) within one thirty-seconds of an inch of shoe or pad mounting surface on bonded linings, or (3) the limit recommended by the manufacturer, whichever is larger relative to the total possible shoe or pad movement. Drums or rotors are assumed to be at nominal design drum diameter or rotor thickness. Linings are assumed adjusted for normal operating clearance in the released position. (d) The brake system indicator light(s), for compliance with operation in various key positions, lens color, labeling, and location, in accordance with S5.3. S7.19 Moving barrier test. (Only for vehicles that have been tested according to S7.7.2.) Load the vehicle to GVWR, release parking brake, and place the transmission selector control to engage the parking mechanism. With a moving barrier as described in paragraph 3.3 of SAE recommended practice J972 "Moving Barrier Collision Tests," November 1966, impact the vehicle from the front at 2½ mph. Keep the longitudinal axis of the barrier parallel with the longitudinal axis of the vehicle. Repeat the test, impacting the vehicle from the rear. NOTE: The vehicle used for this test need not be the same vehicle that has been used for the braking tests. FIGURE 1—TYPICAL PLUG THERMOCOUPLE INSTALLATIONS Note: The second thermocouple shall be installed at .080 inch depth within 1 inch cir- cumferentially of the thermocouple installed at .040 inch depth. $\,$ ## LOCATION FOR MEASURING BRAKE APPLICATION FORCE (HAND BRAKE) TABLE I—BRAKE TEST PROCEDURE SEQUENCE AND REQUIREMENTS | | No.—Sequence | Test | load | Test pro- | Require- | |----|--|-------|------|-----------|----------| | | No.—Sequence | Light | GVWR | cedure | ments | | 1 | Instrumentation check | | | S7.2 | | | 2 | First (preburnish) effectiveness test | | × | S7.3 | S5.1.1.1 | | 3 | Burnish procedure | | × | S7.4 | | | 4 | Second effectiveness | | × | S7.5 | S5.1.1.2 | | 5 | First reburnish | | × | S7.6 | | | 6 | Parking brake | × | × | S7.7 | S5.2 | | 7 | Third effectiveness (lightly loaded vehicle) | × | | S7.8 | S5.1.1.3 | | 8 | Partial failure | × | × | S7.9 | S5.1.2 | | 9 | Inoperative brake power and power assist units | | × | S7.10 | S5.1.3 | | 10 | First fade and recovery | | × | S7.11 | S5.1.4 | | 11 | Second reburnish | | × | S7.12 | | | 12 | Second fade and recovery | | × | S7.13 | S5.1.4 | | 13 | Third reburnish | | × | S7.14 | | | 14 | Fourth effectiveness | | × | S7.15 | S5.1.1.4 | | 15 | Water recovery | | × | S7.16 | S5.1.5 | | 16 | Spike stops | | × | S7.17 | S5.1.6 | | 17 | Final inspection | | | S7.18 | S5.6 | | 18 | Moving barrier test | | × | S7.19 | S5.2.2.3 | #### TABLE II—STOPPING DISTANCES | Vehi- | Stopping distance in feet for tests indicated | | | | | | | | | | | | | | | | |---------------------------------------|---|---------|------------------------------------|-------|--|-------|--------|-----|-----|-----|--|-----|-----|-----|-----|--------------| | cle
test
speed
(miles
per | | veness; | nished) &
spike effe
s check | | II—2d effectiveness III—3d (lightly loaded vehicles) effectiveness | | | | | | IV—Inoperative
brake power and
power assist unit;
partial failure | | | | | | | hour) | | | | | | (b) & | | | | | (a) (b) & | | | | | | | riour) | (a) | (b) | (c) | (d) | (a) | (c) | (d) | (e) | (a) | (b) | (c) | (d) | (e) | (a) | (c) | (d) &
(e) | | 30 | 1 57 | 1,2 65 | 1,2 69 | | | | | | | | | | | | | | | | | | (1st) | | | | | | | | | | | | | | | | | | 1,2 65 | | | | | | | | | | | | | | | | | | (4th | | | | | | | | | | | | | | | | | | and | | | | | | | | | | | | | | | | | | spike) | | | | | | | | | | | | | | | | | | 1 72 | 1,288 | 154 | 1 57 | 1,2 78 | 70 | 51 | 57 | 65 | 84 | 70 | 114 | 130 | 170 | | 35 | 74 | 83 | 91 | 132 | 70 | 74 | 106 | 96 | 67 | 74 | 83 | 114 | 96 | 155 | 176 | 225 | | 40 | 96 | 108 | 119 | 173 | 91 | 96 | 138 | 124 | 87 | 96 | 108 | 149 | 124 | 202 | 229 | 288 | | 45 | 121 | 137 | 150 | 218 | 115 | 121 | 175 | 158 | 110 | 121 | 137 | 189 | 158 | 257 | 291 | 358 | | 50 | 150 | 169 | 185 | 264 | 142 | 150 | 216 | 195 | 135 | 150 | 169 | 233 | 195 | 317 | 359 | 435 | TABLE II—STOPPING DISTANCES—Continued | Vehi- | | Stopping distance in feet for tests indicated | | | | | | | | | | | | | | | |---------------------------------------|---|---|------------------|---------|-----------|----------|----------|-----|--------------------------------------|------|-------|-------|-----|---------------|---|-------| | cle
test
speed
(miles
per | I—1st (preburnished) & 4th ef-
fectiveness; spike effective-
ness check | | | | II– | -2d effe | ctivenes | ss | III—3d (lightly loaded vehicles) ef- | | | | | brake
powe | /—Inoperative
ake power and
wer assist unit;
partial failure | | | hour) | | | | | (a) (b) & | | , n | | | | | | | | (b) & | (d) & | | nour) | (a) | (b) | (c) | (d) | (a) | (c) | (d) | (e) | (a) | (b) | (c) | (d) | (e) | (a) | (c) | (e) | | 55 | 181 | 204 | 224 | 326 | 172 | 181 | 261 | 236 | 163 | 181 | 204 | 281 | 236 | 383 | 433 | 530 | | 60 | 1216 | 1 242 | 1 267 | 1,2 388 | 1 204 | 1216 | 1310 | 280 | 1194 | 1216 | 1 242 | 1 335 | 280 | 1 456 | 1517 | 1613 | | 80 | 1 405 | 1 459 | ¹ 510 | NA | 1 383 | NA | 95 | 1607 | NA | 100 | 1673 | NA ¹ Distance for specified tests. ² Applicable to school buses only. NA=Not applicable. TABLE III—INOPERATIVE BRAKE POWER ASSIST AND BRAKE POWER UNITS | | Av | erage decele | eration, FPS | SPS | Equiv | alent stoppi | ng distance | , feet | |----------|------|---------------------|--------------|--------------------|-------|---------------------|---------------------------|-------------| | Stop No. | | 1—brake
r assist | | 2—brake
er unit | | 3—brake
r assist | Column 4—brake power unit | | | | (a) | (b) and (c) | | 1 | 16.0 | 14.0 | 16.0 | 13.0 | 242 | 277 | 242 | 298 | | 2 | 12.0 | 12.0 | 13.0 | 11.0 | 323 | 323 | 298 | 352 | | 3 | 10.0 | 10.0 | 12.0 | 10.0 | 388 | 388 | 323 | 388 | | 4 | 9.0 | 8.5 | 11.0 | 9.5 | 431 | 456 | 352 | 409 | | 5 | 8.0 | 7.5 | 10.0 | 9.0 | 484 | 517 | 388 | 431 | | 6 | 7.5 | 6.7 | 9.5 | 8.5 | 517 | 580 | 409 | 456 | | 7 | 17.0 | ¹ 6.0 | 9.0 | 8.0 | 554 | 646 | 431 | 484 | | 8 | NA | NA | 8.5 | 7.5 | NA | NA | 456 | 517 | | 9 | NA | NA | 8.0 | 7.0 | NA | NA | 484 | 554 | | 10 | NA | NA | 7.5 | 6.5 | NA | NA | 517 | 596 | | 11 | NA | NA | 17.0 | ¹ 6.0 | NA | NA | 554 | 646 | ¹Depleted. (a) Passenger cars; (b) vehicles other than passenger cars with GVWR of 10,000 lbs or less; (c) vehicles with GVWR greater than 10,000 lbs; NA=Not applicable. [41 FR 29696, July 19, 1976; 41 FR 32221, Aug. 2, 1976, as amended at 41 FR 36026, 36027, Aug. 26, 1976; 43 FR 9606, Mar. 9, 1978; 46 FR 64, Jan. 2, 1981; 46 FR 21180, Apr. 9, 1981; 47 FR 61893, Dec. 21, 1981; 48 FR 39941, Sept. 2, 1983; 49 FR 30199, July 27, 1984; 52 FR 19874, May 28, 1987; 33 FR 8200, Mar. 14, 1988; 54 FR 22905, May 30, 1989; 54 FR 40082, Sept. 29, 1989; 57 FR 47800, Oct. 20, 1992; 58 FR 45461, Aug. 30, 1993; 60 FR 6434, Feb. 2, 1995; 60 FR 13256 and 13303, Mar. 10, 1995; 61 FR 19562, May 2, 1996; 62 FR 46917, Sept. 5, 1997; 62 FR 51069, Sept. 30, 1997] EFFECTIVE DATE NOTE 1: At 60 FR 13256, Mar. 10, 1995, §571.105 was amended in S4 by removing the definition of "Antilock system" and by adding the definitions of "Antilock brake system," "Directly controlled wheel," "Indirectly controlled wheel," and "Peak friction coefficient;" by revising S5.1, S5.3, S5.3.1(c), S5.3.3; and S5.5.5 and adding S5.3.3(a), S5.3.3(b), S5.5.1 and S5.5.2 At 60 FR 13303, Mar. 10, 1995, §571.105 was further amended by adding the definition of "wheel lockup" in S4, revising S5.1.1.2, S6, S6.9, S6.10, and Table II; and adding S6.9.1, S6.9.2, S6.10.1, and S6.10.2. At 60 FR 63979, Dec. 13, 1995, §571.105 was further amended by revising the definition of "Directly controlled wheel" in S4, revising S5.1.1(c),
S5.3.3(b), S5.5.1, S7, and S7.5. The above amendments to §571.105 are effective March 1, 1999. For the convenience of the user, the superseded text is set forth as follows: ## § 571.105 Standard No. 105; Hydraulic brake systems. * * * * * S5.1 Service brake systems. Each vehicle shall be equipped with a service brake system acting on all wheels. Wear of the service brake shall be compensated for by means of a system of automatic adjustment. Each passenger car and each multipurpose passenger vehicle, truck and bus with a GVWR of 10,000 lbs. or less, and each school bus with a GVWR of greater than 10,000 lbs. shall be capable of meeting the requirements of S5.1.1 Note: (a) Passenger cars; (b) vehicles other than passenger cars with GVWR of less than 8,000 lbs; (c) vehicles with GVWR of not less than 8,000 lbs and not more than 10,000 lbs; (d) vehicles with GVWR greater than 10,000 lbs; (e) buses, including school buses, with GVWR greater than 10,000 lbs. through S5.1.6 under the conditions prescribed in S6, when tested according to the procedures and in the sequence set forth in Each multipurpose passenger vehicle, truck, and bus (other than a school bus) with a GVWR greater than 10,000 lbs. shall meet the requirements of S5.1.2 and S5.1.3 under the conditions specified in S6 when tested according to the procedures and in the sequence set forth in S7. Except as noted in \$5.1.1.2 and S5.1.1.4, if a vehicle is incapable of attaining a speed specified in S5.1.1, S5.1.2, S5.1.3, or S5.1.6, its service brakes shall be capable of stopping the vehicle from the multiple of 5 mph that is 4 to 8 mph less than the speed attainable in 2 miles, within distances that do not exceed the corresponding distances specified in Table II. If a vehicle is incapable of attaining a speed specified in S5.1.4 in the time or distance interval set forth, it shall be tested at the highest speed attainable in the time or distance interval specified. S5.1.1 Stopping distance. The service brakes shall be capable of stopping each vehicle, other than a vehicle which both has a GVWR of not less than 8,000 pounds and not greater than 10,000 pounds and is not a school bus, in four effectiveness tests within the distances and from the speeds specified in S5.1.1.1, S5.1.1.2, S5.1.1.3, and S5.1.1.4. The service brakes shall be capable of stopping each vehicle which both has a GVWR of not less than 8,000 pounds and not greater than 10,000 pounds and is not a school bus, in three effectiveness tests within the distances and from the speeds specified in S5.1.1.1, S5.1.1.2, and S5.1.1.4. * * * * * S5.1.1.2 In the second effectiveness test, the vehicle shall be capable of stopping from 30 and 60 mph within the corresponding distances specified in column II of Table II. If the speed attainable in 2 miles is not less than 84 mph, a passenger car or other vehicle with a GVWR of 10,000 pounds or less shall also be capable of stopping from 80 mph within the corresponding distances specified in column II of table II. * * * * * S5.3 Brake system indicator lamp. Each vehicle shall have one or more brake system indicator lamps, mounted in front of and in clear view of the driver, which meet the requirements of S5.3.1 through S5.3.5. However, the options provided in S5.3.1(a) shall not apply to a vehicle manufactured without a split service brake system; such a vehicle shall, to meet the requirements of S5.3.1(a), be equipped with a warning indicator that activates under the conditions specified in S5.3.1(a)(4). This warning indicator shall, instead of meeting the requirements of S5.3.2. through S5.3.5, activate (while the vehicle remains capable of meeting the requirements of S5.1.2.2 and the ignition switch is in the "on" position) a continuous or intermittent audible signal and a flashing warning light, displaying the words "STOP—BRAKE FAIL-URE" in block capital letters not less than one-quarter of an inch in height. * * * * * S5.3.1 * * * (c) A total functional electrical failure in an antilock or variable proportioning brake system. * * * * * S5.3.3 Each indicator lamp activated due to a condition specified in S5.3.1 shall remain activated as long as the condition exists, whenever the ignition (start) switch is in the "on" (run) position, whether or not the engine is running. * * * * * S6. Test conditions. The performance requirements of S5 shall be met under the following conditions. Where a range of conditions is specified, the vehicle shall be capable of meeting the requirements at all points within the range. * * * * * * S6.9 Road surface. Road tests are conducted on a 12-foot-wide, level roadway having a skid number of 81. Burnish stops are conducted on any surface. The parking brake test surface is clean, dry, smooth Portland cement concrete. * * * * * S6.10 Vehicle position. The vehicle is aligned in the center of the roadway at the start of each brake application. Stops, other than spike stops, are made without any part of the vehicle leaving the roadway. Except as noted below, stops are made without lockup of any wheel at speeds greater than 10 mph. There may be controlled lockup on an antilock-equipped axle, and lockup of not more than one wheel per vehicle, uncontrolled by an antilock system. (Dual wheels on one side of an axle are considered a single wheel.) Locked wheels at speeds greater than $10\ mph$ are allowed during spike stops (but not spike check stops), partial failure stops and inoperative brake power or power assist unit stops. * * * * * #### § 571.105, Nt. S7. Test procedures and sequence. Each vehicle shall be capable of meeting all the applicable requirements of S5. when tested according to the procedures and in the sequence set forth below, without replacing any brake system part or making any adjustments to the brake system other than as permitted in burnish and reburnish procedures and in S7.9 and S7.10. (For vehicles only having to meet the requirements of S5.1.2 and S5.1.3 in section S5.1, the applicable test procedures and sequence are S7.1, S7.2, S7.4, S7.9, S7.10 and S7.18. However, at the option of the manufacturer, the following test procedures and sequence may be conducted: S7.1, S7.2, S7.3, S7.4, S7.5, S7.6, S7.7, S7.8, S7.9, S7.10 and S7.18. The choice of this option shall not be construed as adding to the requirements specified in S5.1.2 and S5.1.3.) For vehicles manufactured before September 1, 1991, automatic adjusters may be locked out, at the option of the manufacturer, when the vehicle is prepared for testing. If this option is selected, adjusters must remain locked out for the entire sequence of tests. For vehicles manufactured on or after September 1, 1991, automatic adjusters must remain activated at all times. A vehicle shall be deemed to comply with the stopping distance requirements of S5.1 if at least one of the stops at each speed and load specified in each of S7.3, S7.5, S7.8, S7.9, S7.10, S7.15, or S7.17 (check stops) is made within a stopping distance that does not exceed the corresponding distance specified in Table II. When the transmission selector control is required to be in neutral for a deceleration, a stop or snub shall be obtained by the following procedures: (1) Exceed the test speed by 4 to 8 mph; (2) close the throttle and coast in gear to approximately 2 mph above the test speed; (3) shift to neutral; and (4) when the test speed is reached, apply the service brakes. * * * * * S7.5 Service brake system—second effectiveness test. Repeat S7.3. Then (for passenger cars and other vehicles with a GVWR of 10,000 lbs. or less) make four stops from 80 mph if the speed attainable in 2 miles is not less than 84 mph. * * * * * TABLE II—STOPPING DISTANCES | | | | | | Stopping | g distand | e in feet | for tests | indicate | ed | | | | | |------------------------------------|-------------|-------------|--|-------------|-------------|-------------|-----------------|---|-------------|-----|-------------|--|-------------|-------------| | Vehicle
test
speed
(miles | | | shed) and 4th | | II—2d | l effective | eness | III—3d (lightly loaded vehicle) effectiveness | | | | IV—Inoperative
brake power and
power assist unit;
partial failure | | | | per
hour) | | | | | (a) | (b)
and | (b) | | | | | (a) | (b)
and | (d) | | | (a) | (b) | (c) | (d) | (a) | (c) | (d) | (a) | (b) | (c) | (d) | (a) | (c) | (u) | | 30 | 1 57 | 1,2 65 | 1,2 69 (1st)
1,2 65 (4th
and spike)
172 | 1 88 | 1 54 | 1 57 | ¹ 81 | 51 | 57 | 65 | 81 | 114 | 130 | 170 | | 35 | 74 | 83 | 91 | 132 | 70 | 74 | 132 | 67 | 74 | 83 | 132 | 155 | 176 | 225 | | 40 | 96 | 108 | 119 | 173 | 91 | 96 | 173 | 87 | 96 | 108 | 173 | 202 | 229 | 288 | | 45 | 121 | 137 | 150 | 218 | 115 | 121 | 218 | 110 | 121 | 137 | 218 | 257 | 291 | 358 | | 50 | 150 | 169 | 185 | 264 | 142 | 150 | 264 | 135 | 150 | 169 | 264 | 317 | 359 | 435 | | 55
60 | 181
1216 | 204
1242 | 224
1267 | 326
1388 | 172
1204 | 181
1216 | 326
1388 | 163
1194 | 181
1216 | 204 | 326
1388 | 383
1456 | 433
1517 | 530
1613 | | 80 | 1405 | 1459 | 1510 | NA | 1383 | NA NA | NA | | 95 | 1607 | NA | NA NA | NA NA | NA | NA | NA | NA. | NA | NA | NA | NA | NA | NA | | 100 | 1673 | NA | NA
NA | NA ¹ Distances for specified tests. ²Applicable to school buses only. NA=Not applicable. EFFECTIVE DATE NOTE 2: At 63 FR 12664, Mar. 16, 1998, §571.105 was amended by adding the definitions of "motor home" and "tandem axle" in S4 and by revising S5.5.1, effective Mar. 1, 1999. For the convenience of the user, the superseded text reads as follows: ## §571.105 Standard No. 105; Hydraulic and electric brake systems. * * * * * * S5.5.1 On and after March 1, 1999, each vehicle with a GVWR greater than 10,000 pounds, except for any vehicle that has a speed attainable in 2 miles of not
more than 33 mph, shall be equipped with an antilock brake system that directly controls the wheels of at NOTE: (a) Passenger cars; (b) vehicles other than passenger cars with GVWR of less than 8,000 lbs; (c) vehicles with GVWR of not less than 8,000 lbs and not more than 10,000 lbs; (d) vehicles with GVWR greater than 10,000 lbs. least one front axle and the wheels of at least one rear axle of the vehicle. On and after March 1, 1999, on each vehicle with a GVWR greater than 10,000 pounds but not greater than 12,000 pounds, the antilock brake system may also directly control the wheels of the drive axle by means of a single sensor in the drive line. Wheels on other axles of the vehicle may be indirectly controlled by the antilock brake system. ### §571.106 Standard No. 106; Brake S1. *Scope.* This standard specifies labeling and performance requirements for motor vehicle brake hose, brake hose assemblies, and brake hose end fittings. S2. *Purpose.* The purpose of this standard is to reduce deaths and injuries occurring as a result of brake system failure from pressure or vacuum loss due to hose or hose assembly rupture. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers, and motorcycles, and to hydraulic, air, and vacuum brake hose, brake hose assemblies, and brake hose end fittings for use in those vehicles. S4. Definitions. hoses. *Armor* means protective material installed on a brake hose to increase the resistance of the hose or hose assembly to abrasion or impact damage. Brake hose means a flexible conduit, other than a vacuum tubing connector, manufactured for use in a brake system to transmit or contain the fluid pressure or vacuum used to apply force to a vehicle's brakes. For hose, a dimensional description such as "¼-inch hose" refers to the nominal inside diameter. For tubing, a dimensional description such as "¼-in tubing" refers to the nominal outside diameter. Brake hose assembly means a brake hose, with or without armor, equipped with end fittings for use in a brake system, but does not include an air or vacuum assembly prepared by the owner or operator of a used vehicle, by his employee, or by a repair facility, for installation in that used vehicle. Brake hose end fitting means a coupler, other than a clamp, designed for attachment to the end of a brake hose. Free length means the linear measurement of hose exposed between the end fittings of a hose assembly in a straight position. Permanently attached end fitting means an end fitting that is attached by deformation of the fitting about the hose by crimping or swaging, or an end fitting that is attached by use of a sacrificial sleeve or ferrule that requires replacement each time a hose assembly is rebuilt. Rupture means any failure that results in separation of a brake hose from its end fitting or in leakage. Vacuum tubing connector means a flexible conduit of vacuum that (i) connects metal tubing to metal tubing in a brake system, (ii) is attached without end fittings, and (iii) when installed, has an unsupported length less than the total length of those portions that cover the metal tubing. S5. Requirements—hydraulic brake hose, brake hose assemblies, and brake hose end fittings. S5.1 *Construction.* (a) Each hydraulic brake hose assembly shall have permanently attached brake hose end fittings which are attached by deformation of the fitting about the hose by crimping or swaging. (b) Each hydraulic brake hose assembly that is equipped with a permanent supplemental support integrally attached to the assembly and is manufactured as a replacement for use on a vehicle not equipped, as an integral part of the vehicle's original design, with a means of attaching the support to the vehicle shall be equipped with a bracket that is integrally attached to the supplemental support and that adapts the vehicle to properly accept this type of brake hose assembly. S5.2 Labeling. S5.2.1 Each hydraulic brake hose, except hose sold as part of a motor vehicle, shall have at least two clearly identifiable stripes of at least one-sixteenth of an inch in width, placed on opposite sides of the brake hose parallel to its longitudinal axis. One stripe may be interrupted by the information required by S5.2.2, and the other stripe may be interrupted by additional information at the manufacturer's option. However, hydraulic brake hose manufactured for use only in an assembly whose end fittings prevent its installation in a twisted orientation in either side of the vehicle, need not meet the requirements of S5.2.1. S5.2.2 Each hydraulic brake hose shall be labeled, or cut from bulk hose that is labeled, at intervals of not more than 6 inches, measured from the end of one legend to the beginning of the next, in block capital letters and numerals at least one-eighth of an inch high, with the information listed in paragraphs (a) through (e) of this section. The information need not be present on hose that is sold as part of a brake hose assembly or a motor vehicle. - (a) The symbol DOT, constituting a certification by the hose manufacturer that the hose conforms to all applicable motor vehicle safety standards. - (b) A designation that identifies the manufacturer of the hose, which shall be filed in writing with: Office of Crash Avoidance Standards, Vehicle Dynamics Division, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 20590. The marking may consist of a designation other than block capital letters required by S5.2.2. - (c) The month, day, and year, or the month and year, of manufacture, expressed in numerals. For example, 10/1/96 means October 1, 1996. - (d) The nominal inside diameter of the hose expressed in inches or fractions of inches, or in millimeters followed by the abbreviation "mm." - (e) Either "HR" to indicate that the hose is regular expansion hydraulic hose or "HL" to indicate that the hose is low expansion hydraulic hose. S5.2.3 Package labeling for brake hose assemblies designed to be used with a supplemental support. (a) Each hydraulic brake hose assembly that is equipped with a permanent supplemental support integrally attached to the assembly and is manufactured as a replacement assembly for a vehicle equipped, as an integral part of the vehicle's original design, with a means of attaching the support to the vehicle shall be sold in a package that is marked or labeled as follows: "FOR USE ON [insert Manufacturer, Model Name] ONLY"; - (b) Each hydraulic brake hose assembly that is equipped with a permanent supplemental support integrally attached to the assembly and is manufactured as a replacement for use on a vehicle not equipped, as an integral part of the vehicle's original design, with a means of attaching the support to the vehicle shall comply with paragraphs (a) (1) and (2) of this section: - (1) Be sold in a package that is marked or labeled as follows: "FOR USE ONLY WITH A SUPPLEMENTAL SUPPORT." - (2) Be accompanied by clear, detailed instructions explaining the proper installation of the brake hose and the supplemental support bracket to the vehicle and the consequences of not attaching the supplemental support bracket to the vehicle. The instructions shall be printed on or included in the package specified in paragraph (a)(1) of this section. - S5.2.4 Each hydraulic brake hose assembly, except those sold as part of a motor vehicle, shall be labeled by means of a band around the brake hose assembly as specified in this paragraph or, at the option of the manufacturer, by means of labeling as specified in S5.2.4.1. The band may at the manufacturer's option be attached so as to move freely along the length of the assembly, as long as it is retained by the end fittings. The band shall be etched, embossed, or stamped in block capital letters, numerals or symbols at least one-eighth of an inch high, with the following information: - (a) The symbol DOT constituting certification by the hose assembler that the hose assembly conforms to all applicable motor vehicle safety standards - (b) A designation that identifies the manufacturer of the hose assembly, which shall be filed in writing with: Office of Crash Avoidance Standards, Vehicle Dynamics Division, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590. The designation may consist of block capital letters, numerals or a symbol. - S5.2.4.1 At least one end fitting of a hydraulic brake hose assembly shall be etched, stamped or embossed with a designation at least one-sixteenth of an inch high that identifies the manufacturer of the hose assembly and is filed in accordance with S5.2.4(b). S5.3 Test requirements. A hydraulic brake hose assembly or appropriate part thereof shall be capable of meeting any of the requirements set forth under this heading, when tested under the conditions of S11 and the applicable procedures of S6. However, a particular hose assembly or appropriate part thereof need not meet further requirements after having been subjected to and having met the constriction requirement (S5.3.1) and any one of the requirements specified in S5.3.2 through S5.3.11. S5.3.1 *Constriction.* Except for that part of an end fitting which does not contain hose, every inside diameter of any section of a hydraulic brake hose assembly shall be not less than 64 percent of the nominal inside diameter of the brake hose. S5.3.2 Expansion and burst strength. The maximum expansion of a hydraulic brake hose assembly at 1,000 psi and 1,500 psi shall not exceed the values specified in Table I (S6.1). The hydraulic brake hose assembly shall then withstand water pressure of 4,000 psi for 2 minutes without rupture, and shall not rupture at less than 5,000 psi (S6.2). TABLE 1—MAXIMUM EXPANSION OF FREE LENGTH BRAKE HOSE, CC/FT. | | | Test Pr | essure | | | |-----------------------------|-----------------------------------|----------------------------
-----------------------------------|----------------------------|--| | Hydraulic brake | 1,00 | 0 psi | 1,500 psi | | | | hose, inside di-
ameter | Regular
expan-
sion
hose | Low ex-
pansion
hose | Regular
expan-
sion
hose | Low ex-
pansion
hose | | | 1/8 inch or 3 mm
or less | 0.66 | 0.33 | 0.79 | 0.42 | | | mm | .86 | .55 | 1.02 | .72 | | | or more | 1.04 | .82 | 1.30 | 1.17 | | S5.3.3 Whip resistance. A hydraulic brake hose assembly shall not rupture when run continuously on a flexing machine for 35 hours (S6.3). S5.3.4 *Tensile strength.* A hydraulic brake hose assembly shall withstand a pull of 325 pounds without separation of the hose from its end fittings (S6.4). S5.3.5 Water absorption and burst strength. A hydraulic brake hose assem- bly, after immersion in water for 70 hours (S6.5), shall withstand water pressure of 4,000 psi for 2 minutes, and then shall not rupture at less than 5,000 psi (S6.2). S5.3.6 Water absorption and tensile strength. A hydraulic brake hose assembly, after immersion in water for 70 hours (S6.5), shall withstand a pull of 325 pounds without separation of the hose from its end fittings (S6.4). S5.3.7 Water absorption and whip resistance. A hydraulic brake hose assembly, after immersion in water for 70 hours (S6.5), shall not rupture when run continuously on a flexing machine for 35 hours (S6.3). S.5.3.8 Low-temperature resistance. A hydraulic brake hose conditioned at minus 40°F. for 70 hours shall not show cracks visible without magnification when bent around a cylinder as specified in S6.6. (S6.6) S5.3.9 Brake fluid compatibility, constriction, and burst strength. Except for brake hose assemblies designed for use with mineral or petroleum-based brake fluids, a hydraulic brake hose assembly shall meet the constriction requirement of S5.3.1 after having been subjected to a temperature of 200 °F for 70 hours while filled with SAE RM-66-04 Compatibility Fluid, as described in appendix B of SAE Standard J1703 JAN 1995, "Motor Vehicle Brake Fluid." It shall then withstand water pressure of 4,000 psi for 2 minutes and thereafter shall not rupture at less than 5,000 psi (S6.2). (SAE RM-66-03 Compatibility Fluid, as described in appendix A of SAE Standard J1703 NOV83, "Motor Vehicle Brake Fluid," November 1983, may be used in place of SAE RM-66-04 until January 1, 1995.) S5.3.10 *Ozone resistance.* A hydraulic brake hose shall not show cracks visible under 7-power magnification after exposure to ozone for 70 hours at $104\,^{\circ}F$. (S6.8). S5.3.11 End fitting corrosion resistance. After 24 hours of exposure to salt spray, a hydraulic brake hose end fitting shall show no base metal corrosion on the end fitting surface except where crimping or the application of labeling information has caused displacement of the protective coating. (S6.9) S6. Test procedures—Hydraulic brake hose, brake hose assemblies, and brake hose end fittings. S6.1. Expansion test. - S6.1.1 *Apparatus*. Utilize a test apparatus (as shown in Figure 1) which consists of: - (a) Source for required fluid pressure; - (b) Test fluid of water without any additives and free of gases; - (c) Reservoir for test fluid; - (d) Pressure gauges; - (e) Brake hose end fittings in which to mount the hose vertically; and - (f) Graduate burette with 0.05 cc increments. FIG. 1. EXPANSION TEST APPARATUS - S6.1.2 *Preparation.* (a) Measure the free length of the hose assembly. - (b) Mount the hose so that it is in a vertical straight position without tension when pressure is applied. - (c) Fill the hose with test fluid and bleed all gases from the system. - (d) Close the valve to the burette and apply 1,500 psi for 10 seconds; then release pressure. - S6.1.3 *Calculation of expansion at 1,000 and 1,500 psi.* (a) Adjust the fluid level in the burette to zero. - (b) Close the valve to the burette, apply pressure at the rate of 15,000 psi per minute, and seal 1,000 psi in the hose (1,500 psi in second series). - (c) After 3 seconds open the valve to the burette for 10 seconds and allow the fluid in the expanded hose to rise into the burette. - (d) Repeat the procedure in steps (b) and (c) twice. Measure the amount of test fluid which has accumulated in the burette as a result of the three applications of pressure. - (e) Calculate the volumetric expansion per foot by dividing the total accumulated test fluid by 3 and further dividing by the free length of the hose in feet. - S6.2 Burst strength test. (a) Connect the brake hose to a pressure system and fill it completely with water, allowing all gases to escape. - (b) Apply water pressure of 4,000 psi at a rate of 15,000 psi per minute. - (c) After 2 minutes at 4,000 psi, increase the pressure at the rate of 15,000 psi per minute until the pressure exceeds 5,000 psi. - S6.3 Whip resistance test. - S6.3.1 *Apparatus*. Utilize test apparatus that is dynamically balanced and includes: - (a) A movable header consisting of a horizontal bar equipped with capped end fittings and mounted through bearings at each end to points 4 inches from the center of two vertically rotating disks whose edges are in the same vertical plane; - (b) An adjustable stationary header parallel to the movable header in the same horizontal plane as the centers of the disks, and fitted with open end fittings: - (c) An elapsed time indicator; and - (d) A source of water pressure connected to the open end fittings. - S6.3.2 Preparation. (a) Except for the supplemental support specified in S6.3.2(d), remove all external appendages including, but not limited to, hose armor, chafing collars, mounting brackets, date band and spring guards. - (b) Measure the hose free length. - (c) Mount the hose in the whip test machine, introducing slack as specified in Table II for the size hose tested, measuring the projected length parallel to the axis of the rotating disks. The manufacturer may, at his option, adapt the fitting attachment points to permit mounting hose assemblies equipped with angled or other special fittings in the same orientation as hose assemblies equipped with straight fittings. (d) In the case of a brake hose assembly equipped with a permanent supplemental support integrally attached to the assembly, the assembly may be mounted using the supplemental support and associated means of simulating its attachment to the vehicle. Mount the supplemental support in the same vertical and horizontal planes as the stationary header end of the whip test fixture described in S6.3.1(b). Mount or attach the supplemental support so that it is positioned in accordance with the recommendation of the assembly manufacturer for attaching the supplemental support on a vehicle. TABLE II—HOSE LENGTHS | | Slack, i | inches | |--|--|---------------------------------| | Free length between end fittings, inches | 1/8 inch or
3 mm
hose or
less | More than 1/8 inch or 3 mm hose | | 8 to 15½, inclusive | 1.750
1.250
0.750 | 1,000 | S6.3.3 *Operation.* (a) Apply 235 psi water pressure and bleed all gases from the system. (b) Drive the movable head at 800 rpm. S6.4 Tensile strength test. Utilize a tension testing machine conforming to the requirements of the methods of Verification of Testing Machines (1964 American Society for Testing and Materials, Designation E4), and provided with a recording device to give the total pull in pounds. S6.4.1 *Preparation.* Mount the hose assembly to ensure straight, evenly distributed machine pull. S6.4.2 *Operation.* Apply tension at a rate of 1 inch per minute travel of the moving head until separation occurs. S6.5 Water absorption sequence tests. S6.5.1 Preparation. Prepare three hose assemblies as follows: (a) Remove 1½ inches of hose cover, if any, from the center of the hose assemblies without injury to any reinforcing material or elongation of the hose assemblies. (b) Measure the free length of the hose assemblies. S.6.5.2 Immersion and sequence testing. (a) Immerse the hose assemblies in distilled water for 70 hours. (b) Thirty minutes after removal from water, conduct tests S6.2, S6.3, and S6.4, using a different hose for each sequence. S6.6 Low temperature resistance test. S6.6.1 *Preparation.* (a) Remove hose armor, if any, and condition a hose in a straight position in air at minus 40° F. for 70 hours. (b) Condition a cylinder in air at minus 40 °F for 70 hours, using a cylinder of $2\frac{1}{2}$ inches diameter for test of hose less than $\frac{1}{8}$ inch or 3 mm 3 inches for tests of $\frac{1}{8}$ inch or 3mm hose, $\frac{3}{2}$ inches for tests of $\frac{3}{16}$ and $\frac{1}{4}$ inch hose or of 4 to 6 mm hose, and 4 inches for tests of hose greater than $\frac{1}{4}$ inch or 6 mm in diameter. S6.6.2 Flexibility testing. Bend the conditioned hose 180 degrees around the conditioned cylinder at a steady rate in a period of 3 to 5 seconds. Examine without magnification for cracks. S6.7 Brake fluid compatibility test. S6.7.1 Preparation. (a) Attach a hose assembly below a 1-pint reservoir filled with 100 ml. of SAE RM-66-04 Compatibility Fluid as shown in Figure 2. (SAE RM-66-03 Compatibility Fluid, as described in appendix A of SAE Standard J1703 NOV83, "Motor Vehicle Brake Fluid," November 1983, may be used in place of SAE RM-66-04 until January 1, 1995.) (b) Fill the hose assembly with brake fluid, seal the lower end, and place the test assembly in an oven in a vertical position. FIG. 2. BRAKE FLUID COMPATABILITY APPARATUS - S6.7.2 *Oven treatment.* (a) Condition the hose assembly at 200°F. for 70 hours. - (b) Cool the hose assembly at room temperature for 30 minutes. - (c) Drain the brake hose assembly, immediately determine that every inside diameter of any section of the hose assembly, except for that part of an end fitting which does not contain hose, is not less than 64 percent of the nominal inside diameter of the hose, and conduct the test specified in S6.2. - S6.8
Ozone resistance test. Utilize a cylinder with a diameter eight times the nominal outside diameter of the brake hose excluding armor. - S6.8.1 *Preparation.* After removing any armor, bind a hydraulic brake hose 360° around the cylinder. In the case of hose shorter than the circumference of the cylinder, bend the hose so that as much of its length as possible is in contact. - S6.8.2 *Exposure to ozone.* (a) Condition the hose on the cylinder in air at room temperature for 24 hours. - (b) Immediately thereafter, condition the hose on the cylinder for 70 hours in an exposure chamber having an ambient air temperature of 104°F. during the test and containing air mixed with ozone in the proportion of 50 parts of ozone per 100 million parts of air by volume. - (c) Examine the hose for cracks under 7-power magnification, ignoring areas immediately adjacent to or within the area covered by binding. - S6.9 End fitting corrosion resistance test. Utilize the apparatus described in ASTM B117-64, "Salt Spray (Fog) Testing". - S6.9.1 *Construction.* Construct the salt spray chamber so that: - (a) The construction material does not affect the corrosiveness of the fog. - (b) The hose assembly is supported or suspended 30° from the vertical and parallel to the principal direction of the horizontal flow of fog through the chamber. - (c) The hose assembly does not contact any metallic material or any material capable of acting as a wick. - (d) Condensation which falls from the assembly does not return to the solution reservoir for respraying. - (e) Condensation from any source does not fall on the brake hose assemblies or the solution collectors. - (f) Spray from the nozzles is not directed onto the hose assembly. - S6.9.2 *Preparation.* (a) Plug each end of the hose assembly. - (b) Mix a salt solution five parts by weight of sodium chloride to 95 parts of distilled water, using sodium chloride substantially free of nickel and copper, and containing on a dry basis not more than 0.1 percent of sodium iodide and not more than 0.3 percent total impurities. Ensure that the solution is free of suspended solids before the solution is atomized. - (c) After atomization at 95° F. ensure that the collected solution is in the PH range of 6.5 to 7.2. Make the PH measurements at 77° F. - (d) Maintain a compressed air supply to the nozzle or nozzles free of oil and dirt and between 10 and 25 psi. - S6.9.3 *Operation.* Subject the brake hose assembly to the salt spray continuously for 24 hours. - (a) Regulate the mixture so that each collector will collect from 1 to 2 ml. of solution per hour for each 80 square centimeters of horizontal collecting area. - (b) Maintain exposure zone temperature at $95^{\circ}\,\mathrm{F}$. - (c) Upon completion, remove the salt deposit from the surface of the hoses by washing gently or dipping in clean running water not warmer than 100° F. and then drying immediately. - S7. Requirements—Air brake hose, brake hose assemblies, and brake hose end fittings. S7.1 Construction. Each air brake hose assembly shall be equipped with permanently attached brake hose end fittings or reusable brake hose end fittings. Each air brake hose constructed of synthetic or natural elastomeric rubber intended for use with reusable end fittings shall conform to the dimensional requirements specified in Table III TABLE III—AIR BRAKE HOSE DIMENSIONS FOR REUSABLE ASSEMBLIES | Size, inches | Inside diameter | Type I outside inch | | Type II outside diameter, inches | | | |-------------------|-------------------|---------------------|---------|----------------------------------|---------|--| | , | tolerance, inches | Minimum | Maximum | Minimum | Maximum | | | 3/16 | +0.026
- 0.000 | 0.472 | 0.510 | 0.500 | 0.539 | | | 1/4 | +0.031
-0.000 | 0.535 | 0.573 | 0.562 | 0.602 | | | 5/16 | +0.031
-0.000 | 0.598 | 0.636 | 0.656 | 0.695 | | | 3/8 | ±0.023 | 0.719 | 0.781 | 0.719 | 0.781 | | | 13/ ₃₂ | +0.031
-0.000 | 0.714 | 0.760 | 0.742 | 0.789 | | | 1/2 | +0.039
-0.000 | 0.808 | 0.854 | 0.898 | 0.945 | | | 5/8 | +0.042
-0.000 | 0.933 | 0.979 | 1.054 | 1.101 | | | ½ special | ±.031 | .844 | .906 | .844 | .906 | | #### S7.2 Labeling S7.2.1 Hose. Each air brake hose shall be labeled, or cut from bulk hose that is labeled, at intervals of not more than 6 inches, measured from the end of one legend to the beginning of the next, in block capital letters and numerals at least one-eighth of an inch high, with the information listed in paragraphs (a) through (e) of this section. The information need not be present on hose that is sold as part of a brake hose assembly or a motor vehicle. - (a) The symbol DOT, constituting a certification by the hose manufacturer that the hose conforms to all applicable motor vehicle safety standards. - (b) A designation that identifies the manufacturer of the hose, which shall be filed in writing with: Office of Crash Avoidance Standards, Vehicle Dynamics Division, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590. The designation may consist of block capital letters, numerals, or a symbol. - (c) The month, day, and year, or the month and year, of manufacture, ex- pressed in numerals. For example, 10/1/96 means October 1, 1996. - (d) The nominal inside diameter of the hose expressed in inches or fractions of inches or in millimeters, or the nominal outside diameter of plastic tubing expressed in inches or fractions of inches or in millimeters followed by the letters OD. The abbreviation "mm" shall follow hose sizes that are expressed in millimeters. (Examples of inside diameter: ½, ½ (½SP in the case of ½ inch special air brake hose), 4 mm, 6 mm. Examples of outside diameter: ¼ OD. 12 mm OD.) - (e) The letter "A" shall indicate intended use in air brake systems. In the case of a hose constructed of synthetic or natural elastomeric rubber intended for use in a reusable assembly, "AI" or "AII" shall indicate Type I or Type II dimensional characteristics of the hose as described in Table III. S7.2.2 End fittings. Except for an end fitting that is attached by deformation of the fitting about a hose by crimping or swaging, at least one component of each air brake hose fitting shall be etched, embossed, or stamped in block capital letters and numerals at least one-sixteenth of an inch high with the following information: (a) The symbol DOT, constituting a certification by the manufacturer of that component that the component conforms to all applicable motor vehicle safety standards. (b) A designation that identifies the manufacturer of that component of the fitting, which shall be filed in writing with: Office of Crash Avoidance Standards, Vehicle Dynamics Division, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590. The designation may consist of block capital letters, numerals, or a symbol. (c) The letter "A" shall indicate intended use in air brake systems. In the case of an end fitting intended for use in a reusable assembly with brake hose subject to Table III, "AI" or "AII" shall indicate use with Type I or Type II hose, respectively. (d) The nominal inside diameter of the hose to which the fitting is properly attached expressed in inches or fractions of inches or in millimeters, or the outside diameter of the plastic tubing to which the fitting is properly attached expressed in inches or fractions of inches or in millimeters followed by the letters OD (See examples in S7.2.1(d)). The abbreviations "mm" shall follow hose sizes that are expressed in millimeters. S7.2.3 Assemblies. Each air brake hose assembly made with end fittings that are attached by crimping or swaging, except those sold as part of a motor vehicle, shall be labeled by means of a band around the brake hose assembly as specified in this paragraph or, at the option of the manufacturer, by means of labeling as specified in S7.2.3.1. The band may at the manufacturer's option be attached so as to move freely along the length of the assembly, as long as it is retained by the end fittings. The band shall be etched, embossed, or stamped in block capital letters, numerals or symbols at least one-eighth of an inch high, with the following information: (a) The symbol DOT, constituting certification by the hose assembler that the hose assembly conforms to all applicable motor vehicle safety standards. (b) A designation that identifies the manufacturer of the hose assembly, which shall be filed in writing with: Office of Crash Avoidance Standards, Vehicle Dynamics Division, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590. The designation may consist of block capital letters, numerals or a symbol. S7.2.3.1 At least one end fitting of an air brake hose assembly made with end fittings that are attached by crimping or swaging shall be etched, stamped or embossed with a designation at least one-sixteenth of an inch high that identifies the manufacturer of the hose assembly and is filed in accordance with S7.2.3(b). S7.3 Test requirements. Each air brake hose assembly or appropriate part thereof shall be capable of meeting any of the requirements set forth under this heading, when tested under the conditions of S11 and the applicable procedures of S8. However, a particular hose assembly or appropriate part thereof need not meet further requirements after having met the constriction requirement (S7.3.1) and then having been subjected to any one of the requirements specified in S7.3.2 through S7.3.13. S7.3.1 *Construction.* Except for that part of an end fitting which does not contain hose, every inside diameter of any section of an air brake hose assembly shall be not less than 66 percent of the nominal inside diameter of the brake hose. S7.3.2 High temperature resistance. An air brake hose shall not show external or internal cracks, charring, or disintegration visible without magnification
when straightened after being bent for 70 hours at 212° F. over a cylinder having the radius specified in Table IV for the size of hose tested (S8.1). S7.3.3 Low temperature resistance. The outer cover of an air brake hose shall not show cracks visible without magnification as a result of conditioning at minus 40°F. for 70 hours when bent around a cylinder having the radius specified in Table IV for the size of hose tested (S8.2). TABLE IV—AIR BRAKE HOSE DIAMETERS AND TEST CYLINDER RADII | Nominal hose diameter, in.* | 1/8 | 3/16 | 1/4 | 5/16 | 3/8, 13/32 | 7/16, 1/2 | 5/8 | |-----------------------------------|------|------|------|------|------------|-----------|------| | mm.* | 3 | 4, 5 | 6 | 8 | 10 | 12 | 16 | | Radius of test cylinder in inches | 11/2 | 2 | 21/2 | 3 | 31/2 | 4 | 41/2 | ^{*}These sizes are listed to provide test values for brake hoses manufactured in these sizes. They do not represent conversions. S7.3.4 *Oil resistance.* After immersion in ASTM No. 3 oil for 70 hours at 212° F. the volume of a specimen prepared from the inner tube and cover of an air brake hose shall not increase more than 100 percent (S8.3). S7.3.5 *Ozone resistance.* The outer cover of an air brake hose shall not show cracks visible under 7-power magnification after exposure to ozone for 70 hours at 104° F. (S8.4). S7.3.6 Length change. An airbrake hose (other than a coiled nylon tube for use in an assembly that meets the requirements of §393.45 of this title) shall not contract in length more than 7 percent nor elongate more than 5 percent when subjected to air pressure of 200 psi (S8.5). S7.3.7 *Adhesion.* Except for hose reinforced by wire, an airbrake hose shall withstand a tensile force of 8 pounds per inch of length before separation of adjacent layers (S8.6). \$7.3.8 *Air pressure.* An air brake hose assembly shall contain air pressure of 200 psi for 5 minutes without loss of more than 5 psi (S8.7). S7.3.9 *Burst strength.* An air brake hose assembly shall not rupture when exposed to hydrostatic pressure of 800 psi (S8.8). S7.3.10 Tensile strength. An air brake hose assembly (other than a coiled nylon tube assembly which meets the requirements of §393.45 of this title) designed for use between frame and axle or between a towed and a towing vehicle shall withstand, without separation of the hose from its end fittings, a pull of 250 pounds if it is 1/4 inch or less or 6 mm or less in nominal internal diameter, or a pull of 325 pounds if it is larger than 1/4 inch or 6 mm in nominal internal diameter. An air brake hose assembly designed for use in any other application shall withstand, without separation of the hose from its end fitting, a pull of 50 pounds if it is 1/4 inch or 6 mm or less in nominal internal diameter, 150 pounds if it is 3/8 or 1/2 inch or 10 mm to 12 mm in nominal internal diameter, or 325 pounds if it is larger than ½ inch or 12 mm in nominal internal diameter (S8.9). S7.3.11 Water absorption and tensile strength. After immersion in distilled water for 70 hours (S8.10), an air brake hose assembly (other than a coiled tube assembly which meets the requirements of §393.45 of this title) designed for use between frame and axle or between a towed and a towing vehicle shall withstand without separation of the hose from its end fittings a pull of 250 pounds if it is 1/4 inch or 6 mm or less in nominal internal diameter, or a pull of 325 pounds if it is larger than 1/4 inch or 6 mm in nominal internal diameter. After immersion in distilled water for 70 hours (S8.10), an air brake hose assembly designed for use in any other application shall withstand without separation of the hose from its end fitting a pull of 50 pounds if it is 1/4 inch or 6 mm or less in nominal internal diameter, 150 pounds if it is 3% inch or 1/2 inch or 10 to 12 mm in nominal internal diameter, or 325 pounds if it is larger than 1/2 inch or 12 mm in nominal internal diameter (S8.9). S7.3.12 Zinc chloride resistance. The outer cover of an air brake hose shall not show cracks visible under 7-power magnification after immersion in a 50 percent zinc chloride aqueous solution for 200 hours (S8.11). S7.3.13 End fitting corrosion resistance. After 24 hours of exposure to salt spray, air brake hose end fittings shall show no base metal corrosion on the end fitting surface except where crimping or the application of labeling information causes a displacement of the protective coating. S8. Test procedures—Air brake hose, brake hose assemblies, and brake hose end fittings. S8.1 High temperature resistance test. (a) Utilize a cylinder having the radius indicated in Table IV for the size of hose tested. - (b) Bind the hose around the cylinder and condition it in an air oven for 70 hours at 212° F. - (c) Cool the hose to room temperature, remove it from the cylinder and straighten it. - (d) Without magnification, examine the hose externally and cut the hose lengthwise and examine the inner tube. - S8.2 Low temperature resistance test. (a) Utilize a cylinder having the radius indicated in Table IV for the size of hose tested. - (b) Condition the cylinder and the brake hose, in a straight position, in a cold box at minus $40^{\circ}\,\mathrm{F.}$ for 70 hours. - (c) With the hose and cylinder at minus 40° F., bend the hose 180 degrees around the cylinder at a steady rate in a period of 3 to 5 seconds. - S8.3 *Oil resistance test.* Utilize three test specimens and average the results. - S8.3.1 Preparation. Fashion a test specimen by cutting a rectangular block 2 inches long and not less than one-third of an inch in width, having a thickness of not more than one-sixteenth inch, from the brake hose and buff the specimen on both faces to ensure smooth surfaces. - S8.3.2 Measurement. (a) Weigh each specimen to the nearest milligram in air (WI) and in distilled water (W2) at room temperature. If wetting is necessary to remove air bubbles, dip the specimen in acetone and thoroughly rinse it with distilled water. - (b) Immerse each specimen in ASTM No. 3 oil for 70 hours at 212° F. and then cool in ASTM No. 3 oil at room temperature for 30 to 60 minutes. - (c) Dip the specimen quickly in acetone and blot it lightly with filter paper. - (d) Weigh each specimen in a tared weighing bottle (W3) and in distilled water (W4) within five minutes of removal from the cooling liquid. - (e) Calculate the percentage increase in volume follows: Percent of increase= $[(W_3 - W_4) - (W_1 - W_2)]/(W_1 - W_2) \times 100$ S8.4 Ozone resistance test. Conduct the test specified in S6.8 using air brake hose. S8.5 *Length change test.* (a) Position a test hose in a straight, horizontal po- - sition, and apply air pressure of $10\ \mathrm{psi}$ thereto. - (b) Measure the hose to determine original free length. - (c) Without releasing the 10 psi, raise the air pressure to the test hose to 200 psi. - (d) Measure the hose under 200 psi to determine final free length. An elongation or contraction is an increase or decrease, respectively, in the final free length from the original free length of the hose. S8.6 Adhesion test. - S8.6.1 Apparatus. A tension testing machine that is power-driven and that applies a constant rate of extension is used for measuring the force required to separate the layers of the test specimen. The apparatus is constructed so that: - (a) The recording head includes a freely rotating form with an outside diameter substantially the same as the inside diameter of the hose specimen to be placed on it. - (b) The freely rotating form is mounted so that its axis of rotation is in the plane of the ply being separated from the specimen and so that the applied force is perpendicular to the tangent of the specimen circumference at the line of separation. - (c) The rate of travel of the power-actuated grip is a uniform one inch per minute and the capacity of the machine is such that maximum applied tension during the test is not more than 85 percent nor less than 15 percent of the machine's rated capacity. - (d) The machine produces a chart with separation as one coordinate and applied tension as the other. - S.6.2 Preparation. (a) Cut a test specimen of 1 inch or more in length from the hose to be tested and cut the layer to be tested of that test specimen longitudinally along its entire length to the level of contact with the adjacent layer. - (b) Peel the layer to be tested from the adjacent layer to create a flap large enough to permit attachment of the power-actuated clamp of the apparatus. - (c) Mount the test specimen on the freely rotating form with the separated layer attached to the power-actuated clamp. S8.6.3 [Reserved] S8.6.4 *Calculations.* (a) The adhesion value shall be the minimum force recorded on the chart excluding that portion of the chart which corresponds to the initial and final 20 percent portion along the displacement axis. (b) Express the force in pounds per inch of length. S8.7 *Air pressure test.* (a) Connect the air brake hose assembly to a source of air pressure. (b) Apply 200 psi air pressure to the hose and seal the hose from the source of air pressure. (c) After 5 minutes, determine the air pressure remaining in the test specimen. S8.8 Burst strength test. (a) Utilize an air brake hose assembly. (b) Fill the hose assembly with water, allowing all gases to escape. Apply water pressure at a uniform rate of increase of approximately 1,000 psi per minute until the hose ruptures. S8.9 Tensile strength test. Utilize a tension testing machine conforming to the requirements of the Methods of Verification of Testing Machines (1964 American Society for Testing and Materials, Designation E4), and provided with a recording device to register total pull in pounds. (a) Attach an air brake hose assembly to the testing machine to permit straight, even, machine-pull on the hose. (b) Apply tension at a rate of 1 inch per minute travel of the moving head until separation occurs. S8.10 Water Absorption and tensile strength test.
Immerse an air brake hose assembly in distilled water at room temperature for 70 hours. Thirty minutes after removal from the water, conduct the test specified in S8.9. S8.11 Zinc chloride resistance test. Immerse an air brake hose in a 50 percent zinc chloride aqueous solution at room temperature for 200 hours. Remove it from the solution and examine it under 7-power magnification for cracks. S8.12 End fitting corrosion resistance test. Conduct the test specified in S6.9 using an air brake hose assembly. S9. Requirements—vacuum brake hose, brake hose assemblies, and brake hose end fittings. S9.1 Labeling. S9.1.1 Hose. Each vacuum brake hose shall be labeled, or cut from bulk hose that is labeled, at intervals of not more than 6 inches, measured from the end of one legend to the beginning of the next, in block capital letters and numerals at least one-eighth of an inch high, with the information listed in paragraphs (a) through (e) of this section. The information need not be present on hose that is sold as part of a brake hose assembly or a motor vehicle. (a) The symbol DOT, constituting a certification by the hose manufacturer that the hose conforms to all applicable motor vehicle safety standards. (b) A designation that identifies the manufacturer of the hose, which shall be filed in writing with: Office of Crash Avoidance Standards, Vehicle Dynamics Division, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 20590. The designation may consist of block capital letters, numerals or a symbol. (c) The month, day, and year, or the month and year, of manufacture, expressed in numerals. For example, 10/1/96 means October 1, 1996. (d) The nominal inside diameter of the hose expressed in inches or fractions of inches or in millimeters, or the nominal outside diameter of plastic tubing expressed in inches or fractions of inches or in millimeters followed by the letters OD. The abbreviation "mm" shall follow hose sizes that are expressed in millimeters. (Example of inside diameter: ½3, ¼4, 4 mm. Example of outside diameter: ¼4 OD, 12 mm OD.) (e) The letters "VL" or "VH" shall (e) The letters "VL" or "VH" shall indicate that the component is a light-duty vacuum brake hose or heavy-duty vacuum brake hose, respectively. S9.1.2 End fittings. Except for an end fitting that is attached by heat striking or by interference fit with plastic vacuum hose or that is attached by deformation of the fitting about a hose by crimping or swaging, at least one component of each vacuum brake hose fitting shall be etched, embossed, or stamped in block capital letters and numerals at least one-sixteenth of an inch high with the following information: (a) The symbol DOT, constituting a certification by the manufacturer of that component that the component conforms to all applicable motor vehicle safety standards. (b) A designation that identifies the manufacturer of that component of the fitting, which shall be filed in writing with: Office of Crash Avoidance Standards, Vehicle Dynamics Division, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 20590. The designation may consist of block capital letters, numerals or a symbol. (c) The letters "VL" or "VH" shall indicate that the end fitting is intended for use in a light-duty or heavy-duty vacuum brake system, respectively. (d) The nominal inside diameter of the hose to which the fitting is properly attached expressed in inches or fractions of inches or in millimeters, or the outside diameter of the plastic tubing to which the fitting is properly attached expressed in inches or fraction of inches or in millimeters followed by the letter OD (See examples in S9.1.1(d)). The abbreviation "mm" shall follow hose sizes that are expressed in millimeters. S9.1.3 Assemblies. Each vacuum brake hose assembly made with end fittings that are attached by crimping or swaging and each plastic tube assembly made with end fittings that are attached by heat shrinking or dimensional interference fit, except those sold as part of a motor vehicle, shall be labeled by means of a band around the brake hose assembly as specified in this paragraph or, at the option of the manufacturer, by means of labeling as specified in S9.1.3.1. The band may at the manufacturer's option be attached so as to move freely along the length of the assembly, as long as it is retained by the end fittings. The band shall be etched, embossed, or stamped in block capital letters, numerals or symbols at least one-eighth of an inch high, with the following information: (a) The symbol DOT, constituting certification by the hose assembler that the hose assembly conforms to all applicable motor vehicle safety standards. (b) A designation that identifies the manufacturer of the hose assembly, which shall be filed in writing with: Office of Crash Avoidance Standards, Ve- hicle Dynamics Division, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590. The designation may consist of block capital letters, numerals or a symbol. S9.1.3.1 At least one end fitting of a vacuum brake hose assembly made with end fittings that are attached by crimping or swaging, or of a plastic tubing assembly made with end fittings that are attached by heat shrinking or dimensional interference fit shall be etched, stamped or embossed with a designation at least one-sixteenth of an inch high that identifies the manufacturer of the hose assembly and is filed in accordance with S9.1.3(b). S9.2 Test requirements. Each vacuum brake hose assembly or appropriate part thereof shall be capable of meeting any of the requirements set forth under this heading, when tested under the conditions of S11. and the applicable procedures of S10. However, a particular hose assembly or appropriate part thereof need not meet further requirements after having met the construction requirement (S9.2.1) and then having been subjected to any one of the requirements specified in S9.2.2 through S9.2.11. S9.2.1 *Constriction.* Except for that part of an end fitting which does not contain hose, every inside diameter of any section of a vacuum brake hose assembly shall be not less than 75 percent of the nominal inside diameter of the hose if for heavy duty, or 70 percent of the nominal inside diameter of the hose if for light duty. S9.2.2 High temperature resistance. A vacuum brake hose shall not show external or internal cracks, charring, or disintegration visible without magnification when straightened after being bent for 70 hours at 212° F. over a cylinder having the radius specified in Table V for the size of hose tested (S10.1). S9.2.3 Low temperature resistance. A vacuum brake hose shall not show cracks visible without magnification after conditioning at minus 40° F. for 70 hours when bent around a cylinder having the radius specified in Table V for the size hose tested (S10.2). S9.2.4 *Ozone resistance.* A vacuum brake hose shall not show cracks visible under 7-power magnification after exposure to ozone for 70 hours (S10.3). \$9.2.5 Burst strength. A vacuum brake hose shall not rupture under hydrostatic pressure of 350 psi (S10.4). S9.2.6 Vacuum. The collapse of the outside diameter of a vacuum brake hose under internal vacuum of 26 inches of Hg. for five minutes shall not exceed one-sixteenth of an inch (S10.5). S9.2.7 Bend. The collapse of the outside diameter of a vacuum brake hose at the middle point of the test length when bent until the ends touch shall not exceed the values given in Table V for the size of hose tested (S10.6). TABLE V-VACUUM BRAKE HOSE TEST REQUIREMENTS | Hose inside | e diameter* | High temper | | Low temper | | Ве | nd | | |-------------|-------------|---------------------------|----------------------------|---------------------------|----------------------------|---------------------------|--|--| | Inches | Millimeters | Hose
length,
inches | Radius of cylinder, inches | Hose
length,
inches | Radius of cylinder, inches | Hose
length,
inches | Maximum
collapse of
outside di-
ameter,
inches | Deformation—col-
lapsed inside diam-
eter (dimension D),
inches | | 7/32 | 5 | 8 | 11/2 | 171/2 | 3 | 7 | 11/64 | 3/64 | | 1/4 | 6 | 9 | 11/2 | 171/2 | 3 | 8 | 3/32 | 1/16 | | 9/32 | | 9 | 13/4 | 19 | 31/2 | 9 | 12/64 | 4/64 | | 11/32 | 8 | 9 | 13/4 | 19 | 31/2 | 11 | 13/64 | 5/64 | | 3/8 | 10 | 10 | 13/4 | 19 | 31/2 | 12 | 5/32 | 3/32 | | 7/16 | | 11 | 2 | 201/2 | 4 | 14 | 17/64 | 5/64 | | 15/32 | | 11 | 2 | 201/2 | 4 | 14 | 17/64 | 5/64 | | 1/2 | 12 | 11 | 2 | 201/2 | 4 | 16 | 7/32 | 1/8 | | 5/8 | 16 | 12 | 21/4 | 22 | 41/2 | 22 | 7/32 | 5/32 | | 3/4 | | 14 | 21/2 | 24 | 5 | 28 | 7/32 | 3/16 | | 1 | | 16 | 31/4 | 281/2 | 61/2 | 36 | 9/32 | 1/4 | *These sizes are listed to provide test values for brake hoses manufactured in these sizes. They do not represent conversions. S9.2.8 Swell. Following exposure to Reference Fuel A, every inside diameter of any section of a vacuum brake hose shall not be less than 75 percent of the nominal inside of the hose if for heavy duty, or 70 percent of the nominal inside diameter of the hose if for light duty. The vacuum brake hose shall show no leakage and there shall be no separation of the inner tube from the fabric reinforcement of the hose in a vacuum test of 26 inches of Hg for 10 minutes (S10.7). S9.2.9 Adhesion. Except for hose reinforced by wire, a vacuum brake hose shall withstand a force of 8 pounds per inch of length before separation of adjacent layers (S10.8). S9.2.10 Deformation. A vacuum brake hose shall return to 90 percent of its original outside diameter within 60 seconds after five applications of force as specified in S10.9, except that a wire-reinforced hose need only return to 85 percent of its original outside diameter. In the case of
heavy-duty hose the first application of force shall not exceed a peak value of 70 pounds, and the fifth application of force shall reach a peak value of at least 40 pounds. In the case of lightduty hose the first application of force shall not exceed a peak value of 50 pounds, and the fifth application of force shall reach a peak value of at least 20 pounds (S10.9). S9.2.11 End fitting corrosion resistance. After 24 hours of exposure to salt spray, vacuum brake hose end fittings shall show no base metal corrosion of the end fitting surface except where crimping or the application of labeling information has caused displacement of the protective coating. S10. Test procedures—Vacuum brake hose, brake hose assemblies, and brake hose end fittings. S10.1 High temperature resistance test. Conduct the test specified in S8.1 using vacuum brake hose with the cylinder radius specified in Table V for the size of hose tested. S10.2 Low temperature resistance test. Conduct the test specified in S8.2 using vacuum brake hose with the cylinder radius specified in Table V for the size of hose tested. S10.3 Ozone resistance test. Conduct the test specified in S6.8 using vacuum brake hose. S10.4 Burst strength test. Conduct the test specified in S8.8 using vacuum brake hose. S10.5 *Vacuum test.* Utilize a 12-inch vacuum brake hose assembly sealed at one end. (a) Measure the hose outside diameter. (b) Attach the hose to a source of vacuum and subject it to a vacuum of 26 inches of Hg for 5 minutes. (c) Measure the hose to determine the minimum outside diameter while the hose is still subject to vacuum. S10.6 Bend test. (a) Bend a vacuum brake hose, of the length prescribed in Table V, in the direction of its normal curvature until the ends just touch as shown in Figure 3. (b) Measure the outside diameter of the specimen at point A before and after bending. (c) The difference between the two measurements is the collapse of the hose outside diameter on bending. FIG. 3—BEND TEST OF VACUUM BRAKE HOSE. S10.7 Swell test. (a) Fill a specimen of vacuum brake hose 12 inches long with Reference Fuel A as described in the Method of Test for Change in Properties of Elastomeric Vulcanizers Resulting From Immersion in Liquids (1964 American Society for Testing and Materials, designation D471). (b) Maintain reference fuel in the hose under atmospheric pressure at room temperature for 48 hours. (c) Remove fuel and determine that every inside diameter of any section of the brake hose is not less than 75 percent of the nominal inside diameter of the hose for heavy-duty hose and 70 percent of the nominal inside diameter of the hose for light-duty hose. (d) Subject the hose specimen to a vacuum of 26 inches of Hg for 10 minutes. S10.8 Adhesion test. Conduct the test specified in S8.6 using vacuum brake hose. S10.9 Deformation test. Table VI specifies the test specimen dimensions. S10.9.1 *Apparatus.* Utilize a compression device, equipped to measure force of at least 100 pounds, and feeler gages of sufficient length to be passed completely through the test specimen. S10.9.2 *Operation.* (a) Position the test specimen longitudinally in the compression device with the fabric laps not in the line of the applied pressure. TABLE VI—DIMENSIONS OF TEST SPECIMEN AND FEELER GAGE FOR DEFORMATION TEST | Hose
diam | | | en dimen-
ee fig. 4) | Feeler gage di-
mensions | | | |---------------|-----|-----------------|-------------------------|-----------------------------|--------------------------|--| | In. | Mm. | Depth
(inch) | Length
(inch) | Width
(inch) | Thick-
ness
(inch) | | | 7/32 | 5 | 3/64 | 1 | 1/8 | 3/64 | | | 1/4 6
9/32 | | 1/16 | 1 | 1/8 | 1/16 | | | | | 1/16 | 1 | 1/8 | 1/16 | | | 11/32 | 8 | 5/64 | 1 | 3/16 | 5/64 | | | 3/8 | 10 | 3/32 | 1 | 3/16 | 3/32 | | | 7/16 | | 5/64 | 1 | 1/4 | 5/64 | | | 15/32 | | 5/64 | 1 | 1/4 | 5/64 | | | 1/2 | 12 | 1/8 | 1 | 1/4 | 1/8 | | | 5/8 16 | | 5/32 | 1 | 1/4 | 5/32 | | | 3/4 | | 3/16 | 1 | 1/4 | 3/16 | | | 1 | | 1/4 | 1 | 1/4 | 1/4 | | *These sizes are listed to provide test values for brake hoses manufactured in these sizes. They do not represent conversions (b) Apply gradually increasing force to the test specimen to compress its inside diameter to that specified in Table VI (dimension D of figure 4) for the size of hose tested. FIG. 4. DEFORMED SPECIMEN OF VACUUM BRAKE HOSE (c) After 5 seconds release the force and record the peak load applied. (d) Repeat the procedure four times permitting a 10-second recovery period between load applications. S10.10 *End fitting corrosion resistance test.* Conduct the test specified in S6.9 using a vacuum brake hose assembly. S11. *Test conditions.* Each hose assembly or appropriate part thereof shall be able to meet the requirements of S5., S7., and S9. under the following conditions. S11.1 The temperature of the testing room is 75° F. S11.2 Except for S6.6, S8.2, and S10.2, the test samples are stabilized at test room temperature prior to testing. S11.3 The brake hoses and brake hose assemblies are at least 24 hours old, and unused. [38 FR 31303, Nov. 13, 1973] EDITORIAL NOTE: For FEDERAL REGISTER citations affecting \$571.106, see the List of CFR Sections Affected in the Finding Aids section of this volume. #### §571.107 [Reserved] # §571.108 Standard No. 108; Lamps, reflective devices, and associated equipment. S1. *Scope.* This standard specifies requirements for original and replacement lamps, reflective devices, and associated equipment. S2. Purpose. The purpose of this standard is to reduce traffic accidents and deaths and injuries resulting from traffic accidents, by providing adequate illumination of the roadway, and by enhancing the conspicuity of motor vehicles on the public roads so that their presence is perceived and their signals understood, both in daylight and in darkness or other conditions of reduced visibility. S3. *Application.* This standard applies to: (a) Passenger cars, multipurpose passenger vehicles, trucks, buses, trailers (except pole trailers and trailer converter dollies), and motorcycles; (b) Retroreflective sheeting and reflex reflectors manufactured to conform to S5.7 of this standard; and (c) Lamps, reflective devices, and associated equipment for replacement of like equipment on vehicles to which this standard applies. S4. Definitions. Aiming Reference Plane means a plane which is perpendicular to the longitudinal axis of the vehicle and tangent to the forwardmost aiming pad on the headlamp. Beam contributor means an indivisible optical assembly including a lens, reflector, and light source, that is part of an integral beam headlighting system and contributes only a portion of a headlamp beam. Cargo lamp is a lamp that is mounted on a multipurpose passenger vehicle, truck, or bus for the purpose of providing illumination to load or unload cargo. Cutoff means a generally horizontal, visual/optical aiming cue in the lower beam that marks a separation between areas of higher and lower luminance. Direct reading indicator means a device that is mounted in its entirety on a headlamp or headlamp aiming or headlamp mounting equipment, is part of a VHAD, and provides information about headlamp aim in an analog or digital format. Effective projected luminous lens area means that area of the projection on a plane perpendicular to the lamp axis of that portion of the light-emitting surface that directs light to the photometric test pattern, and does not include mounting hole bosses, reflex reflector area, beads or rims that may glow or produce small areas of increased intensity as a result of uncontrolled light from small areas (½ deg. radius around the test point). Filament means that part of the light source or light emitting element(s), such as a resistive element, the excited portion of a specific mixture of gases under pressure, or any part of other energy conversion sources, that generates radiant energy which can be seen. Flash means a cycle of activation and deactivation of a lamp by automatic means continuing until stopped either automatically or manually. Fully opened means the position of the headlamp concealment device in which the headlamp is in the design open operating position. Headlamp concealment device means a device, with its operating system and components, that provides concealment of the headlamp when it is not in use, including a movable headlamp cover and a headlamp that displaces for concealment purposes. Headlamp test fixture means a device designed to support a headlamp or headlamp assembly in the test position specified in the laboratory tests and whose mounting hardware and components are those necessary to operate the headlamp as installed in a motor vehicle. Integral beam headlamp means a headlamp (other than a standardized sealed beam headlamp designed to conform to paragraph S7.3 or a replaceable bulb headlamp designed to conform to paragraph S7.5) comprising an integral and indivisible optical assembly including lens, reflector, and light source, except that a headlamp conforming to paragraph S7.8.5.2 or paragraph S7.8.5.3 may have a lens designed to be replaceable. Multiple compartment lamp means a device which gives its indication by two or more separately lighted areas which are joined by one or more common parts, such as a housing or lens. Multiple lamp arrangement means an array of two or more separate lamps on each side of the vehicle which operate together to give a signal. Remote reading indicator means a device that is not mounted in its entirety on a headlamp or headlamp aiming or headlamp mounting equipment, but otherwise meets the definition of a direct reading indicator. Replaceable bulb headlamp means a headlamp comprising a bonded lens and reflector assembly and one or two replaceable headlamp light sources, except that a headlamp conforming to paragraph S7.8.5.2 or paragraph S7.8.5.3 may have a lens designed to be replaceable. Replaceable light source means an assembly
of a capsule, base, and terminals that is designed to conform to the requirements of Appendix A or Appendix B of part 564 Replaceable Light Source Information of this Chapter. Vehicle headlamp aiming device or VHAD means motor vehicle equipment, installed either on a vehicle or headlamp, which is used for determing the horizontal or vertical aim, or both the vertical and horizontal aim of the headlamp. Visually/optically aimable headlamp means a headlamp which is designed to be visually/optically aimable in accord- ance with the requirements of paragraph S7.8.5.3 of this standard. S5. Requirements. S5.1 Required motor vehicle lighting equipment. S5.1.1 Except as provided in succeeding paragraphs of this S5.1.1, each vehicle shall be equipped with at least the number of lamps, reflective devices, and associated equipment specified in Tables I and III and S7, as applicable. Required equipment shall be designed to conform to the SAE Standards or Recommended Practices referenced in those tables. Table I applies to multipurpose passenger vehicles, trucks, trailers, and buses, 80 or more inches in overall width. Table III applies to passenger cars and motorcycles and to multipurpose passenger vehicles. trucks, trailers, and buses, less than 80 inches in overall width. S5.1.1.1 A truck tractor need not be equipped with turn signal lamps mounted on the rear if the turn signal lamps at or near the front are so constructed (double-faced) and so located that they meet the requirements for double-faced turn signals specified in SAE Standard J588e, *Turn Signal Lamps*, September 1970. S5.1.1.2 A truck tractor need not be equipped with any rear side marker devices, rear clearance lamps, and rear identification lamps. S5.1.1.3 Intermediate side marker devices are not required on vehicles less than 30 feet in overall length. S5.1.1.4 Reflective material conforming to Federal Specification L-S-300, Sheeting and Tape, Reflective; Nonexposed Lens, Adhesive Backing, September 7, 1965, may be used for side reflex reflectors if this material as used on the vehicle, meets the performance standards in either Table I or Table IA of SAE Standard J594f, Reflex Reflectors, January 1977. S5.1.1.5 The turn signal operating unit on each passenger car, and multipurpose passenger vehicle, truck, and bus less than 80 inches in overall width shall be self-canceling by steering wheel rotation and capable of cancellation by a manually operated control. S5.1.1.6 Instead of the photometric values specified in Table 1 of SAE Standards J222 December 1970, or J585e September 1977, a parking lamp or tail lamp, respectively, shall meet the minimum percentage specified in Figure 1a of the corresponding minimum allowable value specified in Figure 1b. The maximum candlepower output of a parking lamp shall not exceed that prescribed in Figure 1b, or of a taillamp, that prescribed in Figure 1b at H or above. If the sum of the percentages of the minimum candlepower measured at the test points is not less than that specified for each group listed in Figure 1c, a parking lamp or taillamp is not required to meet the minimum photometric value at each test point specified in SAE Standards J222 or J585e respectively. S5.1.1.7 A motorcycle turn signal lamp need meet only one-half of the minimum photometric values specified in Table 1 and Table 3 of SAE J588 NOV84 *Turn Signal Lamps*. S5.1.1.8 For each motor vehicle less than 30 feet in overall length, the photometric minimum candlepower requirements for side marker lamps specified in SAE Standard J592e Clearance, Side Marker, and Identification Lamps, July 1972, may be met for all inboard test points at a distance of 15 feet from the vehicle and on a vertical plane that is perpendicular to the longitudinal axis of the vehicle and located midway between the front and rear side marker lamps. S5.1.1.9 A boat trailer whose overall width is 80 inches or more need not be equipped with both front and rear clearance lamps provided an amber (to front) and red (to rear) clearance lamp is located at or near the midpoint on each side so as to indicate its extreme width. S5.1.1.10 Multiple license plate lamps and backup lamps may be used to fufill the requirements of the SAE Standards applicable to such lamps referenced in Tables I and III. S5.1.1.11 A stop lamp that is not optically combined, as defined by SAE Information Report J387 *Terminology—Motor Vehicle Lighting* NOV87, with a turn signal lamp, shall remain activated when the turn signal lamp is flashing. S5.1.1.12 On a motor vehicle, except a passenger car, whose overall width is 80 inches or more, measurements of the functional lighted lens area, and of the photometrics, of a multiple compartment stop lamp, and a multiple compartment turn signal lamp, shall be made for the entire lamp and not for the individual compartments. S5.1.1.13 Each passenger car, and each multipurpose passenger vehicle, truck, and bus of less than 80 inches overall width, shall be equipped with a turn signal operating unit designed to complete a durability test of 100,000 cycles. S5.1.1.14 A trailer that is less than 30 inches in overall width may be equipped with only one taillamp, stop lamp, and rear reflex reflector, which shall be located at or near its vertical centerline. S5.1.1.15 A trailer that is less than 6 feet in overall length, including the trailer tongue, need not be equipped with front side marker lamps and front side reflex reflectors. S5.1.1.16 A lamp designed to use a type of bulb that has not been assigned a mean spherical candlepower rating by its manufacturer and is not listed in SAE Standard J573d, *Lamp Bulbs and Sealed Units*, December 1968, shall meet the applicable requirements of this standard when used with any bulb of the type specified by the lamp manufacturer, operated at the bulb's design voltage. A lamp that contains a sealed-in bulb shall meet these requirements with the bulb operated at the bulb's design voltage. S5.1.1.17 Except for a lamp having a sealed-in bulb, a lamp shall meet the applicable requirements of this standard when tested with a bulb whose filament is positioned within ±.010 inch of the nominal design position specified in SAE Standard J573d, *Lamp Bulbs and Sealed Units*, December 1968, or specified by the bulb manufacturer. S5.1.1.18 A backup lamp is not required to meet the minimum photometric values at each test point specified in Table I of SAE Standard J593c, *Backup Lamps*, February 1968, if the sum of the candlepower measured at the test points within each group listed in Figure 2 is not less than the group totals specified in that figure. S5.1.1.19 Each variable load turn signal flasher shall comply with voltage drop and durability requirements of SAE Standard J590b, *Turn Signal Flashers*, October 1965 with the maximum design load connected, and shall comply with starting time, flash rate, and percent current "on" time requirements of J590b both with the minimum and with the maximum design load connected. S5.1.1.20 The lowest voltage drop for turn signal flashers and hazard warning signal flashers measured between the input and load terminals shall not exceed 0.8 volt. S5.1.1.21 A motor-driven cycle whose speed attainable in 1 mile is 30 mph or less need not be equipped with turn signal lamps. S5.1.1.22 A motor-driven cycle whose speed attainable in 1 mile is 30 mph or less may be equipped with a stop lamp whose effective projected luminous lens area is not less than 3½ square inches and whose photometric output for the groups of test points specified in Figure 1 is at least one-half of the minimum values set forth in that figure #### S5.1.1.23-24 [Reserved] S5.1.1.25 Each turn signal lamp on a motorcycle manufactured on and after January 1, 1973, shall have an effective projected luminous area of not less than 3½ square inches. S5.1.1.26 On a motor vehicle whose overall width is less than 80 inches: - (a) The functional lighted lens area of a single compartment stop lamp, and a single compartment rear turn signal lamp, shall be not less than 50 square centimeters. - (b) If a multiple compartment lamp or multiple lamps are used to meet the photometric requirements for stop lamps and rear turn signal lamps, the functional lighted lens area of each compartment or lamp shall be at least 22 square centimeters, provided the combined area is at least 50 square centimeters. - S5.1.1.27 (a) Except as provided in paragraph (b) of this section, each passenger car manufactured on or after September 1, 1985, and each multipurpose passenger vehicle, truck, and bus, whose overall width is less than 80 inches, whose GVWR is 10,000 pounds or less, manufactured on or after September 1, 1993, shall be equipped with a high-mounted stop lamp which: - (1) Shall have an effective projected luminous area not less than $4\frac{1}{2}$ square inches. - (2) Shall have a signal visible to the rear through a horizontal angle from 45 degrees to the left to 45 degrees to the right of the longitudinal axis of the vehicle - (3) Shall have the minimum photometric values in the amount and location listed in Figure 10. - (4) Need not meet the requirements of paragraphs 3.1.6 Moisture Test, 3.1.7 Dust Test, and 3.1.8 Corrosion Test of SAE Recommended Practice J186a, Supplemental High-Mounted Stop and Rear Turn Signal Lamps, September 1977, if it is mounted inside the vehicle. - (5) Shall provide access for convenient replacement of the bulb without the use of special tools. - (b) Each multipurpose passenger vehicle, truck and bus whose overall width is less than 80 inches, whose GVWR is 10,000 pounds or less, whose vertical centerline, when the vehicle is viewed from the rear, is not located on a fixed body panel but separates one or two movable body sections, such as doors, which lacks sufficient space to install a single high-mounted stop lamp on the centerline above such body sections, and which is manufactured on or after September 1, 1993, shall have two
high-mounted stop lamps which: - (1) Are identical in size and shape and have an effective projected luminous area not less than 21/4 inches each. - (2) Together have a signal to the rear visible as specified in paragraph (a)(2) of this S5.1.1.27. - (3) Together have the minimum photometric values specified in paragraph (a) (3) of this S5.1.1.27. - (4) Shall provide access for convenient replacement of the bulbs without special tools. S5.1.1.28 A multipurpose passenger vehicle, truck, or bus, whose overall width is less than 80 inches, and whose GVWR is 10,000 pounds or less, that is manufactured between September 1, 1992 and September 1, 1993, may be equipped with a high-mounted stop lamp or, in the case of vehicles subject to S5.1.1.27(b), two high-mounted stop lamps, that conform to S5.1.1.27 and S5.3.1.8. - S5.1.1.29 A trailer equipped with a conspicuity treatment in conformance with paragraph S5.7 of this standard need not be equipped with the reflex reflectors required by Table I of this standard if the conspicuity material is placed at the locations of the reflex reflectors required by Table I. - S5.1.2 Plastic materials used for optical parts such as lenses and reflectors shall conform to SAE Recommended Practice J576 JUL91, except that: - (a) Plastic lenses (other than those incorporating reflex reflectors) used for inner lenses or those covered by another material and not exposed directly to sunlight shall meet the requirements of paragraphs 3.3 and 4.2 of SAE J576 JUL91 when covered by the outer lens or other material; - (b) After the outdoor exposure test, the haze and loss of surface luster of plastic materials (other than those incorporating reflex reflectors) used for outer lenses shall not be greater than 30 percent haze as measured by ASTM D 1003–92, *Haze and Luminous Transmittance of Transparent Plastic*; - (c) After the outdoor exposure test, plastic materials used for reflex reflectors and for lenses used in front of reflex reflectors shall not show surface deterioration, crazing, dimensional changes, color bleeding, delamination, loss of surface luster, or haze that exceeds 7 percent as measured under ASTM D 1003-92. - (d) The thickness of the test specimens specified in paragraph 3.2.2 of SAE J576 JUL91 may vary by as much as ± 0.25 mm. - (e) After exposure to the heat test as specified in subparagraph (f) of this paragraph, and after cooling to room ambient temperature, a test specimen shall show no change in shape and general appearance discernable to the naked eye when compared with an unexposed specimen. The trichromatic coefficients of the samples shall conform to the requirements of SAE J578c, Color Specification for Electric Signal Lighting Devices, February 1977. - (f) Two samples of each thickness of each plastic material are used in the heat test. Each sample is supported at the bottom, with at least 51 mm. of the sample above the support, in the vertical position in such a manner that, on - each side, the minimum uninterrupted area of exposed surface is not less than 3225 sq. mm. The samples are placed for two hours in a circulating air oven at 79 ± 3 degrees C. - (g) All outdoor exposure tests shall be 3 years in duration, whether the material is exposed or protected. Accelerated weathering procedures are not permitted. - S5.1.3 No additional lamp, reflective device or other motor vehicle equipment shall be installed that impairs the effectiveness of lighting equipment required by this standard. - S5.1.4 Each school bus shall be equipped with a system of either: - (a) Four red signal lamps designed to conform to SAE Standard J887, School Bus Red Signal Lamps, July 1964, and installed in accordance with that standard; or - (b) Four red signal lamps designed to conform to SAE Standard J887, School Bus Red Signal Lamps, July 1964, and four amber signal lamps designed to conform to that standard, except for their color, and except that their candlepower shall be at least 2½ times that specified for red signal lamps. Both red and amber lamps shall be installed in accordance with SAE Standard J887, except that: - (i) Each amber signal lamp shall be located near each red signal lamp, at the same level, but closer to the vertical centerline of the bus; and - (ii) The system shall be wired so that the amber signal lamps are activated only by manual or foot operation, and if activated, are automatically deactivated and the red signal lamps automatically activated when the bus entrance door is opened. - S5.1.5 The color in all lamps, reflective devices, and associated equipment to which this standard applies shall comply with SAE Standard J578c, Color Specification for Electric Signal Lighting Devices, February 1977. - S5.2 Other requirements. - S5.2.1 The words "it is recommended that," "recommendations," or "should be" appearing in any SAE Standard or Recommended Practice referenced or subreferenced in this standard shall be read as setting forth mandatory requirements, except that the aiming pads on the lens face and the black area surrounding the signal lamp recommended in SAE Standard J887, *School Bus Red Signal Lamps*, July 1964, are not required. 1964, are not required. S5.2.2 The words "Type 1 (5¾")," "Type 2 (5¾")," "Type 2 (7")," "Type 1A," "Type 2A," and "Type 2B" appearing in any SAE Standard or Recommended Practice referenced or subreferenced in this standard shall also be read as setting forth requirements respectively for the following types of headlamps: 1C1, 2C1, 2D1, 1A1, 2A1, and S5.3 Location of required equipment. S5.3.1 Except as provided in succeeding paragraphs of S5.3.1, and paragraphs S5.7 and S7, each lamp, reflective device, and item of associated equipment shall be securely mounted on a rigid part of the vehicle other than glazing that is not designed to be removed except for repair, in accordance with the requirements of Table I and Table III, as applicable, and in the location specified in Table II (multipurpose passenger vehicles, trucks, trailers, and buses 80 or more inches in overall width) or Table IV (all passenger cars, and motorcycles, and multipurpose passenger vehicles, truck, trailers and buses less than 80 inches in overall width), as applicable. S5.3.1.1 Except as provided S5.3.1.1.1, each lamp and reflective device shall be located so that it meets the visibility requirements specified in any applicable SAE Standard or Recommended Practice. In addition, no part of the vehicle shall prevent a parking lamp, taillamp, stop lamp, turn signal lamp, or backup lamp from meeting its photometric output at any applicable group of test points specified in Figures 1c and 2, or prevent any other lamp from meeting the photometric output at any test point specified in any applicable SAE Standard or Recommended Practice. However, if motor vehicle equipment (e.g., mirrors, snow plows, wrecker booms, backhoes, and winches) prevents compliance with this paragraph by any required lamp or reflective devices, an auxiliary lamp or device meeting the requirements of this paragraph shall be provided. S5.3.1.1.1 Clearance lamps may be located at a location other than on the front and rear if necessary to indicate the overall width of a vehicle, or for protection from damage during normal operation of the vehicle, and at such a location they need not meet the photometric output at any test point that is 45 degrees inboard. S5.3.1.2 On a truck tractor, the red rear reflex reflectors may be mounted on the back of the cab, at a minimum height not less than 4 inches above the height of the rear tires. S5.3.1.3 On a trailer, the amber front side reflex reflectors and amber front side marker lamps may be located as far forward as practicable exclusive of the trailer tongue. S5.3.1.4 When the rear identification lamps are mounted at the extreme height of a vehicle, rear clearance lamps need not meet the requirement of Table II that they be located as close as practicable to the top of the vehicle. S5.3.1.5 The center of the lens referred to in SAE Standard J593c, *Backup Lamps*, February 1968, is the optical center. S5.3.1.6 On a truck tractor, clearance lamps mounted on the cab may be located to indicate the width of the cab, rather than the overall width of the vehicle. S5.3.1.7 On a motor vehicle on which the front turn signal lamp is less than 100 mm from the lighted edge of a lower beam headlamp, as measured from the optical center of the turn signal lamp, the multiplier applied to obtain the required minimum luminous intensities shall be 2.5. S5.3.1.8 (a) Each high-mounted stop lamp installed in or on a vehicle subject to S5.1.1.27(a) shall be located as follows: - (1) With its center at any place on the vertical centerline of the vehicle, including the glazing, as the vehicle is viewed from the rear. - (2) If the lamp is mounted below the rear window, no portion of the lens shall be lower than 6 inches below the rear window on convertibles, or 3 inches on other passenger cars. - (3) If the lamp is mounted inside the vehicle, means shall be provided to minimize reflections from the light of the lamp upon the rear window glazing that might be visible to the driver when viewed directly, or indirectly in the rearview mirror. - (b) The high-mounted stop lamps installed in or on a vehicle subject to S5.1.1.27(b) shall be located at the same height, with one vertical edge of each lamp on the vertical edge of the body section nearest the vertical centerline. - S5.4 Equipment combinations. Two or more lamps, reflective devices, or items of associated equipment may be combined if the requirements for each lamp, reflective device, and item of associated equipment are met, with the following exceptions: - (a) No high-mounted stop lamp shall be combined with any other lamp or reflective device, other than with a cargo lamp. - (b) No high-mounted stop lamp shall be combined optically, as defined by SAE Information Report J387 Terminology—Motor Vehicle Lighting NOV87, with
any cargo lamp. - (c) No clearance lamp shall be combined optically, as defined by SAE Information Report J387 Terminology—Motor Vehicle Lighting NOV87, with any taillamp. S5.5 Special wiring requirements. S.5.5.1 Each vehicle shall have a means of switching between lower and upper beams that conforms to SAE Recommended Practice J564a Headlamp Beam Switching, April 1964 or to SAE Recommended Practice J565b, Semi-Automatic Headlamp Beam Switching Devices, February 1969. Except as provided in S5.5.8, the lower and upper beams shall not be energized simultaneously except momentarily for temporary signalling purposes or during switching between beams. S5.5.2 Each vehicle shall have a means for indicating to the driver when the upper beams of the headlamps are on that conforms to SAE Recommended Practice J564a, April 1964, except that the signal color need not be red. S5.5.3 The taillamps on each vehicle shall be activated when the headlamps are activated in a steady-burning state, but need not be activated if the headlamps are activated at less than full intensity as permitted by paragraph S5.5.11(a). S5.5.4 The stop lamps on each vehicle shall be activated upon application of the service brakes. The high-mounted stop lamp on each vehicle shall be activated only upon application of the service brakes. S5.5.5 The vehicular hazard warning signal operating unit on each vehicle shall operate independently of the ignition or equivalent switch, and when activated, shall cause to flash simultaneously sufficient turn signal lamps to meet, as a minimum, the turn signal lamp photometric requirements of this standard. S5.5.6 Each vehicle equipped with a turn signal operating unit shall also have an illuminated pilot indicator. Failure of one or more turn signal lamps to operate shall be indicated in accordance with SAE Standard J588e, Turn Signal Lamps, September 1970, except when a variable-load turn signal flasher is used on a truck, bus, or multipurpose passenger vehicle 80 or more inches in overall width, on a truck that is capable of accommodating a slide-in camper, or on any vehicle equipped to tow trailers. S5.5.7 On each passenger car and motorcycle, and on each multipurpose passenger vehicle, truck, and bus of less than 80 inches overall width: - (a) When the parking lamps are activated, the taillamps, license plate lamps, and side marker lamps shall also be activated; and - (b) When the headlamps are activated in a steady-burning state, the tail lamps, parking lamps, license plate lamps and side marker lamps shall also be activated. S5.5.8 On a motor vehicle equipped with a headlighting system designed to conform to the photometric requirements of Figure 15-1 or Figure 15-2, the lamps marked "L" or "LF" may be wired to remain permanently activated when the lamps marked "U" or "UF" are activated. On a motor vehicle equipped with an Integral Beam headlighting system meeting the photometric requirements of paragraph S7.4(a)(1)(ii), lower the headlamps shall be wired to remain permanently activated when the upper beam headlamps are activated. On a motor vehicle equipped with a headlighting system designed to conform to the requirements of Figure 17-1 or Figure 17-2, a lower beam light source may be wired to remain activated when an upper beam light source is activated if the lower beam light source contributes to compliance of the headlighting system with the upper beam requirements of Figure 17–1 or Figure 17–2. S5.5.9 Except as provided in section S5.5.8, the wiring harness or connector assembly of each headlamp system shall be designed so that only those light sources intended for meeting lower beam photometrics are energized when the beam selector switch is in the lower beam position, and that only those light sources intended for meeting upper beam photometrics are energized when the beam selector switch is in the upper beam position. S5.5.10 The wiring requirements for lighting equipment in use are: - (a) Turn signal lamps, hazard warning signal lamps, and school bus warning lamps shall be wired to flash; - (b) Headlamps and side marker lamps may be wired to flash for signaling purposes; - (c) A motorcycle headlamp may be wired to allow either its upper beam or its lower beam, but not both, to modulate from a higher intensity to a lower intensity in accordance with section S5.6: - (d) All other lamps shall be wired to be steady-burning. S5.5.11(a) Any pair of lamps on the front of a passenger car, multipurpose passenger vehicle, truck, or bus, whether or not required by this standard, other than parking lamps or fog lamps, may be wired to be automatically activated, as determined by the manufacturer of the vehicle, in a steady burning state as daytime running lamps (DRLs) and to be automatically deactivated when the headlamp control is in any "on" position, and as otherwise determined by the manufacturer of the vehicle, provided that each such lamp: - (1) Has a luminous intensity not less than 500 candela at test point H-V, nor more than 3,000 candela at any location in the beam, when tested in accordance with Section S11 of this standard, unless it is: - (i) A lower beam headlamp intended to operate as a DRL at full voltage, or at a voltage lower than used to operate it as a lower beam headlamp; or - (ii) An upper beam headlamp intended to operate as a DRL, whose luminous intensity at test point H-V is not more than 7,000 candela, and which is mounted not higher than 864 mm above the road surface as measured from the center of the lamp with the vehicle at curb weight; - (2) Is permanently marked "DRL" on its lens in letters not less than 3 mm high, unless it is optically combined with a headlamp; - (3) Is designed to provide the same color as the other lamp in the pair, and that is one of the following colors as defined in SAE Standard J578 MAY88: White, white to yellow, white to selective yellow, selective yellow, or yellow; - (4) If not optically combined with a turn signal lamp, is located so that the distance from its lighted edge to the optical center of the nearest turn signal lamp is not less than 100 mm, unless: - (i) The luminous intensity of the DRL is not more than 2,600 candela at any location in the beam and the turn signal meets the requirements of S5.3.1.7; or - (ii) (For a passenger car, multipurpose passenger vehicle, truck, or bus that is manufactured before October 1, 1995, and which uses an upper beam headlamp as a DRL as specified in paragraph S5.5.11(a)(1)(ii)) the luminous intensity of the DRL is greater than 2,600 candela at any location in the beam and the turn signal lamp meets the requirements of S5.3.1.7; or - (iii) The DRL is optically combined with a lower beam headlamp and the turn signal lamp meets the requirements of S5.3.1.7; or - (iv) The DRL is deactivated when the turn signal or hazard warning signal lamp is activated. - (5) If optically combined with a turn signal lamp, is automatically deactivated as a DRL when the turn signal lamp or hazard warning lamp is activated, and automatically reactivated as a DRL when the turn signal lamp or hazard warning lamp is deactivated. - (b) Any pair of lamps that are not required by this standard and are not optically combined with any lamps that are required by this standard, and which are used as DRLs to fulfill the specifications of S5.5.11(a), shall be mounted at the same height, which shall be not more than 1.067 m above the road surface measured from the center of the lamp on the vehicle at curb weight, and shall be symmetrically disposed about the vertical centerline of the vehicle. S5.6 [Reserved] S5.7 Conspicuity Systems. Each trailer of 80 or more inches overall width, and with a GVWR over 10,000 lbs., manufactured on or after December 1, 1993, except a trailer designed exclusively for living or office use, and each truck tractor manufactured on or after July 1, 1997, shall be equipped with either retroreflective sheeting that meets the requirements of S5.7.1, reflex reflectors that meet the requirements of S5.7.2, or a combination of retroreflective sheeting and reflex reflectors that meet the requirement of S5.7.3. S5.7.1 Retroreflective sheeting. Each trailer or truck tractor to which S5.7 applies that does not conform to S5.7.2 or S5.7.3 shall be equipped with retroreflective sheeting that conforms to the requirements specified in S5.7.1.1 through S5.7.1.5. S5.7.1.1 *Construction.* Retroreflective sheeting shall consist of a smooth, flat, transparent exterior film with retroreflective elements embedded or suspended beneath the film so as to form a non-exposed retroreflective optical system. S5.7.1.2 Performance requirements. Retroreflective sheeting shall meet the requirements of ASTM D 4956-90, Standard Specification for Retroreflective Sheeting for Traffic Control, for Type V Sheeting, except for the photometric requirements, and shall meet the minimum photometric performance requirements specified in Figure 29. S5.7.1.3 Sheeting pattern, dimensions, and relative coefficients of retroreflection. (a) Retroreflective sheeting shall be applied in a pattern of alternating white and red color segments to the sides and rear of each trailer, and to the rear of each truck tractor, and in white to the upper rear corners of each trailer and truck tractor, in the locations specified in S5.7.1.4, and Figures 30–1 through 30–4, or Figure 31, as appropriate. (b) Except for a segment that is trimmed to clear obstructions, or lengthened to provide red sheeting near red lamps, each white or red segment shall have a length of $300~\text{mm} \pm 150~\text{mm}$. (c) Neither white nor red sheeting shall represent more than two thirds of the aggregate of any continuous strip marking the width of a trailer, or any continuous or broken strip marking its length. (d) Retroreflective sheeting shall have a width of not less than 50 mm (Grade DOT-C2), 75 mm (Grade DOT-C3), or 100 mm (Grade DOT-C4). (e) The coefficients for retroreflection of each
segment of red or white sheeting shall be not less than the minimum values specified in Figure 29 of this standard for grades DOT-C2, DOT-C3, and DOT-C4. S5.7.1.4 Location. (a) Retroreflective sheeting shall be applied to each trailer and truck tractor as specified below, but need not be applied to discontinuous surfaces such as outside ribs, stake post pickets on platform trailers, and external protruding beams, or to items of equipment such as door hinges and lamp bodies on trailers and body joints, stiffening beads, drip rails and rolled surfaces on truck tractors. (b) The edge of white sheeting shall not be located closer than 75 mm to the edge of the luminous lens area of any red or amber lamp that is required by this standard. (c) The edge of red sheeting shall not be located closer than 75 mm to the edge of the luminous lens area of any amber lamp that is required by this standard. S5.7.1.4.1 Rear of trailers. Retroreflective sheeting shall be applied to the rear of each trailer as follows, except that Element 2 is not required for container chassis or for platform trailers without bulkheads, and Element 3 is not required for trailers without underride protection devices: (a) Element 1: A strip of sheeting, as horizontal as practicable, in alternating colors across the full width of the trailer, as close to the extreme edges as practicable, and as close as practicable to not less than 375 mm and not more than 1525 mm above the road surface at the stripe centerline with the trailer at curb weight. (b) Element 2: Two pairs of white strips of sheeting, each pair consisting of strips 300 mm long of grade DOT-C2, DOT-C3, or DOT-C4, applied horizontally and vertically to the right and left upper contours of the body, as viewed from the rear, as close to the top of the trailer and as far apart as practicable. If the perimeter of the body, as viewed from the rear, is other than rectangular, the strips may be applied along the perimeter, as close as practicable to the uppermost and outermost areas of the rear of the body on the left and right sides. (c) Element 3: A strip of sheeting in alternating colors across the full width of the horizontal member of the rear underride protection device. Grade DOT-C2 material not less than 38 mm wide may be used. S5.7.1.4.2 Side of trailers. Retroreflective sheeting shall be applied to each side of a trailer as follows: (a) A strip of sheeting, as horizontal as practicable, in alternating colors, originating and terminating as close to the front and rear as practicable, as close as practicable to not less than 375 mm and not more than 1525 mm above the road surface at the stripe centerline with the trailer at curb weight, except that at the location chosen the strip shall not be obscured in whole or in part by other motor vehicle equipment or trailer cargo. The strip need not be continuous as long as not less than half of the length of the trailer is covered and the spaces are distributed as evenly as practicable. (b) If necessary to clear rivet heads or other similar obstructions, grade DOT-C2 retroreflective sheeting may be separated into two 25 mm wide strips of the same length and color, separated by a space of not more than 25 mm, and used in place of the retroreflective sheeting that would otherwise be applied. S5.7.1.4.3 Rear of truck tractors. Retroreflective sheeting shall be applied to the rear of each truck tractor as follows: (a) Element 1: Two strips of sheeting in alternating colors, each not less than 600 mm long, located as close as practicable to the edges of the rear fenders, mudflaps, or the mudflap support brackets, to mark the width of the truck tractor. The strips shall be mounted as horizontal as practicable, in a vertical plane facing the rear, on the rear fenders, on the mudflap support brackets, on plates attached to the mudflap support brackets, or on the mudflaps. Strips on mudflaps shall be mounted not lower than 300 mm below the upper horizontal edge of the mudflap. If the vehicle is certified with temporary mudflap support brackets, the strips shall be mounted on the mudflaps or on plates transferable to permanent mudflap support brackets. For a truck tractor without mudflaps, the strips may be mounted outboard of the frame on brackets behind the rear axle or on brackets ahead of the rear axle and above the top of the tires at unladen vehicle height, or they may be mounted directly or indirectly to the back of the cab as close to the outer edges as practicable, above the top of the tires, and not more than 1525 mm above the road surface at unladen vehicle height. If the strips are mounted on the back of the cab, no more than 25 percent of their cumulative area may be obscured by vehicle equipment as determined in a rear orthogonal view. (b) Element 2: Two pairs of white strips of sheeting, each pair consisting of strips 300 mm long, applied as horizontally and vertically as practicable, to the right and left upper contours of the cab, as close to the top of the cab and as far apart as practicable. No more than 25 percent of their cumulative area may be obscured by vehicle equipment as determined in a rear orthogonal view. If one pair must be relocated to avoid obscuration by vehicle equipment, the other pair may be relocated in order to be mounted symmetrically. If the rear window is so large as to occupy all the practicable space, the material may be attached to the edge of the window itself. S5.7.1.5 *Certification.* The letters DOT-C2, DOT-C3, or DOT-C4, as appropriate, constituting a certification that the retroreflective sheeting conforms to the requirements of S5.7.1.2, shall appear at least once on the exposed surface of each white or red segment of retroreflective sheeting, and at least once every 300 mm on retroreflective sheeting that is white only. The characters shall be not less than 3 mm high, and shall be permanently stamped, etched, molded, or printed in indelible ink. S5.7.2 Reflex Reflectors. Each trailer or truck tractor to which S5.7 applies that does not conform to S5.7.1 or S5.7.3 shall be equipped with reflex reflectors in accordance with this section. S5.7.2.1 (a) Each reflex reflector shall conform to SAE Standard J594f, *Reflex Reflectors*, January 1977. - (b) Each red reflex reflector shall also provide, at an observation angle of 0.2 degree, not less than 300 millicandelas/lux at any light entrance angle between 30 degrees left and 30 degrees right, including an entrance angle of 0 degree, and not less than 75 millicandelas/lux at any light entrance angle between 45 degrees left and 45 degrees right. - (c) Each white reflex reflector shall also provide at an observation angle of 0.2 degree, not less than 1250 millicandelas/lux at any light entrance angle between 30 degrees left and 30 degrees right, including an entrance angle of 0 degree, and not less than 300 millicandelas/lux at any light entrance angle between 45 degrees left and 45 degrees right. - (d) A white reflex reflector complying with S5.7.2.1(a) and (c) when tested in a horizontal orientation may be installed in all orientations specified for rear upper locations in S5.7.1.4.1(b) or S5.7.1.4.3(b) if, when tested in a vertical orientation, it provides an observation angle of 0.2 degree not less than 1680 millicandelas/lux at a light entrance angle of 0 degree, not less than 1120 millicandelas/lux at any light entrance angle from 10 degrees down to 10 degrees up, and not less than 560 millicandelas/lux at any light entrance angle from 20 degrees right to 20 degrees left. S5.7.2.2 Reflex reflectors shall be installed and located as specified below: (a) In the same locations and in the same length in which retroreflective sheeting is required by S5.7.1.4 to be applied in alternating colors, reflex reflectors shall be installed in a repetitive pattern of two or three white reflex reflectors alternating with two or three red reflex reflectors, with the center of each reflector not more than 100 mm from the center of each adjacent reflector. (b) In the same locations and in the same length in which white retroreflective sheeting is required by S5.7.1.4 to be installed, white reflex reflectors shall be installed, with the center of each white reflex reflector not more than 100 mm from the center of each adjacent reflector. S5.7.2.3 Certification. The exposed surface of each reflex reflector shall be marked with the letters DOT-C which constitutes a certification that the reflector conforms to all applicable requirements of §571.108 of this part. The certification shall be not less than 3 mm high, and permanently stamped, etched, molded or printed in indelible ink. S5.7.3 Combination of sheeting and reflectors. Each trailer or truck tractor to which S5.7 applies that does not conform to S5.7.1 or S5.7.2, shall be equipped with retroreflective materials that meet the requirements of S5.7.1 except that reflex reflectors that meet the requirements of S5.7.2.1, and that are installed in accordance with S5.7.2.2, may be used instead of any corresponding element of retroreflective sheeting located as required by S5.7.1.4. S5.8 Replacement Equipment. S5.8.1 Except as provided below, each lamp, reflective device, or item of associated equipment manufactured to replace any lamp, reflective device, or item of associated equipment on any vehicle to which this standard applies, shall be designed to conform to this standard. S5.8.2 A Type C replacement headlamp designed to conform to the requirements of paragraph S7.3.2(a) through (d) of this standard may be marked "1" and "2" rather than "1C1" and "2C1" respectively. A Type D replacement headlamp designed to conform to S7.3.2(a) through (c) and S7.3.5(b) of this standard may be marked "TOP" or "2" rather than "2D1" S5.8.3 (a) Each stop lamp manufactured to replace a stop lamp that was designed to conform to SAE Standard J586b, *Stop Lamps*, June 1966, may also be designed to conform to J586b. It shall meet the photometric
minimum candlepower requirements for Class A red turn signal lamps specified in SAE Standard J575d, Test for Motor Vehicle Lighting Devices and Components, August 1967. Each such lamp manufactured for use on a passenger car and on a multipurpose passenger vehicle, truck, trailer or bus less than 80 inches in overall width shall have an effective projected luminous area not less than 31/2 square inches. If multiple compartment lamps or multiple lamps are used, the effective projected luminous area of each compartment or lamp shall be not less than 3½ square inches; however, the photometric requirements may be met by a combination of compartments or lamps. (b) Each stop lamp manufactured to replace a stop lamp that was designed to conform to SAE Standard J586c, *Stop Lamps*, August 1970, may also be designed to conform to J586c. S5.8.4 (a) Each turn signal lamp manufactured to replace a turn signal lamp that was designed to conform to SAE Standard J588d, Turn Signal Lamps, June 1966, may also be designed to conform to J588d, and shall meet the photometric minimum candlepower requirements for Class A turn signal lamps specified in SAE Standard J575d, Tests for Motor Vehicle Lighting Devices and Components, August 1967. Each such lamp manufactured for use on a passenger car and on a multipurpose passenger vehicle, truck, trailer or bus less than 80 inches in overall width shall have an effective projected luminous area not less than 31/2 square inches. If multiple compartment lamps or multiple lamps are used, the effective projected luminous area of each compartment or lamp shall be not less than 31/2 square inches; however, the photometric requirements may be met by a combination of compartments or lamps. Each such lamp manufactured for use on a multipurpose passenger vehicle, truck, trailer or bus 80 inches or more in overall width shall have an effective projected luminous area not less than 12 square inches. (b) Each turn signal lamp manufactured to replace a turn signal lamp that was designed to conform to SAE Standard J588e, *Turn Signal Lamps*, September 1970, may also be designed to conform to SAE Standard J588e. S5.8.5 Note 6 of Table 1 of SAE Standard J588e does not apply. S5.8.6. Instead of the photometric values specified in SAE Standards J586c and J588e, a stop lamp manufactured to replace a stop lamp designed to conform to SAE Standard J586c, or a turn signal lamp manufactured to replace a turn signal lamp designed to conform to SAE Standard J588e, shall meet the minimum percentage specified in Figure 1a of the corresponding minimum allowable value specified in Figure 1b. The maximum candlepower output of each such stop lamp or turn signal lamp shall not exceed that prescribed in Figure 1b. If the sum of the percentages of the minimum candlepower measured at the test points is not less than that specified for each group listed in Figure 1c, a stop lamp or turn signal lamp is not required to meet the minimum photometric value at each test point specified in SAE Standards J586c and J588e, respectively. S5.8.7 Note 6 of Table 1 in SAE Standard J588e, *Turn Signal Lamps,* September 1970, does not apply. S5.8.8 Each taillamp manufactured to replace a taillamp designed to conform to SAE Standard J585d, *Tail Lamps*, August 1970, may also be designed to conform to J585d. S5.8.9 Each turn signal lamp manufactured to replace a turn signal lamp (on a motorcycle) that was designed to conform to SAE Standard J588d, *Turn Signal Lamps*, June 1966, may also be designed to conform to J588d. S5.8.10 Unless otherwise specified in this standard, each lamp, reflective device, or item of associated equipment to which paragraph S5.8.1 applies may be labeled with the symbol DOT, which shall constitute a certification that it conforms to applicable Federal motor vehicle safety standards. S5.8.11 A replacement lens for a replaceable bulb headlamp or an integral beam headlamp that is not required to have a bonded lens shall be provided with a replacement seal in a package that includes instructions for the removal and replacement of the lens, the cleaning of the reflector, and the sealing of the replacement lens to the reflector assembly. S6. Subreferenced SAE Standards and Recommended Practices S6.1 SAE Standards ommended Practices subreferenced by the SAE Standards and Recommended Practices included in Tables I and III and paragraphs S5.1.4 and S5.5.1 are those published in the 1970 edition of the SAE Handbook, except that the SAE standard referred to as "J575" J575e, Tests for Motor Vehicle Lighting Devices and Components, August 1970, for stoplamps designed to conform to SAE Standards J586c, J586 FEB84, and J1398 MAY85; for taillamps designed to conform to SAE Standards J585d and J585e; for turn signal lamps designed to conform to SAE Standards J588e, J588 NOV84, and J1395 APR85; and for highmounted stoplamps designed to conform to SAE Recommended Practice J186a. The reference in J585e to J256 does not apply. For headlamps other than motorcycle headlamps, unless otherwise specified in this standard, the version of SAE Standard J575 is DEC88, and the version of SAE Standard J602 is OCT80. The definition of "optically combined" in SAE Information Report J387 Terminology-Motor Vehicle Lighting NOV87, applies to that term as used in J586c and J588e. S6.2 Requirements of SAE Standards incorporated by reference in this standard, other than J576b and J576c, do not include test for warpage of devices with plastic lenses. S6.3 The term "effective projected luminous lens area" has the same meaning as the term "functional lighted lens area" in any SAE Standard or Recommended Practice incorporated by reference or by subreference in this standard. S7 Headlighting requirements. S7.1 Each passenger car, multipurpose passenger vehicle, truck, and bus manufactured on or after September 1, 1994, shall be equipped with a headlighting system designed to conform to the requirements of S7.3, S7.4, S7.5, or S7.6. S7.2(a) The lens of each original and replacement equipment headlamp, and of each original equipment and replacement equipment beam contributor shall be marked with the symbol "DOT" either horizontally or verti- cally which shall constitute the certification required by 49 U.S.C. 30115. (b) The lens of each headlamp and of each beam contributor manufactured on or after December 1, 1989, to which paragraph (a) of this section applies shall be marked with the name and/or trademark registered with the U.S. Patent and Trademark Office of the manufacturer of such headlamp or beam contributor, or its importer, or any manufacturer of a vehicle equipped with such headlamp or beam contributor. Nothing in this paragraph shall be construed to authorize the marking of any such name and/or trademark by one who is not the owner, unless the owner has consented to it. (c) Each headlamp and beam contributor to which paragraph (a) of this section applies shall be marked with its voltage and with its part or trade number (d) Unless stated otherwise, a tolerance of +/- ½ degree is permitted during photometric performance tests for any headlamp or beam contributor, and the test points 10U-90U shall be measured from the normally exposed surface of the lens face. The term 'aiming plane' means 'aiming reference plane' or an appropriate vertical plane defined by the manufacturer as required in S7.7.1. (e) Each replacement headlamp lens with seal, provided in accordance with S5.8.11, when installed according to the lens manufacturer's instructions on an integral beam or replaceable bulb headlamp, shall not cause headlamp to fail to comply with any of the requirements of this standard. Each replacement headlamp lens shall be marked with the symbol "DOT", either horizontally or vertically, to constitute certification. Each replacement headlamp lens shall also be marked with the manufacturer and the part or trade number of the headlamp for which it is intended, and with the name and/or trademark of the lens manufacturer or importer that is registered with the U.S. Patent and Trademark Office. Nothing in this paragraph shall be construed to authorize the marking of any such name and/or trademark by one who is not the owner, unless the owner has consented to it. S7.3 Sealed beam headlighting system. A sealed beam headlighting system shall be designed to meet the requirements of one of the following subparagraphs of S7.3.2 through S7.3.9. In references to Figures in SAE J1383 APR85 for headlamp dimensional requirements, only those dimensions marked "I" for interchangeability are applicable. S7.3.1 The lens of each sealed beam headlamp designed to conform to S7.3.2 through S7.3.6 shall be marked according to paragraph 5.4.3 through 5.4.5 of SAE Standard J1383 APR85 Performance Requirements for Motor Vehicle Headlamps. S7.3.2 Type A headlighting system. A Type A headlighting system consists of two Type 1A1 and two Type 2A1 headlamps and associated hardware, which are designed to conform to the following requirements: (a) SAE Standard J1383 APR85 Performance Requirements for Motor Vehicle Headlamps, with the following excep- (1) Paragraphs 1, 2.1.2, 2.8.2, 3, 4.1.1, 4.1.2, 4.1.3, 4.4, 4.6, 4.8 through 4.18, 5.1.1, 5.1.3, 5.1.5, 5.1.7 through 5.1.16, 5.2.2, 5.3.5, 5.4.1, 5.4.2, and 6 through 6.4 do not apply. (2) In paragraph 5.3.2, the words "and retaining rings" are omitted. (3) In paragraphs 4.5.2 and 5.1.6, the words "Figure 28-1 or 28-2 of Motor Vehicle Safety Standard No. 108" are substituted for "Table 3." (b) SAE Standard J580 DEC86 Sealed Beam Headlamp Assembly (except paragraphs 3, 4.1.1, 5.1.1.1, 5.1.2.3, and the second sentence of 5.1.6); in 5.2.1, delete the words "and retaining rings;" the correct reference is SAE J1383 Figures 6, 9, 12 and 14. (c) After a vibration test conducted in accordance with paragraph S8.8, there shall be no evidence of loose or broken parts, other than filaments, visible without magnification. (d) The maximum wattage at 12.8
volts (design voltage): Single filament headlamp, 55 watts on the upper beam; dual filament headlamp, 43 watts on the upper beam and 65 watts on the lower beam. S7.3.3 *Type B headlighting system.* A Type B headlighting system consists of two Type 2B1 headlamps and associated hardware, which are designed to conform to the following requirements: (a) The requirements of paragraph S7.3.2 (a) through (c), except that the words "Figure 27–1 or Figure 27–2" are substituted for "Table 3" in paragraph S7.3.2(a)(3). (b) The maximum wattage at 12.8 volts (design voltage): 70 watts on the upper beam and 60 watts on the lower beam. S7.3.4 Type C headlighting system. A Type C headlighting system consists of two Type 1C1 and two Type 2C1 headlamps and associated hardware, which are designed to conform to the requirements of paragraph S7.3.2 (a) through (d), except that the words "Figure 28–1 or Figure 28–2" are substituted for "Table 3" in paragraph S7.3.2(a)(3). S7.3.5 Type D headlighting system. (a) A Type D headlighting system consists of two Type 2D1 headlamps and associated hardware, which are designed to conform to the requirements of paragraph S7.3.2 (a) through (c), except that the words "Figure 27–1 or Figure 27–1" are substituted for "Table 3" in paragraph S7.3.2(a)(3). (b) The maximum wattage at 12.8 volts (design voltage): 65 watts on upper beam, and 55 watts on lower beam. S7.3.6 Type E headlighting system. (a) A Type E headlighting system consists of two Type 2E1 headlamps and associated hardware, which are designed to conform to the requirements of paragraph S7.3.2 (a) through (c), except that the words "Figure 27–1 or Figure 27–1" are substituted for "Table 3" in paragraph S7.3.2(a)(3). (b) The maximum wattage at 12.8 volts (design voltage): 70 watts on upper beam, and 60 watts on lower beam. S7.3.7 Type F headlighting system. A Type F headlighting system consists of two Type UF and two Type LF headlamps and associated hardware, which are designed to conform to the following requirements: (a) Figures 11, 12, 13, and 14 as appropriate. (b) The photometric requirements of Figure 15–1 or Figure 15–2 of this standard. A reaim tolerance of \pm 1/- \pm 1/4 degree is allowed for any test point on the Type LF lamp when tested alone, but is not allowed on the Type UF lamp when tested alone. For the test point 10U-90U, measurement shall be from the normally exposed surface of the lens face. - (c) SAE Standard J1383 APR85 Performance Requirements for Motor Vehicle Headlamps, Sections 2.4, 2.5, 2.6, 4.1, 4.1.4, and 5.1.4. - (d) When tested in accordance with section (c), the mounted assembly (either Type UF or Type LF headlamps, respective mounting ring, aiming ring, and aim adjustment mechanism) shall be designed to conform to the requirements of Figure 15–1 or Figure 15–2 for upper or lower beams respectively without reaim when any conforming Type UF or LF headlamp is tested and replaced by another conforming headlamp of the same Type. - (e) SAE J580 DEC86 Sealed Beam Headlamp Assembly with the following exceptions: - (1) Section 2.2 Mounting Ring reads: "the adjustable ring upon which the sealed beam unit is mounted and which forces the sealed beam unit to seat against the aiming ring when assembled into a sealed beam assembly." - (2) The definition "2.3 Aiming Ring" reads: "The clamping ring that retains the sealed beam unit against the mounting ring, and that provides an interface between the unit's aiming/seating pads and the headlamp aimer adapter (locating plate)." - (3) Section 4.1.1 Vibration Test does not apply. - (4) Sections 5.1.1.1 and 5.1.2.3 do not - (5) Section 5.1.2.1 reads: "When the headlamp assembly is tested in the laboratory, a minimum aiming adjustment of \pm 0.5 degrees shall be provided in the horizontal plane and \pm 0.4 degrees in the vertical plane." - (6) Section 5.1.2.2 concludes: "** * through an angle of +/- 2.5 degrees and +/- 4 degrees respectively." - (7) Section 5.1.6 is retitled "Retaining Ring/Aiming Ring Tests". The phrase "92×150 mm * * * 0.340 in (8.6 mm)" is added at the end of the table for flange thickness. The sentence beginning "The fastening means" is deleted. - (8) Figures 2, 3, and 4 do not apply, and the reference to them in section 4.5 - is replaced by "Figure 16, Deflectometer, of Federal Motor Vehicle Safety Standard No. 108." - (f) A lens for a Type F headlamp incorporating an upper beam shall be labeled "UF." A lens for a Type F headlamp incorporating a lower beam shall be labeled "LF". The face of letters, numbers, or other symbols molded on the surface of the lens shall not be raised more than 0.020 in (0.5 mm), and shall be placed no closer to the geometric center of the lens than 1.375 in. (35 mm). The marking shall be molded in the lens and shall be not less than ¼ in. (6.35 mm) in size. - (g) The maximum wattage at 12.8 volts (design voltage): 70 watts on the upper beam and 60 watts on the lower beam. - (h) Type F headlamps may be mounted on common or parallel seating and aiming planes to permit simultaneous aiming of both headlamps provided that when tested with any conforming Type UF and LF headlamps according to Section S10: - (1) The assembly (consisting of the Type UF and LF headlamps, mounting rings, the aiming/seating rings, and aim adjustment mechanism) shall be designed to conform to the test points of Figure 15–1 or Figure 15–2. - (2) There shall be no provision for adjustment between the common or parallel aiming and seating planes of the two lamps. - (i) After a vibration test conducted in accordance with paragraph S8.8, the Type F system shall show no evidence of loose or broken parts, other than filaments, visible without magnification. - S7.3.8 Type G headlighting system. A Type G headlamp system consists of two Type 1G1 headlamps and two Type 2G1 headlamps each of which is designed to conform to the following requirements: - (a) Figures 18 and 21. - (b) SAE Standard J1383 APR85 Performance Requirements for Motor Vehicle Headlamps (except paragraphs 1, 2.1.2, 2.8.2,3, 4.1.1, 4.1.2, 4.1.3, 4.4, 4.6, 4.8 through 4.18, 5.1.1, 5.1.3, 5.1.5 through 5.1.16, 5.2.2, 5.3.5 through 6.4). In paragraph 5.3.2 the words "and retaining rings" are omitted. In paragraph 4.5.2, the words "either Figure 28-1, or Figure 28-2" are substituted for "Table 3". - (c) SAE Standard J580 DEC86 Sealed Beam Headlamp Assembly, with the following exceptions: - (1) Sections 2.2, 2.3, 4.1.1, 5.1.1.1, 5.1.2.3, 5.1.6, and 5.2.1. - (2) Section 4.5 reads: "Torque Deflection Test. The headlamp assembly to be tested shall be mounted in the designed vehicle position and set at nominal aim (0.0). A special adapter (Figure 22) for the deflectometer (Figure 16) shall be clamped onto the headlamp assembly. A torque of 20 in.-lbs (2.25 N-m) shall be applied to the headlamp assembly through the deflectometer, and a reading on the thumb wheel shall be taken. The torque shall be removed and a second reading on the thumb wheel shall be taken." - (d) After a vibration test conducted in accordance with paragraph S8.8, there shall be no evidence of loose or broken parts, other than filaments, visible without magnification. - (e) The maximum wattage at 12.8 volts (design voltage) for the 1G1 and 2G1 upper beam is 55 watts and 43 watts respectively; for the 2G1 lower beam, 65 watts. - (f) A lens for a Type G headlamp incorporating only part of an upper beam shall be labeled "1G1." A lens for a Type G headlamp incorporating both part of an upper beam and a lower beam shall be labeled "2G1." The face of letters, numbers, or other symbols molded on the surface of the lens shall not be raised more than 0.020 in. (0.5 mm.), and shall be placed no closer to the geometric center of the lens than 1.375 in. (35 mm). The marking shall be molded in the lens and shall be not less than ½ in. (6.35 mm) in size. - S7.3.9 Type H headlighting system. A Type H headlamp system consisting of two Type 2H1 headlamps and associated hardware, which are designed to conform to the following requirements: - (a) Paragraphs S7.3.8 (a) through (d) except that in paragraph S7.3.8(b), the words "Figure 27-1 or Figure 27-2" are substituted for "Table 3." - (b) The maximum wattage at 12.8 volts (design voltage): 70 watts on the upper beam and 60 watts on the lower beam. - (c) A lens for a Type H headlamp incorporating both an upper beam and a lower beam shall be labeled "2H1." The face of letters, numbers, or other symbols molded on the surface of the lens shall not be raised more than 0.020 in (0.5 mm), and shall be placed no closer to the geometric center of the lens than 1.375 in. (35 mm). The marking shall be molded in the lens and shall be not less than ½ in. (6.35 mm) in size. - S7.4 Integral Beam Headlighting System. An integral beam headlighting system shall be designed to conform to the following requirements: - (a) The system shall provide in total not more than two upper beams and two lower beams of the performance described in one of the following: - (1) In a four-headlamp system, each upper beam headlamp and each lower beam headlamp shall be designed to conform to the photometrics of one of the following: - (i) Figure 15–1 or Figure 15–2; or - (ii) Figure 15-1 or Figure 15-2, except that the upper beam test value at 2.5 D-V and 2.5D-12R and 12L, shall apply to the lower beam headlamp and not to the upper beam headlamp, and the upper beam test point value at 1.5D-9R and 9L shall be 1000; or - (iii) Figure 28-1 or Figure 28-2. - (2) In a two-headlamp system, each headlamp shall be designed to conform to the photometrics of one of the following: - (i) Figure 17-1 or Figure 17-2; or - (ii) Figure 27-1 or Figure 27-2. - (3) In a system in which there is more than one beam contributor providing a lower beam, and/or more than one beam contributor providing an upper beam, each beam contributor in the system shall be designed to meet only the photometric performance requirements of Figure 15-1 or Figure 15-2 based
upon the following mathematical expression: conforming test point value = 2 (Figure 15-1 or Figure 15-2 test point value)/total number of lower or upper beam contributors for the vehicle, as appropriate. The system shall be designed to use the Vehicle Headlamp Aiming Device (VHAD) as specified in paragraph S7.8.5.2. - (b) The lower and upper beams shall be provided only as follows where each headlamp contains two light sources: - (1) The lower beam shall be provided either by the most outboard light source (or the uppermost if arranged vertically), or by all light sources. - (2) The upper beam shall be provided either by the most inboard light source (or the lowermost if arranged vertically), or by all light sources. - (c) The lower and upper beams shall be provided only as follows where each headlamp contains a single light source: - (1) The lower beam shall be provided by the most outboard headlamps (or the uppermost if arranged vertically), and the lens of each such headlamp shall be permanently marked with the letter "L." - (2) The upper beam shall be provided by the most inboard headlamps (or low-ermost if arranged vertically), and the lens of each such headlamp shall be permanently marked with the letter "II" - (d) A headlamp or beam contributor designed to meet paragraphs (a)(1) or (a)(3) of this section and S7.8.5.1 may be mounted in an assembly to permit simultaneous aiming of the beam(s) contributors, provided that with any complying contributor the assembly complete with all lamps meets the appropriate photometric requirements when tested in accordance with S10. - (e) Each integral beam headlamp system shall be designed to conform to the applicable photometric performance requirements in paragraph (a) of this section when tested in accordance with sections 4.1 and 4.1.4 of SAE Standard J1383 APR85 with any headlamps intended for use in such system. The term "aiming plane" means "aiming reference plane," or an appropriate vertical plane defined by the manufacturer as required in paragraph S7.8.1. - (f) The system shall be aimable in accordance with the requirements of paragraph S7.8. A system that incorporates any headlamp or beam contributor that does not have a VHAD as an integral and indivisible part of the headlamp or beam contributor shall be designed so that the appropriate photometrics are met when any correctly aimed and photometrically conforming headlamp or beam contributor is removed from its mounting and aiming mechanism, and is replaced with- out reaim by any conforming headlamp or beam contributor of the same type. - (g) A headlamp with a glass lens need not meet the abrasion resistance test (S8.2). A headlamp with a nonreplaceable glass lens need not meet the chemical resistance test (S8.3). A headlamp with a glass lens and a non-plastic reflector need not meet the internal heat test of paragraph S8.6.2. A headlamp of sealed design as verified in paragraph S8.9 (sealing) need not meet the corrosion (S8.4), dust (S8.5), or humidity (S8.7) tests; however, the headlamp shall meet the requirements of paragraphs 4.1, 4.1.2, 4.4 and 5.1.4 for corrosion and connector of SAE Standard J580 DEC86 Sealed Beam Headlamp Assembly. An integral beam headlamp may incorporate light sources that are replaceable and are used for purposes other than headlighting. - (h) When tested according to any of the procedures indicated in subparagraphs (1) through (7) each headlamp or beam contributor shall meet the appropriate requirement: - (1) After an abrasion test conducted in accordance with paragraph S8.2, the headlamp shall meet the photometric requirements applicable to the headlamp system under test. - (2) After the chemical resistance tests of paragraphs S8.3 and S8.10.1, the headlamp shall have no surface deterioration, coating delamination, fractures, deterioration of bonding or sealing materials, color bleeding or color pickup visible without magnification, and the headlamp shall meet the photometric requirements applicable to the headlamp system under test. - (3) After a corrosion test conducted in accordance with paragraph S8.4, there shall be no evidence of external or internal corrosion or rust visible without magnification. After a corrosion test conducted in accordance with paragraph S8.10.2, there shall be no evidence of corrosion or rust visible without magnification on any part of the headlamp reflector that receives light from a headlamp light source, on any metal light or heat shield assembly, or on a metal reflector of any other lamp not sealed from the headlamp reflector. Loss of adhesion of any applied coating shall not occur more than 0.125 in. (3.2 mm) from any sharp edge on the inside or outside. Corrosion may occur on terminals only if the current produced during the test of paragraph S8.4(c) is not less than 9.7 amperes. (4) After a dust test conducted in accordance with paragraph S8.5, the headlamp shall meet the photometric requirements applicable to the headlamp system under test. (5) The headlamp shall first meet the requirements of subparagraph (i) and then those of subparagraph (ii). - (i) After a temperature cycle test conducted in accordance with paragraph S8.6.1, the headlamp shall show no evidence of delamination, fractures, entry of moisture or deterioration of bonding material, color bleeding, warpage or deformation visible without magnification or lens warpage greater than .118 in. (3 mm) when measured parallel to the optical axis at the point of intersection of the axis of each light source with the exterior surface of the lens, and it shall meet the photometric requirements applicable headlamp system under test. - (ii) After an internal heat test conducted in accordance with paragraph S8.6.2, there shall be no lens warpage greater than .118 in. (3 mm) when measured parallel to the optical axis at the point of intersection of the axis of each light source with the exterior surface of the lens, and it shall meet the photometric requirements applicable to the headlamp system under test. - (6) After a humidity test conducted in accordance with paragraph S8.7, the inside of the headlamp shall show no evidence of delamination or moisture, fogging or condensation visible without magnification. - (7) After a vibration test conducted in accordance with paragraph S8.8, there shall be no evidence of loose or broken parts, other than filaments, visible without magnification. - (i) An integral beam headlamp may incorporate replaceable light sources that are used for purposes other than headlighting. - S7.5 Replaceable bulb headlamp system. Each replaceable bulb headlamp system shall be designed to conform to the following requirements: - (a) The system shall provide only two lower beams and two upper beams and shall incorporate not more than two replaceable light sources in each headlamp. - (b) The photometrics as specified in subparagraphs (c) through (e) of this paragraph (depicted in Figure 26), using any light source of the Type intended for use in such system. - (c) The test requirements of sections 4.1, 4.1.4, and performance requirements of section 5.1.4 of SAE J1383 APR85, using the photometric requirements specified in subparagraphs (d) and (e) of this paragraph. (d) For a headlamp equipped with dual filament replaceable light sources, the following requirements apply: - (1) Headlamps designed to conform to the external aiming requirements of S7.8.5.1 shall have no mechanism that allows adjustment of an individual light source, or, if there are two light sources, independent adjustments of each reflector. - (2) The lower and upper beams of a headlamp system consisting of two lamps, each containing either one or two replaceable light sources, shall be provided as follows: - (i) The lower beam shall be provided in one of the following ways: - (A) By the outboard light source (or upper one if arranged vertically) designed to conform to: - (1) The lower beam requirements of Figure 27–1 or Figure 27–2, or Figure 17–1 or Figure 17–2, if the light sources in the headlamp system are any combination of dual filament replaceable light sources other than Type HB2; or - (2) The lower beam requirements of Figure 17-1 or Figure17-2 if the light sources are Type HB2, or any dual filament replaceable light sources that include Type HB2; or - (B) By both light sources in the headlamp, designed to conform to the lower beam requirements specified above. - (ii) The upper beam shall be provided in one of the following ways: - (A) By the inboard light source (or the lower one if arranged vertically) designed to conform to: - (1) The upper beam requirements of Figure 27–1 or Figure 27–2, or Figure 17–1 or Figure 17–2 if the light sources in the headlamp system are any combination of dual filament replaceable light sources that include Type HB2, or - (2) The upper beam requirements of figure 17-1 or Figure 17-2 if the light sources are type HB2, or any combination of replaceable light sources that include Type HB2; or - (B) By both light sources in the headlamp, designed to conform to the upper beam requirements specified above. - (3) The lower and upper beams of a headlamp system consisting of four lamps, each containing a single replaceable light source, shall be provided as follows: - (i) The lower beam shall be provided by the outboard lamp (or the upper one if arranged vertically), designed to conform to: - (A) The lower beam requirements of Figure 27-1 or Figure 27-2, or Figure 15-1 or Figure 15-2 if the light sources in the headlamp system are any combination of dual filament light sources other than Type HB2; or - (B) The lower beam requirements of Figure 15–1 or Figure 15–2 if the light sources are Type HB2, or dual filament light sources other than Type HB1 and HB5. The lens of each such headlamp shall be marked with the letter "L". - (ii) The upper beam shall be provided by the inboard lamp (or the lower one if arranged vertically), designed to conform to: - (A) The upper beam
requirements of Figure 27–1 or Figure 27–2, of Figure 15–1 or Figure 15–2 if the light sources in the headlamp system are any combination of dual filament light sources other than Type HB2; or - (B) The upper beam requirements of Figure 15-1 or Figure 15-2 if the light sources are Type HB2, or dual filament light sources other tha Type HB1 and Type HB5. The lens of each such headlamp shall be marked with the letter "u". - (e) The following requirements apply to a headlamp system equipped with any combination of replaceable light sources except those specified in paragraph (d) of this section: - (1) Headlamps designed to conform to the external aim requirements of S7.8.5.1 shall have no mechanism that allows adjustment of an individual light source, or, if there are two replaceable light sources, independent adjustment of each reflector. - (2) The lower and upper beams of a headlamp system consisting of two lamps, each containing a combination of two replaceable light sources (other than those combinations specified in subparagraph (d) of this paragraph) shall be provided only as follows: - (i) The lower beam shall be provided in one of the following ways: - (A) By the outboard light source (or the uppermost if arranged vertically) designed to conform to the lower beam requirements of Figure 17-1 or Figure 17-2; or - (B) By both light sources, designed to conform to the lower beam requirements of Figure 17–1 or Figure 17–2. - (ii) The upper beam shall be provided in one of the following ways:(A) By the inboard light source (or - (A) By the inboard light source (or the lower one if arranged vertically) designed to conform to the upper beam requirements of Figure 17–1 or Figure 17–2; or - (B) By both light sources, designed to conform to the upper beam requirements of Figure 17–1 or Figure 17–2. - (3) The lower and upper beams of a headlamp system consisting of four lamps, using any combination of replaceable light sources except those specified in subparagraph (d) of this paragraph, each lamp containing only a single replaceable light source, shall be provided only as follows: - (i) The lower beam shall be produced by the outboard lamp (or upper one if arranged vertically), designed to conform to the lower beam requirements of Figure 15–1 or Figure 15–2. The lens of each headlamp shall be permanently marked with the letter "L". - (ii) The upper beam shall be produced by the inboard lamp (or lower one of arranged vertically), designed to conform to the upper beam requirements of Figure 15–1 or Figure 15–2. The lens of each headlamp shall be permanently marked with the letter "U". - (f) Each lens reflector unit manufactured as replacement equipment shall be designed to conform to the requirements of subparagraphs (d) and (e) of this paragraph when any replaceable light source appropriate for such unit is inserted in it. - (g) The lens of each replaceable bulb headlamp shall bear permanent marking in front of each replaceable light source with which it is equipped that states the HB Type, if the light source is designed to conform to subparagraphs (a) through (e) of paragraph S7.7, or the bulb marking/ designation provided in compliance with Section VIII of appendix A of part 564, if the light source is designed to conform to subparagraph (g) of paragraph S.7.7 No marking need be provided if the only replaceable light source in the headlamp is Type HB1. (h) The system shall be aimable in accordance with paragraph S7.8. (i) Each headlamp shall meet the requirements of paragraphs S7.4(g) and (h), except that the sentence in paragraph (g) to verify sealing according to section S8.9 *Sealing* does not apply. (j) A replaceable bulb headlighting system may incorporate replaceable light sources that are used for purposes other than headlighting. S7.6 Combination Headlighting System. A combination headlighting system shall be comprised of either two headlamps designed to conform to the requirements of S7.6.2, or any combination of four headlamps designed to conform to the requirements of S7.3.7, S7.4, or S7.5 of this standard. S7.6.1 A combination headlighting system shall provide in total not more than two upper beams and two lower beams. When installed on a motor vehicle, the headlamps (or parts thereof) that provide the lower beam shall be of the same type, and provide a symmetrical effective projected luminous lens area when illuminated. S7.6.2 In a combination headlighting system consisting of two headlamps, each headlamp shall be designed to conform to Figure 17-1 or Figure 17-2 and shall be a combination of two different headlamps chosen from the following types: a Type F headlamp, an integral beam headlamp, and a replaceable bulb headlamp. S7.6.2.1 That part of the headlamp which contains an integral beam headlamp, or beam contributors used in place of a single headlamp, shall be designed to conform to the requirements of S7.4 (c) through (h) of this standard. S7.6.2.2 That part of the headlamp which contains a replaceable bulb headlamp shall be designed to conform to the requirements of S7.5 of this standard. S7.6.3 In a combination headlighting system consisting of four headlamps, each headlamp shall be designed to conform to Figure 15-1 or Figure 15-2, or if an integral beam headlamp in which there is more than one beam contributor, designed to conform to Figure 15-1 or Figure 15-2 in the manner required by S7.4(a)(3) of this standard. S7.7 Replaceable light sources. Each replaceable light source shall be designed to conform to the dimensions and electrical specifications furnished with respect to it pursuant to part 564 of this chapter, and shall conform to the following requirements: (a) If other than an HB Type, the light source shall be marked with the bulb marking designation specified for it in compliance with Appendix A or Appendix B of part 564 of this chapter. The base of each HB Type shall be marked with its HB Type designation. Each replaceable light source shall also be marked with the symbol DOT and with a name or trademark in accord- ance with paragraph S7.2. (b) The measurement of maximum power and luminous flux that is submitted in compliance with Appendix A or Appendix B of part 564 of this chapter shall be made in accordance with this paragraph. The filament or discharge arc shall be seasoned before measurement of either. Measurement shall be made with the direct current test voltage regulated within one quarter of one percent. The test voltage shall be 12.8v. The measurement of luminous flux shall be in accordance with the Illuminating Engineering Society of North America, LM-45, IES Approved Method for Electrical and Photometric Measurements of General Service Incandescent Filament Lamps (April 1980); shall be made with the black cap installed on Type HB1, Type HB2, Type HB4, and Type HB5, and on any other replaceable light source so designed; and shall be made with the electrical conductor and light source shrouded with an opaque white cover, except for the portion normally located within the interior of the lamp housing. The measurement of luminous flux for the Types HB3 and HB4 shall be made with the base covered with a white cover as shown in the drawings for Types HB3 and HB4 filed in Docket No. NHTSA 98-3397. (The white cover is used to eliminate the likelihood of incorrect lumen measurement that will occur should the reflectance of the light source base and electrical connector be low). (c) The capsule, lead wires and/or terminals, and seal on each Type HB1, Type HB3, Type HB4, and Type HB5 light source, and on any other replaceable light source which uses a seal, shall be installed in a pressure chamber as shown in Figure 25 so as to provide an airtight seal. The diameter of the aperture in Figure 25 on a replaceable light source (other than an HB Type) shall be that dimension furnished for such light source in compliance with Appendix A or Appendix B of part 564 of this chapter. An airtight seal exists when no air bubbles appear on the low pressure (connector) side after the light source has been immersed in water for one minute while inserted in a cylindrical aperture specified for the light source, and subjected to an air pressure of 70kPa (10 P.S.I.G.) on the glass capsule side. (d) The measurement of maximum power and luminous flux that is submitted in compliance with section VII of Appendix A of part 564 of this chapter, or section IV of Appendix B of part 564 of this chapter, shall be made with the direct current test voltage regulated within one quarter of one percent. The test voltage shall be 12.8v. The measurement of luminous flux shall be in accordance with the Illuminating Engineering Society of North America, LM 45; *IES Approved Method* for Electrical and Photometric Measurements of General Service Incandescent Filament Lamps (April 1980). The filament of a replaceable light source shall be seasoned before such measurement. The white covers are used to eliminate the likelihood of incorrect lumens measurement that will occur should the reflectance of the light source base and electrical connector be low. (1) For a light source with a resistive element type filament, seasoning of the light source shall be made in accordance with section 2.9 of SAE Standard J1383 APR85 Performance Re- quirements for Motor Vehicle Headlamps. The measurement of luminous flux shall be made with the black cap installed on Type HB1, Type HB2, Type HB4, and Type HB5 light sources, and on any other replaceable light source so designed, and shall be made with the electrical conductor and light source base shrouded with an opaque white colored cover, except for the portion normally located within the interior of the lamp housing. The measurement of luminous flux for Type HB3 and Type HB4 shall be made with the base covered with the white cover shown in the drawings for Types HB3 and HB4 filed in Docket No. NHTSA 98-3397. (2) For a light source using excited gas mixtures as a filament or discharge
arc, seasoning of the light source system, including any ballast required for its operation, shall be made in accordance with section 4.0 of SAE Recommended Practice J2009 FEB93 Discharge Forward Lighting Systems. With the test voltage applied to the ballast input terminals, the measurement of luminous flux shall be made with the black cap installed, if so designed, and shall be made with an opaque white colored cover, except for the portion normally located within the interior of the lamp housing. (e) If a ballast is required for operation, each ballast shall bear the following permanent markings: (1) Name or logo of ballast manufacturer; (2) Ballast part number or unique identification; (3) Part number or other unique identification of the light source for which the ballast is designed; (4) Rated laboratory life of the light source/ballast combination, if the information for the light source has been filed in Appendix B of part 564 of this chapter; (5) A warning that ballast output voltage presents the potential for severe electrical shock that could lead to permanent injury or death; (6) Ballast output power in watts and output voltage in rms volts AC or DC; (7) The symbol 'DOT'.'' (f) For light sources that use excited gas mixtures as a filament or discharge arc, the "rated laboratory life" shall be determined in accordance with sections 4.3 and 4.9 of SAE Recommended Practice J2009 FEB93 Forward Discharge Lighting Systems. (g) After the force deflection test conducted in accordance with S9, the permanent deflection of the glass envelope shall not exceed 0.13 mm in the direction of the applied force. S7.8 Aimability Performance Requirements S7.8.1 (a) Each headlamp or beam contributor that is not visually/optically aimable in accordance with S7.8.5.3 of this standard shall be equipped with fiducial marks, aiming pads, or similar references of sufficient detail and accuracy, for determination of an appropriate vehicle plane to be used with the photometric procedures of SAE J1383 APR85 for correct alignment with the photometer axis when being tested for photometric compliance, and to serve for the aiming reference when the headlamp or beam contributor is installed on a motor vehicle. The fiducial marks, aiming pads, or similar references are protrusions, bubble vials, holes, indentations, ridges, scribed lines, or other readily identifiable marks established and described by the vehicle or headlamp manufacturer. (b) Each motor vehicle manufactured on and after September 1, 1998, shall be equipped with headlamps or beam contributors which have a mark or markings that are visible from the front of the headlamp when installed on the vehicle to identify the optical axis of the headlamp to assure proper horizontal and vertical alignment of the aiming screen or optical aiming equipment. The manufacturer is free to choose the design of the mark or markings. The mark or markings may be on the interior or exterior of the lens or indicated by a mark or central structure on the interior or exterior of the headlamp. (c) Each headlamp that is visually/optically aimable in accordance with S7.8.5.3 of this standard shall be marked in accordance with S7.8.5.3(f). S7.8.2 Except as provided in this paragraph, each headlamp shall be installed on a motor vehicle with a mounting and aiming mechanism that allows aim inspection and adjustment of both vertical and horizontal aim, and is accessible for those purposes without removal of any vehicle parts, except for protective covers removable without the use of tools. S7.8.2.1 (a) When installed on the vehicle, adjustment of one aim axis through its full on-vehicle range shall not cause the aim of the other axis to deviate more than $\pm 1/2$ 0.76 degree. (b) If the performance specified in paragraph (a) of this section is not achievable, the requirements of S7.8.5.2(b)(3) apply, except that if the aiming mechanism is not a VHAD, the requirements specific to VHADs are not applicable, and the instruction shall be specific to the aiming mechanism installed. (c) A visually/optically aimable headlamp that has a lower beam shall not have a horizontal adjustment mechanism unless such mechanism meets the requirements of paragraph S7.8.5.2 of this standard. S7.8.2.2 If the headlamp is aimed by moving the reflector relative to the lens and headlamp housing, or vice versa, it shall: - (a) Allow movement of the headlamp system, when tested in the laboratory, to be not less than the full range of pitch on the vehicle on which the headlamp system is installed and for the horizontal aim range limits of S7.8.4, - (b) Conform with the photometrics applicable to it with the lens at any position relative to the reflector within the range limits as specified in S7.8.2.2(a), - (c) Be exempted from the aim range limits for testing in a laboratory in S7.8.3, and - (d) Be exempted from S7.8.4 if it is visually/optically aimable and has fixed horizontal aim. S7.8.2.3 If a headlamp is aimed by moving the reflector relative to the lens and headlamp housing, or vice versa, it shall conform with the photometrics applicable to it with the lens at any position relative to the reflector within the aim range limits of paragraph S7.8.3 and S7.8.4 or any combination. S7.8.3 When a headlamp system is tested in a laboratory, the range of its vertical aim shall not be less than ± -4 degrees from the nominal correct aim position for the intended vehicle application. When installed on a motor vehicle, the range of vertical aim shall be not less than the full range of pitch of the vehicle on which the headlamp system is installed. The installed range of static pitch angle shall as a minimum be determined from unloaded vehicle weight to gross vehicle weight rating, and incorporate pitch angle effects from maximum trailer or trunk loadings, the full range of tire intermix sizes and suspensions recommended and/or installed by the vehicle manufacturer, and the anticipated effects of variable passenger loading. The vertical aim adjustment mechanism shall be continuously adjustable over the full range S7.8.4 When a headlamp system is tested in a laboratory, the range of its horizontal aim shall be not less that +/-2.5 degrees from the nominal correct aim position for the intended vehicle application. \$7.8.5 When activated in a steadyburning state, headlamps shall not have any styling ornament or other feature, such as a translucent cover or grill, in front of the lens. Headlamp wipers may be used in front of the lens provided that the headlamp system is designed to conform with all applicable photometric requirements with the wiper stopped in any position in front of the lens. When a headlamp system is installed on a motor vehicle, it shall be aimable with at least one of the following: An externally applied aiming device, as specified in S7.8.5.1; an on-vehicle headlamp aiming device installed by the vehicle or lamp manufacturer, as specified in S7.8.5.2; or by visual/optical means, as specified in \$7.8.5.3. S7.8.5.1 External aiming. Each headlamp system that is capable of being mechanically aimed by externally applied headlamp aiming devices shall be mechanically aimable using the equipment specified in SAE Standard J602 OCT80 Headlamp Aiming Device for Mechanically Aimable Sealed Beam Headlamp Units without the removal of any ornamental trim rings, covers, wipers or other vehicle parts. (a) The aim of the headlamps in each headlamp system, other than a headlamp system designed to conform to section S7.3, that is designed to use such external aiming devices, shall not deviate more than 0.30 degree when a downward torque of 20 lb.-in. (2.25 N-m) is removed from the headlamp in its design operating position. The downward force used to create the torque shall be applied parallel to the aiming reference plane, through the aiming pads, and displaced forward using a lever arm such that the force is applied on an axis that is perpendicular to the aiming reference plane and originates at the center of the aiming pad pattern (see Figures 4-1 and 4-3). For headlamps using the aiming pad locations of Group 1, the distance between the point of application of force and the aiming reference plane shall be not less than 6.625 in. (168.3 mm) plus the distance from the aiming reference plane to the secondary plane, if used S7.8.5.1(d)(1)). section headlamps using the aiming pad locations of Group II, the distance between the point of application of force and the aiming reference plane shall be not less than 6.609 in. (167.9 mm) plus the distance from the aiming reference plane to the secondary plane, if used. For headlamps using the nonadjustable Headlamp Aiming Device Locating Plates for the 146 mm diameter, the 176 mm diameter, and the 92×150 mm sealed beam units, the distance between the point of application of force and the aiming plane shall, respectively, be not less than 6.984 in. (177.4 mm), 6.937 in. (176.2 mm), and 7.625 in (193.7 mm). Each headlamp system that is designed to conform to paragraph S7.5 and that is designed to use such external aiming devices, and which is manufactured on or after September 1, 1990, shall comply with this paragraph. (b) When a headlamp is installed on a motor vehicle, its aim in any direction shall not change by more than 0.30 degree nor shall the lamp recede more than 0.1 in. (2.5 mm.) after being subjected to an inward force of 50 pounds (222 newtons) applied evenly to the lens parallel to the mechanical axis. (c) Each headlamp system mounting and aiming mechanism shall be subjected to a salt spray (fog) test in accordance with ASTM B117-73 Method of Salt Spray (Fog) Testing for a period of 50 hours, consisting of two successive 25-hour periods of 24 hours exposure followed by 1 hour of drying. At the end of 50 hours, the headlamp system shall be capable of meeting any of the applicable requirements of paragraph S7.8. - (d) Each headlamp system which is designed to use the Headlamp Aiming
Device Locating Plates with adjustable legs for the 100×165 mm unit and the 142×200 mm unit, and which has adjustable length legs, shall meet the requirements of subparagraphs (1) and (2) below. - (1) The lens shall have three aiming pads which meet the requirements of Figure 4, Dimensional Specifications for Location of Aiming Pads on Replaceable Bulb Headlamp Units. The aiming pads need not be centered at the geometric center of the lens, or on the optical axis. Except as provided in subparagraph (2), a whole number, which represents the distance in tenths of an inch (i.e. 0.3 inch=3) from the aiming reference plane to the respective aiming pads which are not in contact with that plane, shall be inscribed adjacent to each respective aiming pad on the lens. The height of these numbers shall be not less than .157 inch (4 mm). If there is interference between the plane and the area of the lens between the aiming pads, the whole number represents the distance to a secondary plane. The secondary plane shall be located parallel to the aiming reference plane and as close to the lens as possible without causing interference. - (2) If the most forward aiming pad is the lower inboard aiming pad, then the dimensions may be placed anywhere on the lens. The dimension for the outboard aiming pad (Dimension F in Figure 4) shall be followed by the letter "H" and the dimension for the center aiming pad shall be followed by the letter "V." The dimensions shall be expressed in tenths of an inch. - (e) Each headlamp may be designed to use the nonadjustable Headlamp Aiming Device Locating Plate for the 100×165 mm unit, the 142×200 mm unit, the 146 mm diameter unit of SAE J602, or the 92×150 mm Type F unit, and incorporate lens-mounted aiming pads as specified for those units in Figures 10, 13, 5, or 7 respectively in SAE J1383 APR85, or Figure 11 of this standard for the Type F unit. If so designed, no additional lens marking is necessary to designate the type of plate or dimensions. - S7.8.5.2 On-vehicle aiming. Each headlamp system that is capable of being aimed by equipment installed on the vehicle shall include a Vehicle Headlamp Aiming Device (VHAD) that conforms to the following requirements: - (a) Aim. The VHAD shall provide for headlamp aim inspection and adjustment in both the vertical and horizontal axes. - (1) Vertical aim. The VHAD shall include the necessary references and scales relative to the horizontal plane to assure correct vertical aim for photometry and aiming purposes. An offvehicle measurement of the angle of the plane of the ground is permitted. In addition, an equal number of graduations from the "O" position representing angular changes in the axis in the upward and downward directions shall be provided. - (i) Each graduation shall represent a change in the vertical position of the mechanical axis not larger than 0.19 degree (1 in. at 25 ft.) to provide for variations in aim at least 1.2 degrees above and below the horizontal, and have an accuracy relative to the zero mark of less than 0.1 degree. - (ii) The VHAD shall be marked to indicate headlamp aim movement in the upward and downward directions. - (iii) Each graduation shall indicate a linear movement of the scale indicator of not less than 0.05 in. (1.27 mm) if a direct reading analog indicator is used. If a remote reading indicator is provided, it shall represent the actual aim movement in a clear, understandable format. - (iv) The vertical indicator shall perform through a minimum range of ± 1.2 degrees. - (v) Means shall be provided in the VHAD for compensating for deviations in floor slope less than 1.2 degrees from the horizontal that would affect the correct positioning of the headlamp for vertical aim. - (vi) The graduations shall be legible under an illumination level not greater than 30 foot candles, measured at the top of the graduation, by an observer having 20/20 vision (Snellen), and shall permit aim adjustment to within 0.19 degree (1 in. at 25 ft.). - (2) Horizontal aim. The VHAD shall include references and scales relative to the longitudinal axis of the vehicle necessary to assure correct horizontal aim for photometry and aiming purposes. An "O" mark shall be used to indicate alignment of the headlamps relative to the longitudinal axis of the vehicle. In addition, an equal number of graduations from the "O" position representing equal angular changes in the axis relative to the vehicle axis shall be provided. - (i) Each graduation shall represent a change in the horizontal position of the mechanical axis not greater than 0.38 degree (2 in. at 25 ft.) to provide for variations in aim at least 0.76 degree (4 in. at 25 ft.) to the left and right of the longitudinal axis of the vehicle, and shall have an accuracy relative to the zero mark of less than 0.1 degree. (ii) The VHAD shall be marked to indicate headlamp aim movement in the left and right directions. (iii) The graduations shall be legible under an illumination level not greater than 30 foot candles, measured at the top of the graduation, by an observer having 20/20 vision (Snellen), and shall permit aim adjustment to within 0.38 degree (2 in. at 25 ft.). (iv) The horizontal indicator shall perform through a minimum range of +/-0.76 degree (4 in. at 25 ft.); however, the indicator itself shall be capable of recalibration over a movement of +/-2.5 degrees relative to the longitudinal axis of the vehicle to accommodate any adjustment necessary for recalibrating the indicator after vehicle repair from accident damage. (b) Aiming instructions. (1) The instructions for properly aiming the headlighting system using the VHAD shall be provided on a label permanently affixed to the vehicle adjacent to the VHAD, or in the vehicle operator's manual. The instructions shall advise that the headlighting system is properly aimed if the appropriate vertical plane (as defined by the vehicle manufacturer) is perpendicular to both the longitudinal axis of the vehicle, and a horizontal plane when the vehicle is on a horizontal surface, and the VHAD is set at "O" vertical and "O" horizontal. - (2) Should a remote indicator or a remote indicator and adjuster be provided, the instructions shall be placed in the operator's manual, and may also be placed on a label adjacent to the VHAD. - (3) Should the mechanism not meet the requirements of \$7.8.2.1, on each motor vehicle manufactured on or after September 1, 1990, a cautionary label shall be placed adjacent to the mechanism stating the caution and including either the reason for the caution or the corrective action necessary. Each such label shall also refer the reader to the vehicle operator's manual for complete instructions. Each such vehicle shall be equipped with an operator's manual containing the complete instructions appropriate for the mechanism installed. - (c) Each headlamp equipped with a VHAD that is manufactured for use on motor vehicles manufactured on or after September 1, 1998, shall be manufactured with its calibration permanently fixed by its manufacturer. Calibration in this case means the process of accurately aligning the geometry of the VHAD devices with the beam pattern for the purposes of compliance with the standard. (d) Testing the VHAD. - (1) The headlamp assembly (the headlamp(s), and the VHAD(s)) shall be mounted on a level goniometer, aligned to a photometer located not less than 60 ft. (18.3 m) from the VHAD assembly. The assembly shall be mechanically aimed using the VHAD in accordance with the manufacturer's instructions as provided with the vehicle on which the VHAD is intended to be used. A 1/4 degree reaim is permitted in any direction at any test point to allow for variations in readings between laboratories. The test shall be conducted in accordance with the procedures of paragraphs 4.1 and 4.1.4 of SAE J1383 APR85. Under these conditions the mounted headlamp assembly shall be designed to conform to the photometric requirements appropriate for the headlamp system under test. - (2) When tested in accordance with subsection (1) of this section, with any replacement headlamp unit(s) or light sources intended for use in the system under test, the VHAD and headlamp system shall be designed to conform to the photometric performance requirements appropriate for the system under test. (3) The same VHAD and associated headlamp(s) (or headlamp assembly) shall be rigidly mounted in a headlamp test fixture and comply with the following laboratory test procedures: (i) Each graduation on the horizontal and vertical aim scales shall be checked and any variation from the correct aim shall not exceed ± -0.2 degree, and ± -0.1 degree respectively. - (ii) With the aiming plane horizontal and vertical and with the scale on the device set at 0, the aimer shall be adjusted before each of the following tests to assure that the indicators are centered at 0. - (A) The VHAD and an unlighted headlamp assembly shall be stabilized at 20 + / 5 degrees F (-7 + / 3 degrees C) in a circulating air environmental test chamber. After a period of 30 minutes, when measured at that soak temperature, the variation from correct horizontal of vertical aim shall not exceed +/- 0.2 degree, and +/- 0.1 degree, respectively. - (B) The VHAD, and the headlamp assembly with its highest wattage filament (or combination of filaments intended to be used simultaneously) energized at its design voltage, shall then be stabilized at 100 + / 5 degrees F (38 + / 3 degrees C) in a circulating air environmental test chamber. After a period of 30 minutes, when measured at that soak temperature, the variation from correct horizontal and vertical aim shall not exceed + / 0.2 degree, and + / 0.1 degree, respectively. - (C) The VHAD and an unlighted headlamp assembly shall then be placed in a circulating air environmental test chamber and exposed to a temperature of 140 + / -5 degrees F (60 + / 3 degrees C) for 24 hours, followed by a temperature
of -40 + / -5 degrees F (-40 + / -3 degrees C) for 24 hours and then permitted to return to room temperature, after which the VHAD and headlamp assembly shall show no damage which would impair its ability to perform as specified herein. The variation from correct horizontal or verti- cal aim shall not exceed +/- 0.2 degree, and +/- 0.1 degree, respectively. - (D) The VHAD and headlamp assembly shall then be tested according to the corrosion test procedure of paragraph S7.8.5.1(c). - (É) The VHAD and headlamp assembly shall then be tested for photometric compliance as specified in paragraphs S7.8.5.2(c)(1) and (2). S7.8.5.3 *Visual/optical aiming.* Each visually/optically aimable headlamp shall be designed to conform to the following requirements: - (a) Vertical aim, lower beam. Each lower beam headlamp shall have a cutoff in the beam pattern. It may be either on the left side or the right side of the optical axis, but once chosen for a particular headlamp system's design, the side chosen for the cutoff shall not be changed for any headlamps intended to be used as replacements for those system's headlamps. - (1) Vertical position of cutoff. The headlamp shall be aimed vertically so that the cutoff is on the left side, at 0.4 degree down from the H-H line, or on the right side, at the H-H line. - (2) Vertical gradient. The gradient of the cutoff measured at either 2.5 degrees L or 2.0 degrees R shall be not less than 0.13 based on the procedure of S7.8.5.3, paragraph (a) (5). - (3) Horizontal position of the cutoff. The width shall be not less than two degrees, with not less than two degrees of its actual width centered at either 2.5 degrees L, or 2.0 degrees R. - (4) Maximum inclination of cutoff. The vertical location of the highest gradient at the ends of the minimum width shall be within +/-0.2 degree of the vertical location of the maximum gradient measured at the appropriate vertical line (at either 2.5 degrees L for a left side cutoff, or 2.0 degrees R for a right side cutoff.) - (5) Measuring the cutoff parameter. (i) The headlamp shall be mounted on a fixture which simulates its actual design location on any vehicle for which the headlamp is intended. The fixture, with the headlamp installed shall be attached to the goniometer table in such a way that the fixture alignment axes are coincident with the goniometer axes. The headlamp shall be energized at the specified test voltage. - (ii) The headlamp beam pattern shall be aimed with the cutoff at the H-H axis. There shall be no adjustment, shimming, or modification of the horizontal axis of the headlamp or test fixture, unless the headlamp is equipped with a VHAD. In this case the VHAD shall be adjusted to zero. - (iii) A vertical scan of the beam pattern shall be conducted for a headlamp with a left side gradient by aligning the goniometer on a vertical line at 2.5 degrees L and scanning from 1.5 degrees U to 1.5 degrees D. For a headlamp with a right side gradient, a vertical scan of the beam pattern shall be conducted by aligning the goniometer on a vertical line at 2.0 degrees R and scanning from 1.5 degrees U to 1.5 degrees D. - (iv) Determine the maximum gradient within the range of the scan by using the formula: $G = \log E(a)-\log E(a+0.1)$, where "G" is the gradient, "E" is illumination and "a" is vertical angular position. The maximum value of the gradient "G" determines the vertical angular location of the cutoff. Perform vertical scans at 1.0 degree L and R of the measurement point of the maximum gradient to determine the inclination. - (b) Horizontal aim, lower beam. There shall be no adjustment of horizontal aim unless the headlamp is equipped with a horizontal VHAD. If the headlamp has a VHAD, it shall be set to zero. - (c) Vertical aim, upper beam. (1) If the upper beam is combined in a headlamp with a lower beam, the vertical aim of the upper beam shall not be changed from the aim set using the procedures of paragraphs S7.8.5.3(a) and (b) used for the lower beam. - (2) If the upper beam is not combined in a headlamp with a lower beam, the vertical aim of the upper beam shall be adjusted so that the maximum beam intensity is located on the H-H axis. - (d) Horizontal aim, upper beam. (1) If the upper beam is combined in a headlamp with a lower beam, the horizontal aim of the upper beam shall not be changed from the aim set using the procedures of paragraphs S7.8.5.3 (a) and (b) used for the lower beam. - (2) If the upper beam is not combined in a headlamp with the lower beam and - has fixed horizontal aim or has a horizontal VHAD, then the headlamp shall be mounted on a fixture which simulates its actual design location on any vehicle for which the headlamp is intended. The fixture, with the headlamp installed shall be attached to the goniometer table in such a way that the fixture alignment axes are coincident with the goniometer axes. headlamp shall be energized at 12.8 ± 0.20 mV. There shall be no adjustment, shimming, or modification of the horizontal axis of the headlamp or test fixture, unless the headlamp is equipped with a VHAD. In this case the VHAD shall be adjusted to zero. - (3) If the upper beam is not combined in a headlamp with a lower beam, and it does not have a VHAD, the horizontal aim of the upper beam shall be adjusted so that the maximium beam intensity is located on the V-V axis. - (e) Photometric Requirements and Measurement. (1) Instead of being designed to conform to the photometric requirements of Figures 15–1, 17–1, 27–1 or 28–1, a visually/optically aimable headlamp shall be designed to conform to the requirements of Figures 15–2, 17–2, 27–2 or 28–2 when tested in accordance with paragraph (2) and SAE J575 DEC88, with the distance from the photometer to the headlamp no less than 18.3 m. - (2) If the lower beam has a left side cutoff, reaim the headlamp vertically to place the maximum gradient found in paragraph S7.8.5.3 at 0.4 degree below the H-H line. For a headlamp with a lower beam right side cutoff, place the maximum gradient found in paragraph S7.8.5.3 at the H-H line. For an upper beam, the headlamp would already be aimed at the end of the procedure found in paragraph S7.8.5.3. A 0.25 degree reaim is permitted in any direction at any test point. - (f) Marking—(1) Headlamp optical axis mark. There shall be a mark or markings identifying the optical axis of the headlamp visible from the front of the headlamp when installed on the vehicle, to assure proper horizontal and vertical alignment of the aiming screen or optical aiming equipment with the headlamp being aimed. The manufacturer is free to choose the design of the mark or markings. The mark or markings may be on the interior or exterior of the lens or indicated by a mark or central structure on the interior or exterior of the headlamp. - (2) Visual/optical aimability identification marks. (i) The lens of a lower beam headlamp shall be marked "VOL" if the headlamp is intended to be visually/optically aimed using the left side of the lower beam pattern. - (ii) The lens of a lower beam headlamp shall be marked "VOR" if the headlamp is intended to be visually/optically aimed using the right side of the lower beam pattern. - (iii) The lens of each sealed beam or integral beam headlamp shall be marked "VOR" if the headlamp is of a type that was manufactured before May 1, 1997, and if such headlamp type has been redesigned since then to be visually/optically aimable. - (iv) The lens of a headlamp that is solely an upper beam headlamp and intended to be visually/optically aimed using the upper beam shall be marked "VO". - (v) Each letter used in marking according to this paragraph shall be not less than 3 mm. high. - S7.9 *Motorcycles*. Each motorcycle shall be equipped with a headlighting system designed to conform to the following requirements. - S7.9.1 Å motorcycle manufactured before September 1, 2000, may be equipped with— - (a) A headlighting system designed to conform to SAE Standard J584 Motorcycle Headlamps April 1964, or to SAE Standard J584 April 1964 with the photometric specifications of Figure 32 and the upper beam aimability specifications of paragraph S7.9.3; or - (b) One half of any headlighting system specified in S7.1 through S7.6 which provides both a full upper beam and full lower beam. Where more than one lamp must be used, the lamps shall be mounted vertically, with the lower beam as high as practicable. - S7.9.2 A motorcycle manufactured on or after September 1, 2000, shall be equipped with— - (a) A headlighting system designed to conform to SAE Standard J584 *Motorcycle Headlamps* April 1964 with the photometric specifications of Figure 32 and the upper beam aimability specifications of paragraph S7.9.3; or - (b) A headlighting system that conforms to \$7.9.1(b). - S7.9.3 The upper beam of a multiple beam headlamp designed to conform to the photometric requirements of Figure 32 shall be aimed photoelectrically during the photometric test in the manner prescribed in SAE Standard J584 OCT93 Motorcycle Headlamps. - S7.9.4 Motorcycle headlamp modulation system. - S7.9.4.1 A headlamp on a motorcycle may be wired to modulate either the upper beam or the lower beam from its maximum intensity to a lesser intensity, provided that: - (a) The rate of modulation shall be 240 ± 40 cycles per minute. - (b) The headlamp shall be operated at maximum power for 50 to 70 percent of each cycle. - (c) The lowest intensity at any test point shall be not less than 17 percent of the maximum intensity measured at the same point. - (d) The modulator switch shall be wired in the power lead of the beam filament being modulated and not in the ground side of the circuit. - (e) Means shall be provided so that both the lower beam and upper beam remain operable in the event of a modulator failure. - (f) The system shall include a sensor mounted with the axis of its sensing element perpendicular to a horizontal plane. Headlamp modulation shall cease whenever the
level of light emitted by a tungsten filament light operating at 3000° Kelvin is either less than 270 lux (25 foot-candles) of direct light for upward pointing sensors or less than 60 lux (5.6 foot-candles) of reflected light for downward pointing sensors. The light is measured by a silicon cell type light meter that is located at the sensor and pointing in the same direction as the sensor. A Kodak Gray Card (Kodak R-27) is placed at ground level to simulate the road surface in testing downward pointing sensors. - (g) When tested in accordance with the test profile shown in Figure 9, the voltage drop across the modulator $\frac{1}{2}$ when the lamp is on at all test conditions for 12 volt systems and 6 volt systems shall not be greater than .45 volt. The modulator shall meet all the provisions of the standard after completion of the test profile shown in Figure 9. (h) Means shall be provided so that both the lower and upper beam function at design voltage when the headlamp control switch is in either the lower or upper beam position when the modulator is off. S7.9.4.2(a) Each motorcycle headlamp modulator not intended as original equipment, or its container, shall be labeled with the maximum wattage, and the minimum wattage appropriate for its use. Additionally, each such modulator shall comply with S7.9.4.1 (a) through (g) when connected to a headlamp of the maximum rated power and a headlamp of the minimum rated power, and shall provide means so that the modulated beam functions at design voltage when the modulator is off. (b) Instructions, with a diagram, shall be provided for mounting the light sensor including location on the motorcycle, distance above the road surface, and orientation with respect to the light. S7.9.5 Each replaceable bulb headlamp that is designed to meet the photometric requirements of paragraph S7.9.1(a) or paragraph S7.9.2(a) and that is equipped with a light source other than a replaceable light source meeting the requirements of paragraph S7.7, shall have the word "motorcycle" permanently marked on the lens in characters not less than 0.114 in. (3 mm) in height. S7.9.6 A headlamp system shall be installed on a motorcycle in accordance with the requirements of this paragraph. S7.9.6.1 The headlamp system shall be located on the front of the motor-cycle. S7.9.6.2 (a) If the system consists of a single headlamp, it shall be mounted on the vertical centerline of the motorcycle. If the headlamp contains more than one light source, each light source shall be mounted on the vertical centerline with the upper beam no higher than the lower beam, or horizontally disposed about the vertical centerline and mounted at the same height. If the light sources are horizontally disposed about the vertical centerline, the distance between the closest edges of the effective projected luminous lens area in front of the light sources shall not be greater than 200 mm (8 in.). (b) If the system consists of two headlamps, each of which provides both an upper and lower beam, the headlamps shall be mounted either at the same height and symmetrically disposed about the vertical centerline or mounted on the vertical centerline. If the headlamps are horizontally disposed about the vertical centerline, the distance between the closest edges of their effective projected luminous lens areas shall not be greater than 200 mm (8 in.). (c) If the system consists of two headlamps, one of which provides an upper beam and one of which provides the lower beam, the headlamps shall be located on the vertical centerline with the upper beam no higher than the lower beam, or horizontally disposed about the vertical centerline and mounted at the same height. If the headlamps are horizontally disposed about the vertical centerline, the distance between the closest edges of their effective projected luminous lens areas shall not be greater than 200 mm (8 in.). S8 Tests and Procedures for Integral Beam and Replaceable Bulb Headlighting Systems. When tested in accordance with the following procedures, each integral beam headlamp shall meet the requirements of paragraph S7.4, and each replaceable bulb headlamp shall meet the requirements of paragraph S7.5. Ballasts required to operate specific gas mixture light sources shall be included in the tests specified in paragraphs S8.1 and S8.4 though S8.7. S8.1 *Photometry.* Each headlamp to which paragraph S8 applies shall be tested according to paragraphs 4.1 and 4.1.4 of SAE Standard J1383 APR85 for meeting the applicable photometric requirements, after each test specified in paragraphs S8.2, S8.3, S8.5, S8.6.1, S8.6.2, S8.7, and S8.10.1 and S8.10.2, if applicable. A ¹/₄ degree reaim is permitted in any direction at any test point. - S8.2 *Abrasion.* (a) A headlamp shall be mounted in the abrasion test fixture in the manner indicated in Figure 5 with the lens facing upward. - (b) An abrading pad meeting the requirements in paragraphs (c)(1) through (c)(4) of this section shall be cycled back and forth (1 cycle) for 11 cycles at 4 ± 0.8 in. (10 cm ±2 cm) per second over at least 80 percent of the lens surface, including all the area between the upper and lower aiming pads, but not including lens trim rings and edges. - (c)(1) The abrading pad shall be not less than $1.0 \pm .04$ in. $(2.5 \text{ cm} \pm .1 \text{ cm})$ wide, constructed of 0000 steel wool, and rubber cemented to a rigid base shaped to the same vertical contour of the lens. The "grain" of the pad shall be perpendicular to the direction of motion. - (2) The abrading pad support shall be equal in size to the pad and the center of the support surface shall be within \pm .08 in. (\pm 2 mm) of parallel to the lens surface. - (3) The density of the abrading pad shall be such that when the pad is mounted to its support and is resting unweighted on the lens, the base of the pad shall be no closer than .125 in. (3.2 mm) to the lens at its closest point. - (4) When mounted on its support and resting on the lens of the test headlamp, the abrading pad shall then be weighted such that a pad pressure of $2.0\pm.15$ psi $(14\pm1$ KPa) exists at the center and perpendicular to the face of the lens. - $\mbox{(d)}\ A$ pivot shall be used if it is required to follow the contour of the lens. - (e) Unused steel wool shall be used for each test. - S8.3 Chemical resistance. (a) The entire exterior lens surface of the headlamp in the headlamp test fixture and top surface of the lens-reflector joint shall be wiped once to the left and once to the right with a 6-inch square soft cotton cloth (with pressure equally applied) which has been saturated once in a container with 2 ounces of a test fluid as listed in paragraph (b). The lamp shall be wiped within 5 seconds after removal of the cloth from the test fluid. - (b) The test fluids are: - (1) ASTM Reference Fuel C, which is composed of Isooctane 50% volume and Toluene 50% volume. Isooctane must conform to A2.7 in Annex 2 of the Motor Fuels Section of the 1985 Annual Book of ASTM Standards, Vol. 05.04, and Toluene must conform to ASTM specification D362-84, Standard Specification for Industrial Grade Toluene. ASTM Reference Fuel C must be used as specified in: - (i) Paragraph A2.3.2 and A2.3.3 of Annex 2 to *Motor Fuels, Section 1* in the 1985 Annual Book of ASTM Standards; and - (ii) OSHA Standard 29 CFR 1910.106— Handling Storage and Use of Flammable Combustible Liquids. - (2) Tar remover (consisting by volume of 45% xylene and 55% petroleum base mineral spirits). - (3) Power steering fluid (as specified by the vehicle manufacturer for use in the motor vehicle on which the headlamp is intended to be installed). - (4) Windshield washer fluid consisting of 0.5% monoethanolamine with the remainder 50% concentration of methanol/distilled water by volume. - (5) Antifreeze (50% concentration of ethylene glycol/distilled water by volume). - (c) After the headlamp has been wiped with the test fluid, it shall be stored in its designed operating attitude for 48 hours at a temperature of 73° F $\pm 7^\circ$ (23° C \pm 4°) and a relative humidity of 30 \pm 10 percent. At the end of the 48-hour period, the headlamp shall be wiped clean with a soft dry cotton cloth and visually inspected. - S8.4 Corrosion. (a) A connector test shall be performed on each filament circuit prior to the test in subparagraph (b) according to Figure 1 and SAE Standard J580 DEC86. The power source shall be set to provide 12. 8 volts and the resistance shall be set to produce 10 amperes. - (b) The headlamp with connector attached to the terminals, unfixtured and in its designed operating attitude with all drain holes, breathing devices or other designed openings in their normal operating positions, shall be subjected to a salt spray (fog) test in accordance with ASTM B117-73, Method of Salt Spray (Fog) Testing, for 240 hours, consisting of ten successive 24-hour pe-During each period, headlamp shall be mounted in the middle of the chamber and exposed for 23 hours to the salt spray. The spray shall not be activated during the 24th hour. The bulb shall be removed from the headlamp and from the test chamber during the one hour of salt spray deactivation and reinserted for the start of the next test period, at the end of the first and last three 23-hour periods of salt spray exposure, and at the end of any two of the fourth through seventh 23-hour periods of salt-spray exposure. The test chamber shall be closed at all times except for a maximum of 2 minutes which is allowed for removal or replacement of a bulb during each period. After the ten periods, the lens reflector unit without the bulb shall be immersed in deionized water for 5 minutes, then secured and allowed to dry by natural convection only. (c) Using the voltage, resistance and pretest set up of paragraph (a) the current in each filament circuit shall be measured after the test conducted in paragraph (b). S8.5 Dust. The headlamp, mounted on a headlamp test
fixture, with all drain holes, breathing devices or other designed openings in their normal operating positions, shall be positioned within a cubical box, with inside measurements of 35.4 in. (900 mm) on each side or larger if required for adequate wall clearance, i.e., a distance of at least 5.9 in. (150 mm) between the headlamp and any wall of the box. The box shall contain 9.9 lb. (4.5 kg) of fine powdered cement which conforms to the ASTM C150-77 specification for Portland Cement. Every 15 minutes, the cement shall be agitated by compressed air or fan blower(s) by projecting blasts of air for a two-second period in a downward direction so that the cement is diffused as uniformly as possible throughout the entire box. This S8.6 Temperature and internal heat test. A headlamp with one or more replaceable light sources shall be tested according to paragraphs S8.6.1 and S8.6.2. Tests shall be made with all filaments lighted at design voltage that test shall be continued for five hours after which the exterior surfaces of the headlamp shall be wiped clean. are intended to be used simultaneously in the headlamp and which in combination draw the highest total wattage. These include but are not limited to filaments used for turn signal lamps, lamps, parking lamps, headlamp lower beams lighted with upper beams when the wiring harness is so connected on the vehicle. If a turn signal is included in the headlamp assembly, it shall be operated at 90 flashes a minute with a $75 \pm 2\%$ current "on time." If the lamp produces both the upper and lower beam, it shall be tested in both the upper beam mode and the lower beam mode under the conditions above described, except for a headlamp with a single Types HB1 or HB2 light source. S8.6.1 Temperature cycle. A headlamp, mounted on a headlamp test fixture, shall be subjected to 10 complete consecutive cycles having the thermal cycle profile shown in Figure 6. During the hot cycle, the lamp, shall be energized commencing at point "A" of Figure 6 and de-energized at point "B." Separate or single test chambers may be used to generate the environment of Figure 6. All drain holes, breathing devices or other openings or vents of the headlamps shall be in their normal operating positions. normal operating positions. S8.6.2 *Internal Heat Test.* (a) The headlamp lens surface that would normally be exposed to road dirt shall be uniformly sprayed with any appropriate mixture of dust and water or other materials to reduce the photometric output at the H-V test point of the upper beam (or the ½D-1½R test point of the lower beam as appropriate) to 25 ± 2% of the output originally measured in the photometric test conducted pursuant to paragraphs S7.4(i), or S7.5 (a) through (e), as applicable. A headlamp with a single Types HB1 or HB2 light source shall be tested on the upper beam only. Such reduction shall be determined under the same conditions as that of the original photometric measurement. (b) After the photometric output of the lamp has been reduced as specified in paragraph (a), the lamp and its mounting hardware shall be mounted in an environmental chamber in a manner similar to that indicated in Figure 7 "Dirt/Ambient Test Setup." The headlamp shall be soaked for one hour at a temperature of 95 + 7 - 0 degrees F (35 + 4 - 0 degrees C) and then the lamp shall be energized according to paragraph S8.6 for one hour in a still air condition, allowing the temperature to rise from the soak temperature. (c) The lamp shall be returned to a room ambient temperature of 73 + 7 - 0 degrees F (23 + 4 - 0 degrees C) and a relative humidity of $30 \pm 10\%$ and allowed to stabilize to the room ambient temperature. The lens shall then be cleaned. S8.7 Humidity. (a) The test fixture consists of a horizontal steel plate to which three threaded steel or aluminum rods of ½ inch diameter are screwed vertically behind the headlamp. The headlamp assembly is clamped to the vertical rods, which are behind the headlamp. All attachments to the headlamp assembly are made behind the lens and vents or openings, and are not within 2 inches laterally of a vent inlet or outlet. (b) The mounted headlamp assembly is oriented in its design operating position, and is placed in a controlled environment at a temperature of 100+7-0degrees F (38+4-0 degrees C) with a relative humidity of not less than 90 percent. All drain holes, breathing devices, and other openings are in their normal operation positions for all phases of the humidity test. headlamp shall be subjected to 24 consecutive 3-hour test cycles. In each cycle, it shall be energized for 1 hour at design voltage with the highest combination of filament wattages that are intended to be used, and then de-energized for 2 hours. If the headlamp incorporates a turn signal, it shall flash at 90 flashes per minute with a 75+/-2percent current "on-time. (c) Within 3 minutes after the completion of the 24th cycle, the air flow test will begin. The following shall occur: the mounted assembly shall be removed, placed in an insulating box and covered with foam material so that there is no visible air space around the assembly; the box shall be closed, taken to the air flow test chamber, and placed within it. Inside the chamber, the assembly with respect to the air flow, shall be oriented in its design operating position. The assembly is posi- tioned in the chamber so that the center of the lens is in the center of the opening of the air flow entry duct during the test. The headlamp has at least 3 inches clearance on all sides, and at least 4 inches to the entry and exit ducts at the closest points. If vent tubes are used which extend below the lamp body, the 3 inches are measured from the bottom of the vent tube or its protection. The temperature of the chamber is 73+7-0 degrees F (23+4-0 degrees C) with a relative humidity of 30+10-0 percent. The headlamp is not energized. (d) Before the test specified in paragraph (e) of this section, the uniformity of the air flow in the empty test chamber at a plane 4 inches downstream of the air entry duct shall have been measured over a 4-inch square grid. The uniformity of air flow at each grid point is +/-10 percent of the average air flow specified in paragraph (e) of this section. (e) The mounted assembly in the chamber shall be exposed, for one hour, to an average air flow of 330+0-30 ft/ min. as measured with an air velocity measuring probe having an accuracy of +/-3 percent in the 330 ft/min range. The average air flow is the average of the velocity recorded at six points around the perimeter of the lens. The six points are determined as follows: At the center of the lens, construct a horizontal plane. The first two points are located in the plane, 1 inch outward from the intersection of the plane and each edge of the lens. Then, trisect the distance between these two points and construct longitudinal vertical planes at the two intermediate locations formed by the trisection. The four remaining points are located in the vertical planes, one inch above the top edge of the lens, and one inch below the bottom edge of the lens. (f) After one hour, the headlamp is removed and inspected for moisture. S8.8 Vibration. A vibration test shall be conducted in accordance with the procedures of SAE Standard J575e Tests for Motor Vehicle Lighting Devices and Components August 1970, and the following: the table on the adapter plate shall be of sufficient size to completely contain the test fixture base with no overhang. The vibration shall be applied in the vertical axis of the headlamp system as mounted on the vehicle. The filament shall not be energized. S8.9 Sealing. An unfixtured headlamp in its design mounting position shall be placed in water at a temperature of 176 +/-5 degrees F (60 +/- 3 degrees C) for one hour. The headlamp shall be energized in its highest wattage mode, with the test voltage at 12.8 $+\bar{l}$ – 0.1 V. during immersion. The lamp shall then be de-energized and immediately submerged in its design mounting position into water at 32 + 5 - 0 degrees F (0 + 3 -0 degrees C). The water shall be in a pressurized vessel, and the pressure shall be increased to 10 psi (70 kPa), upon placing the lamp in the water. The lamp shall remain in the pressurized vessel for a period of thirty minutes. This entire procedure shall be repeated for four cycles. Then the lamp shall be inspected for any signs of water on its interior. During the high temperature portion of the cycles, the lamp shall be observed for signs of air escaping from its interior. If any water occurs on the interior or air escapes, the lamp is not a sealed lamp. S8.10 Chemical and corrosion resistance of reflectors of replaceable lens headlamps. S8.10.1 Chemical resistance. (a) With the headlamp in the headlamp test fixture and the lens removed, the entire surface of the reflector that receives light from a headlamp light source shall be wiped once to the left and once to the right with a 6-inch square soft cotton cloth (with pressure equally applied) which has been saturated once in a container with 2 ounces of one of the test fluids listed in paragraph (b). The lamp shall be wiped within 5 seconds after removal of the cloth from the test fluid. - (b) The test fluids are: - (1) Tar remover (consisting by volume of 45% xylene and 55% petroleum base mineral spirits); - (2) Mineral spirits; or - (3) Fluids other than water contained in the manufacturer's instructions for cleaning the reflector. - (c) After the headlamp has been wiped with the test fluid, it shall be stored in its designed operating atti- tude for 48 hours at a temperature of $73^{\circ}F \pm 7^{\circ}$ ($23^{\circ}C \pm 4^{\circ}$) and a relative humidity of 30 ± 10 percent. At the end of the 48-hour period, the headlamp shall be wiped clean with a soft dry cotton cloth and visually inspected. S8.10.2 Corrosion. (a) The headlamp with the lens removed, unfixtured and in its designed operating
attitude with all drain holes, breathing devices or other designed openings in their normal operating positions, shall be subjected to a salt spray (fog) test in accordance with ASTM B117-73, Method of Salt Spray (Fog) Testing, for 24 hours, while mounted in the middle of the chamber. (b) Afterwards, the headlamp shall be stored in its designed operating attitude for 48 hours at a temperature of $73^{\circ}F \pm 7^{\circ}$ ($23^{\circ}C \pm 4^{\circ}$) and a relative humidity of 30 ± 10 percent and allowed to dry by natural convection only. At the end of the 48-hour period, the reflector shall be cleaned according to the instructions supplied with the headlamp manufacturer's replacement lens, and inspected. The lens and seal shall then be attached according to these instructions and the headlamp tested for photometric performance. S9. Deflection test for replaceable light sources. With the light source rigidly mounted in a fixture in a manner indicated in Figure 8, a force 4.0 ± 0.1 pounds $(17.8 \pm 0.4N)$ is applied at a distance "A" from the reference plane perpendicular to the longitudinal axis of the glass capsule and parallel to the smallest dimension of the pressed glass capsule seal. The force shall be applied (using a rod with a hard rubber tip with a minimum spherical radius of .039 in (1 mm)) radially to the surface of the glass capsule in four locations in a plane parallel to the reference plane and spaced at a distance "A" from that plane. These force applications shall be spaced 90 degrees apart starting at the point perpendicular to the smallest dimension of the pressed seal of the glass capsule. The bulb deflection shall be measured at the glass capsule surface at 180 degrees opposite to the force application. Distance "A" for a replaceable light source other than an HB Type shall be the dimension provided in accordance with Appendix A of part 564 of this chapter, section I.A.1 if the light source has a lower beam filament, or as specified in section I.B.1 if the light source has only an upper beam filament. S10 Simultaneous Aim Photometry Tests—(a) Type F Headlamp Systems. The assembly shall be located on a goniometer placed not less than 60 feet (18.3m) from the photometer. The LF unit shall be aimed mechanically by centering the unit on the photometer axis and by aligning the aiming plane of the lens perpendicular to the photometer axis. Then the assembly shall be moved in a plane parallel to the established aiming plane of the LF headlamp until the UF headlamp is centered on the photometer axis. Photometry measurements of the UF photometry unit shall be completed using the aiming plane so established, and the procedures of section 4.1 and 4.1.4 Standard J1383 APR85, and Figure 15-1 or Figure 15-2. A reaim tolerance of $\pm \frac{1}{4}$ degree is permitted in any direction at any test point. (b) Integral Beam Headlamp Systems. The assembly used for simultaneously aiming more than one integral beam headlamp shall be placed on a test fixture on a goniometer located not less than 60 feet (18.3 m.) from the photometer. The assembly shall be aimed by centering the geometric center of the lower beam lens(es) on the photometer axis and by aligning the photometer axis to be perpendicular to the aiming reference plane or appropriate vertical plane defined by the manufacturer of any lower beam contributor. Photometric compliance of the lower beam shall be determined with all lower beam contributors illuminated and in accordance with sections 4.1 and 4.1.6 of SAE Standard J1383 APR85, and Figure 15-1 or Figure 15-2. The assembly shall then be moved in a plane parallel to the established aiming plane of the lower beam until the assembly is located with the geometric center of the upper lens(es) on the photometer axis. Photometric compliance for upper beam shall now be determined using the figure and procedure specified for the lower beam. During photometric testing, a 1/4 degree reaim is permitted in any direction at any test point. S11. *Photometric Test.* A lamp that is wired in accordance with paragraph S5.5.11 of this standard, shall be tested for compliance with S5.5.11(a)(1) in accordance with the test method specified for photometric testing in SAE Standard J575 DEC88 when a test voltage of 12.8V +/-20 mV is applied to the input terminals of the lamp switch module or voltage-reducing equipment, whichever is closer to the electrical source on the vehicle. The test distance from the lamp to the photometer shall be not less than 18.3 m, if the lamp is optically combined with a headlamp, or is a separate lamp, and not less than 3 m, if the lamp is optically combined with a lamp, other than a headlamp, that is required by this standard. S12. Headlamp Concealment Devices. S12.1 While the headlamp is illuminated, its fully opened headlamp concealment device shall remain fully opened should any loss of power to or within the headlamp concealment device occur. S12.2 Whenever any malfunction occurs in a component that controls or conducts power for the actuation of the concealment device, each closed headlamp concealment device shall be capable of being fully opened by a means not requiring the use of any tools. Thereafter, the headlamp concealment device must remain fully opened until intentionally closed. S12.3 Except for malfunctions covered by S12.2, each headlamp concealment device shall be capable of being fully opened and the headlamps illuminated by actuation of a single switch, lever, or similar mechanism, including a mechanism that is automatically actuated by a change in ambient light conditions. S12.4 Each headlamp concealment device shall be installed so that the headlamp may be mounted, aimed, and adjusted without removing any component of the device, other than components of the headlamp assembly. S12.5 Except for cases of malfunction covered by S12.2, each headlamp concealment device shall, within an ambient temperature range of -20° F. to $+120^{\circ}$ F., be capable of being fully opened in not more than 3 seconds after the actuation of a driver-operated control Figures and Tables to $\S 571.108$ FIGURE 1A—REQUIRED PERCENTAGES OF MINIMUM CANDLEPOWER OF FIGURE 1B | Test points (deg) | | Turn
signal | Stop | Parking | Tail | |-------------------|----------|----------------|------|---------|------| | 10U, 10D | 5L, 5R | 20 | 20 | 20 | 20 | | 5U, 5D | 20L, 20R | 12.5 | 12.5 | 10 | 15 | | | 10L, 10R | 37.5 | 37.5 | 20 | 40 | | | V | 87.5 | 87.5 | 70 | 90 | | H | 10L, 10R | 50 | 50 | 35 | 40 | | | 5L, 5R | 100 | 100 | 90 | 100 | | | V | 100 | 100 | 100 | 100 | Note—Minimum design candlepower requirements are determined by multiplying the percentages given in this Figure by the minimum allowable candlepower values in Figure 1b. The resulting values shall be truncated after one digit to the right of the decimal point. FIGURE 1B—MINIMUM AND MAXIMUM ALLOWABLE CANDLEPOWER VALUES | Lamp - | Lighted sections | | | |---------------------------------------|------------------|---------|----------| | | 1 | 2 | 3 | | Stop | 80/300 | 95/360 | 110/420 | | Tail 1 | 2/18 | 3.5/20 | 5.0/25 | | Parking ² | 4.0/125 | | | | Red turn signal | 80/300 | 95/360 | 110/420 | | Yellow turn signal rear | 130/750 | 150/900 | 175/1050 | | Yellow turn signal front | 200/– | 240- | 275/- | | Yellow turn signal front ³ | 500/- | 600/- | 685/- | ¹ Maximum at H or above. FIGURE 1C—SUM OF THE PERCENTAGES OF GROUPED MINIMUM CANDLEPOWER | Group and test points | Turn
signal | Stop | Parking | Tail | |---|----------------|------------|-----------|------------| | 10U-5L, 5U-20L, 5D-20L, 10D-5L
5U-10L, H-10L, 5D-10L | 65
125 | 65
125 | 60
75 | 70
120 | | H–5L, 5U–V, H–V, 5D–V, H–5R | 475
125 | 475
125 | 420
75 | 480
120 | | 10U–5R, 5U–20R, 5D–20R, 10D–5R | 65 | 65 | 60 | 70 | FIGURE 2—MINIMUM LUMINOUS INTENSITY REQUIREMENTS FOR BACKUP LAMPS | Group | Test point, degrees | Total for
group,
candela
(see note
1) | |-------|------------------------------------|---| | 11 | 45L-5U, 45L-H, 45L-5D | 45 | | 21 | 30L-H, 30L-5D | 50 | | 3 | 10L-10U, 10L-5U, V-10U, V-5U, 10R- | | | | 10U, 10R–5U | 100 | | 4 | 10L-H, 10L-5D, V-H, V-5D, 10R-H, | | | | 10R–5D | 360 | | 5 ¹ | 30R-H, 30R-5D | 50 | | | | | FIGURE 2-MINIMUM LUMINOUS INTENSITY RE-QUIREMENTS FOR BACKUP LAMPS—Continued | Group | Test point, degrees | Total for group, candela (see note 1) | |-------|-----------------------|---------------------------------------| | 6 ¹ | 45R–5U, 45R–H, 45R–5D | 45 | ¹When 2 lamps of the same or symmetrically opposite design are used, the reading along the vertical axis and the averages of the readings for the same angles left and right of vertical for 1 lamp shall be used to determine compliance with the requirements. If 2 lamps of differing designs are used, they shall be tested individually and the values added to determine that the combined units meet twice the candela requirements. When only 1 backup lamp is used on the vehicle, it shall be tested to twice the candela requirements. ¹ Maximum at H or above. ² The maximum candlepower value of 125 applies to all test points at H or above. The maximum allowable candlepower value below H is 250. ³ Values apply when the optical axis (filament center) of the front turn signal is at a spacing less than 4 in. (10 cm.) from the lighted edge of the headlamp unit providing the lower beam, or from the lighted edge of any additional lamp installed as original equipment and which supplements the lower beam. Figure 4-1. Dimensional Specifications for Location of Aiming Pads on Replaceable Bulb Headlamp Units Figure 4-2. Detail Example of Aiming Pad Figure 4-3 • Group I aiming pad location (front view) is that prescribed for 2B1 sealed beam units. Group I or Group II aiming pad locations may be used. • Group II aiming pad location (front view) is that
prescribed for 1A1/2A1 sealed beam units Figure 4-4 # DIMENSIONAL SPECIFICATIONS FOR LOCATION OF AIMING PADS #### ON REPLACEMENT BULB UNITS | Dimension | Millimetres | Inches | |-----------|--|---| | A | 42.16 <u>+</u> 0.25 | 1.660 <u>+</u> 0.010 | | В | 60.05 <u>+</u> 1.00 | 2.364 + 0.039 | | С | 64.0 <u>+</u> 1.00 | 2.520 <u>+</u> 0.039 | | D | 68.58 <u>+</u> 0.51 | 2.700 <u>+</u> 0.020 | | E | Mechanical aiming devi
setting for the vertice
(Millimeters) | | | F | Mechanical aiming dev
for the horizontal ad
(Millimeters) | ice locating plate setting
justable leg. | # **ABRASION TEST FIXTURE** #### Figure 5 Figure 6 #### AMBIENT TEMPERATURE TRANSITION RATES: MINIMUM 0.6°C (1°F) PER MINUTE MAXIMUM 4°C (8°F) PER MINUTE Note: Ambient Conditions $73^{\circ}F \pm 7^{\circ}(23^{\circ}C \pm 4)$ and $30 \pm 10\%$ RH. - THERMAL CYCLE PROFILE Figure 7. Dirt/Ambient Test Setup 272 # Nat'l Highway Traffic Safety Admin., DOT § 571.108 FIGURE 10—PHOTOMETRIC REQUIREMENTS FOR CENTER HIGH-MOUNTED STOP LAMPS | Individual test points | Minimum
intensity
(candela) | Zones (test points within zones, see note 2) | Minimum
total for
zone
(canadela) | |------------------------|-----------------------------------|--|--| | 10U-10L | 8 | Zone I (5U-V, H-5L, H-V, H-5R, 5D-V) | 125 | | –V | 16 | | | | –10R | 8 | | | | 5U-10L | 16 | Zone II (5U-5R, 5U-10R, H-10R, 5D-10R, 5D-5R) | 98 | | –5L | 25 | | | | -V | 25 | | | | –5R | 25 | | | | –10R | 16 | | | | 5D-10L | 16 | Zone III (5U-5L, 5U-10L, H-10L, 5D-10L, 5D-5L) | 98 | | –5L | 25 | | | | -V | 25 | | | | –5R | 25 | | | | –10R | 16 | | | | H–10L | 16 | Zone IV (10U-10L, 10U-V, 10U-10R) | 32 | | –5L | 25 | | | | –V | 25 | | | | –5R | 25 | | | | –10R | 16 | | | | See Note 1 | ¹ 160 | | | Note 1: The listed maximum shall not occur over any area larger than that generated by a ¼ degree radius within an solid cone angle within the rectangle bounded by test points 10U–10L, 10U–10R, 5D–10L, and 5D–10R. Note 2: The measured values at each test point shall not be less than 60% of the value listed. ¹ Maximum intensity (Candela). # **FIGURE 15-1** # PHOTOMETRIC TEST POINT VALUES #### FOR MECHANICAL AIM HEADLIGHTING SYSTEMS #### **UPPER BEAM** | Test Points | Candela | Candela | |------------------|---------|---------| | (degrees) | maximum | minimum | | 2U-V | - | 1,500 | | 1U-3L and 3R | | 5,000 | | H-V | 70,000 | 40,000 | | H-3L and 3R | - | 15,000 | | H-6L and 6R | | 5,000 | | H-9L and 9R | - | 3,000 | | H-12L and 12R | - | 1,500 | | 1.5D-V | - | 5,000 | | 1.5D-9L and 9R | - | 2,000 | | 2.5D-V | | 2,500 | | 2.5D-12L and 12R | - | 1,000 | | 4D-V | 5,000 | | #### **LOWER BEAM** | Test Points | Candela | Candela | |----------------|---------|---------| | (4 | | | | (degrees) | maximum | minimum | | 10U-90U | 125 | | | 4U-8L and 8R | - | 64 | | 2U-4L | | 135 | | 1.5U-1R to 3R | | 200 | | 1.5U-1R to R | 1,400 | | | 1U-1.5L to L | 700 | | | 0.5U-1.5L to L | 1,000 | | | 0.5U-1R to 3R | 2,700 | 500 | | H-4L | - | 135 | | H-8L | - | 64 | | 0.5D-1.5L to L | 3,000 | - | | 0.5D-1.5R | 20,000 | 10,000 | | 1D-6L | - | 1,000 | | 1.5D-2R | - | 15,000 | | 1.5D-9L and 9R | - | 1,000 | | 2D-15L and 15R | - | 850 | | 4D-4R | 12,500 | - | | 4D-V | 7,000 | | | H-V | 5,000 | - | # **FIGURE 15-2** #### PHOTOMETRIC TEST POINT VALUES #### FOR VISUAL/OPTICAL AIM HEADLIGHTING SYSTEMS #### **UPPER BEAM** | Test Points | Candela | Candela | |------------------|---------|---------| | (degrees) | maximum | minimum | | 2U-V | | 1,500 | | 1U-3L and 3R | | 5,000 | | H-V | 70,000 | 40,000 | | H-3L and 3R | | 15,000 | | H-6L and 6R | | 5,000 | | H-9L and 9R | | 3,000 | | H-12L and 12R | _ | 1,500 | | 1.5D-V | - | 5,000 | | 1.5D-9L and 9R | - | 2,000 | | 2.5D-V | | 2,500 | | 2.5D-12L and 12R | | 1,000 | | 4D-V | 5,000 | | #### **LOWER BEAM** | Test Points | Candela | Candela | |----------------|---------|---------| | (degrees) | maximum | minimum | | 10U-90U | 125 | - | | 4U-8L and 8R | - | 64 | | 2U-4L | - | 135 | | 1.5U-1R to 3R | _ | 200 | | 1.5U-1R to R | 1,400 | | | 1U-1.5L to L | 700 | | | 0.5U-1.5L to L | 1,000 | - | | 0.5U-1R to 3R | 2,700 | 500 | | H-V | 5,000 | - | | H-4L | | 135 | | H-8L | | 64 | | 0.6D-1.3R | | 10,000 | | 0.86D-V | - | 4,500 | | 0.86D-3.5L | 12,000 | 1,800 | | 1.5D-2R | _ | 15,000 | | 2D-9L and 9R | - | 1,250 | | 2D-15L and 15R | - | 1,000 | | 4D-V | 10,000 | - | | 4D-4R | 12,500 | - | | 4D-20L and 20R | | 300 | # HEADLAMP TEST FIXTURE 92 X 150 MM DIMENSIONS ARE IN MAN MACHINE LARGE CLAMP -OSC., ABM. BRACE CLAMP STEEL SER 1880 - CADMINA PLATE -OSC., ABM. BRACE CLAMP STEEL - COMMINA PLATE -SERGE STEEL SER 1880 - CADMINA CADM FIG.-16 # FIGURE 17-1 # PHOTOMETRIC TEST POINT VALUES #### FOR MECHANICAL AIM HEADLIGHTING SYSTEMS #### **UPPER BEAM** | Test Points | Candela | Candela | |------------------|----------|---------| | (degrees) | maximum | minimum | | 2U-V | - | 1,500 | | 1U-3L and 3R | <u> </u> | 5,000 | | H-V | 75,000 | 40,000 | | H-3L and 3R | | 15,000 | | H-6L and 6R | | 5,000 | | H-9L and 9R | | 3,000 | | H-12L and 12R | | 1,500 | | 1.5D-V | | 5,000 | | 1.5D-9L and 9R | - | 2,000 | | 2.5D-V | - | 2,500 | | 2.5D-12L and 12R | - | 1,000 | | 4D-V | 12,000 | | #### **LOWER BEAM** | Test Points | Candela | Candela | |-----------------|---------|---------| | (degrees) | maximum | minimum | | 10U-90U | 125 | - | | 4U-8L and 8R | - | 64 | | 2U-4L | - | 135 | | 1.5U-1R to 3R | | 200 | | 1.5U-1R to R | 1,400 | - | | 1U-1.5L to L | 700 | | | 0.5U-1.5L to L | 1,000 | | | 0.5U-1R to 3R | 2,700 | 500 | | H-4L | | 135 | | H-8L | - | 64 | | 0.5D-10.5L to L | 3,000 | | | 0.5D-1.5R | 20,000 | 10,000 | | 1D-6L | | 1,000 | | 1.5D-2R | | 15,000 | | 1.5D-9L and 9R | | 1,000 | | 2D-15L and 15R | - | 850 | | 4D-4R | 12,500 | | # **FIGURE 17-2** # PHOTOMETRIC TEST POINT VALUES # FOR VISUAL/OPTICAL AIM HEADLIGHTING SYSTEMS # **UPPER BEAM** | Test Points | Candela | Candela | |------------------|---------|---------| | (degrees) | maximum | minimum | | 2U-V | | 1,500 | | 1U-3L and 3R | - | 5,000 | | H-V | 75,000 | 40,000 | | H-3L and 3R | - | 15,000 | | H-6L and 6R | - | 5,000 | | H-9L and 9R | - | 3,000 | | H-12L and 12R | | 1,500 | | 1.5D-V | - | 5,000 | | 1.5D-9L and 9R | | 2,000 | | 2.5D-V | | 2,500 | | 2.5D-12L and 12R | - | 1,000 | | 4D-V | 12,000 | | | | | | | | | | #### LOWER BEAM | Test Points | Candela | Candela | |----------------|---------|---------| | (degrees) | maximum | minimum | | 10U-90U | 125 | - | | 4U-8L and 8R | - | 64 | | 2U-4L | | 135 | | 1.5U-1R to 3R | | 200 | | 1.5U-1R to R | 1,400 | | | 1U-1.5L to L | 700 | | | 0.5U-1.5L to L | 1,000 | | | 0.5U-1R to 3R | 2,700 | 500 | | H-4L | | 135 | | H-8L | - | 64 | | 0.6D-1.3R | - | 10,000 | | 0.86D-V | | 4,500 | | 0.86D-3.5L | 12,000 | 1800 | | 1.5D-2R | - | 15,000 | | 2D-9L and 9R | | 1,250 | | 2D-15L and 15R | | 1,000 | | 4D-4R | 12,500 | - | | 4D-20L and 20R | | 300 | | LETTER | 194 | mm . | LETTER | ik . | me . | |--------|--------------------|--------------------|------------|-----------------|-----------------| | H MAX | 3,499 + 0.015 | 88.868 + 0.381 | BA . | 0.220 SPHER.R | 5,59 SPHER.R | | | 1.00 + 0.015 | 25.40 + 0.381 | € C | 0.197 : 0.005 | 5,004+ 0,127 | | ı | 1.25 MIN | 31.75 | 80 | 8.040 MIN | 1.016 MIN | | P | 4.80 - 0.076 | 171.92 + 0.460 | 86 | 0.150± 0.010 | 3.81 ± 0.254 | | s | 0.250 + 0.005 | 6.35 - 0.127 | 84 | 9.032R | 9.813 € | | ŧ | 2.76 - 0.01 | 57.40 0.25 | B.J | 9.720: 0.815 | 18.288 £ 0.381 | | U | 2.82 - 0.015 | 71.63 - 0.381 | B/K | 0.125 ± 0.005 | 3.175 t 0.177 | | AG | 0.500 + 0.01 | 12.70 - 0.25 | 9Ł | 0.0621 0.005 | 1.575 \$ 0.127 | | AH | 0.410 - 0.010 | 10.414 - 0.254 | 9.04 | 0.064 : 0.004 | 1.62 t 0.107 | | A) | 0.42 0.010 | 10.668 0.254 | 9N | 0.032: 0.004 | 0.0131 0.102 | | AR | 0.37 MIN | 9.40 MIN | #P | 2.45± 0.015 | 62.23 ± 0.301 | | AS | 0 038 + 0.0, -0.03 | 0 16R + 0.0, -0.76 | 85 | 0.178,0.181 DIA | 4.521, 4.597 DI | | AT | 0,230 MIN | 5,84 MiN | #t | 0,174, 0.176 | 4.420, 4.470 | | AU | 0.46 + 0.040 | 16.76 + 1.02 | #U | 2.73 ± 0.015 | 69.3424 0.381 | | AV | 0.20 · 0.01R | 5.08 • 0.254 | 87 | 2.980 t 0.015 | 75,6921 0.381 | | AW | 1.100 - 0.040 | 27,44 + 1.02 | 8W | 0.160 + 0.01 | 4.06 + 0.25 | Fig. 18 - Dimensional Specifications for Integral Mount Sealed Beam Headlamps, Types G and H $\,$ Fig 22 - Deflectometer Adaptor for Torque Deflection Tests on Type G and H Headlamp Systems | ETRIC REQUIREMENTS OF
AMP SYSTEMS | HB2 or any single filament type used
alone or with any other single or
dual filament type, filed in Docket
No. 93-11 | Fig. 15-1 or 15-2 | Fig. 17-1 or 17-2 | |---|--|--|--| | FIGURE 26 TABLE FOR DETERMINING THE PHOTOMETRIC REQUIREMENTS OF REPLACEABLE BULB HEADLAMP SYSTEMS | Any dual filament type other than
HB2 used alone or with another
dual filament type other than HB2,
filed in Docket No. 93-11 | Fig. 27-1 or 27-2
Fig. 15-1 or 15-2 | Fig. 27-1 or 27-2
Fig. 17-1 or 17-2 | | TABLE FOR I | | Four-Headlamp
Systems | Two-Headlamp
Systems | # **FIGURE 27-1** # PHOTOMETRIC TEST POINT VALUES #### FOR MECHANICAL AIM HEADLIGHTING SYSTEMS #### **UPPER BEAM** | Test Points | Candela | Candela | |------------------|---------|---------| | (degrees) | maximum | minimum | | 2U-V | - | 1,000 | | 1U-3L and 3R | | 2,000 | | H-V | 75,000 | 20,000 | | H-3L and 3R | | 10,000 | | H-6L and 6R | | 3,250 | | H-9L and 9R | | 1,500 | | H-12L and 12R | | 750 | | 1.5D-V | | 5,000 | | 1.5D-9L and 9R | | 1,500 | | 2.5D-V | - | 2,500 | | 2.5D-12L and 12R | |
750 | | 4D-V | 5,000 | | | Test Points | Candela | Candela | |----------------|---------|---------| | (degrees) | maximum | minimum | | 10U-90U | 125 | - | | 4U-8L and 8R | - | 64 | | 2U-4L | - | 135 | | 1.5U-1R to 3R | - | 200 | | 1.5U-1R to R | 1,400 | - | | 1U-1.5L to L | 700 | | | 0.5U-1.5L to L | 1,000 | 449 | | 0.5U-1R to 3R | 2,700 | 500 | | H-4L | | 135 | | H-8L | - | 64 | | 0.5D-1.5L toL | 2,500 | | | 0.5D-1.5R | 20,000 | 8,000 | | 1D-6L | - | 750 | | 1.5D-2R | | 15,000 | | 1.5D-9L and 9R | - | 750 | | 2D-15L and 15R | _ | 700 | | 4D-4R | 12,500 | | #### **FIGURE 27-2** #### PHOTOMETRIC TEST POINT VALUES #### FOR VISUAL/OPTICAL AIM HEADLIGHTING SYSTEMS #### **UPPER BEAM** | Test Points | Candela | Candela | |------------------|---------|---------| | (degrees) | maximum | minimum | | 2U-V | | 1,000 | | 1U-3L and 3R | | 2,000 | | H-V | 75,000 | 20,000 | | H-3L and 3R | | 10,000 | | H-6L and 6R | | 3,250 | | H-9L and 9R | | 1,500 | | H-12L and 12R | | 750 | | 1.5D-V | | 5,000 | | 1.5D-9L and 9R | | 1,500 | | 2.5D-V | | 2,500 | | 2.5D-12L and 12R | | 750 | | 4D-V | 5,000 | | | Test Points | Candela | Candela | |----------------|---------|---------| | (degrees) | maximum | minimum | | 10U-90U | 125 | J | | 4U-8L and 8R | - | . 64 | | 2U-4L | | 135 | | 1.5U-1R to 3R | | 200 | | 1.5U-1R to R | 1,400 | | | 1U-1.5L to L | 700 | | | 0.5U-1.5L to L | 1,000 | | | 0.5U-1R to 3R | 2,700 | 500 | | H-4L | | 135 | | H-8L | | 64 | | 0.6D-1.3R | | 10,000 | | 0.86D-V | | 4,500 | | 0.86D-3.5L | 12,000 | 1,800 | | 1.5D-2R | | 15,000 | | 2D-9L and 9R | | 1,250 | | 2D-15L and 15R | | 1,000 | | 4D-4R | 12,500 | | | 4D-20L and 20R | | 300 | # **FIGURE 28-1** #### **PHOTOMETRIC TEST POINT VALUES** #### FOR MECHANICAL AIM HEADLIGHTING SYSTEMS #### **UPPER BEAM** | Headlamp Type | 1A1, 1C1, and | 1G1 | 2A1, 2C1, and | 2G1 | |------------------|---------------|---------|---------------|---------| | Test Points | Candela | Candela | Candela | Candela | | | | | | | | (degrees) | maximum | minimum | maximum | minimum | | 2U-V | - | 750 | | 750 | | 1U-3L and 3R | - | 3,000 | - | 2,000 | | H-V | 60,000 | 18,000 | 15,000 | 7,000 | | H-3L and 3R | _ | 12,000 | - | 3,000 | | H-6L and 6R | | 3,000 | - | 2,000 | | H-9L and 9R | | 2,000 | - | 1,000 | | H-12L and 12R | - | 750 | | 750 | | 1.5D-V | | 3,000 | | 2,000 | | 1.5D-9L and 9R | - | 1,250 | - | 750 | | 2.5D-V | - | 1,500 | | 1,000 | | 2.5D-12L and 12R | - | 600 | | 400 | | 4D-V | 5,000 | - | 2,500 | | | Headlamp Type | 2A1, 2C1, and | | | | |----------------|---------------|---------|--|--| | | 2G1 | | | | | Test Points | Candela | Candela | | | | (degrees) | maximum | minimum | | | | 100-900 | 125 | | | | | 4U-8L and 8R | | 64 | | | | 2U-4L | | 135 | | | | 1.5U-1R to 3R | - | 200 | | | | 1.5U-1R to R | 1,400 | - | | | | 1U-1.5L to L | 700 | - | | | | 0.5U-1.5L to L | 1,000 | - | | | | 0.5U-1R to 3R | 2,700 | 500 | | | | H-4L | - | 135 | | | | H-8L | - | 64 | | | | 0.5D-1.5L to L | 2,500 | | | | | 0.5D-1.5R | 20,000 | 8,000 | | | | 1D-6L | | 750 | | | | 1.5D-2R | - | 15,000 | | | | 1.5D-9L and 9R | - | 750 | | | | 2D-15L and 15R | - | 700 | | | | 4D-4R | 12,500 | | | | #### **FIGURE 28-2** #### PHOTOMETRIC TEST POINT VALUES #### FOR VISUAL/OPTICAL AIM HEADLIGHTING SYSTEMS #### **UPPER BEAM** | Headlamp Type | 1A1, 1C1, and | 1G1 | 2A1, 2C1, and | 2G1 | |------------------|---------------|---------|---------------|---------| | Test Points | Candela | Candela | Candela | Candela | | (degrees) | maximum | minimum | maximum | minimum | | 2U-V | - | 750 | | 750 | | 1U-3L and 3R | - | 3,000 | - | 2,000 | | H-V | 60,000 | 18,000 | 15,000 | 7,000 | | H-3L and 3R | - | 12,000 | - | 3,000 | | H-6L and 6R | - | 3,000 | - | 2,000 | | H-9L and 9R | - | 2,000 | _ | 1,000 | | H-12L and 12R | - | 750 | - | 750 | | 1.5D-V | | 3,000 | - | 2,000 | | 1.5D-9L and 9R | | 1,250 | - | 750 | | 2.5D-V | _ | 1,500 | | 1,000 | | 2.5D-12L and 12R | - | 600 | - | 400 | | 4D-V | 5,000 | | 2,500 | - | | Headlamp Type | 2A1, 2C1, and | 2G1 | |----------------|---------------|---------| | Test Points | Candela | Candela | | (degrees) | maximum | minimum | | 10U-90U | 125 | - | | 4U-8L and 8R | | 64 | | 2U-4L | _ | 135 | | 1.5U-1R to 3R | | 200 | | 1.5U-1R to R | 1,400 | | | 1U-1.5L to L | 700 | | | 0.5U-1.5L to L | 1,000 | - | | 0.5U-1R to 3R | 2,700 | 500 | | H-4L | - | 135 | | H-8L | - | 64 | | 0.6D-1.3R | - | 10,000 | | 0.86D-V | - | 4,500 | | 0.86D-3.5L | 12,000 | 1,800 | | 1.5D-2R | - | 15,000 | | 2D-9L and 9R | - | 1250 | | 2D-15L and 15R | - | 1000 | | 4D-4R | 12,500 | | | 4D-20L and 20R | - | 300 | #### 49 CFR Ch. V (10-1-98 Edition) #### § 571.108 # Figure 29—Minimum Photometric Performance of Retroflective Sheeting in Candela/Lux/ Square Meter | | Observation angle | | | | | |----------------|-------------------|-----|------------|-----|--------| | Entrance angle | 0.2 Degree | | 0.5 Degree | | Grade | | | White | Red | White | Red | | | - 4 degree | 250 | 60 | 65 | 15 | DOT-C2 | | 30 degree | 250 | 60 | 65 | 15 | DOT-C2 | | 45 degree | 60 | 15 | 15 | 4 | DOT-C2 | | -4 degree | 165 | 40 | 43 | 10 | DOT-C3 | | 30 degree | 165 | 40 | 43 | 10 | DOT-C3 | | 45 degree | 40 | 10 | 10 | 3 | DOT-C3 | | -4 degree | 125 | 30 | 33 | 8 | DOT-C4 | | 30 degree | 125 | 30 | 33 | 8 | DOT-C4 | | 45 degree | 30 | 8 | 8 | 2 | DOT-C4 | § 571.108 FIGURE 32—MOTORCYCLE AND MOTOR-DRIVEN CYCLE HEADLAMP PHOTOMETRIC REQUIREMENTS | Test Points (deg.) | | Motorcycle | Motor-Driven Cycle (can- | Motor-Driven
Cycle with Single | | |--------------------|---------------|-------------|--------------------------|-----------------------------------|--| | Up or Down | Left or Right | (candela) | dela) | Lamp System (candela) | | | | | Lower Beam | | | | | 1.5U
1.5U | 1R to R | 1400-MAX | 1400-MAX | 1400-MAX. | | | 1U | 1.5L to L | 700-MAX | 700-MAX | 700-MAX. | | | 0.5U | 1.5L to L | 1000-MAX | 1000-MAX | 1000-MAX. | | | 0.5U | 1R to 3R | 2700-MAX | 2700-MAX | 2700-MAX. | | | 1.5D | 9L and 9R | 700-MIN | 2700 10700 | 2700 10700 | | | 2D | 0.0R | 7000-MIN | 5000-MIN | 4000-MIN. | | | 2D | 3L and 3R | 4000-MIN | 3000-MIN | 3000-MIN. | | | 2D | 6L and 6R | 1500-MIN | 1500-MIN | 1500-MIN. | | | 2D | 12L and 12R | 700-MIN | | | | | 3D | 6L and 6R | 800-MIN | 800-MIN | | | | 4D | 0.0R | 2000-MIN | 2000-MIN | 1000-MIN. | | | 4D | 4R | 12500-MAX | 12500-MAX | 12500-MAX. | | | | | Upper Beam | | <u> </u> | | | | I | Оррег Беані | | I | | | 2U | 0.0R | 1000-MIN | | | | | 1U | 3L and 3R | 2000-MIN | 2000-MIN. | | | | 0.0U | 0.0R | 12500-MIN | 10000-MIN. | | | | 0.5D | 0.0R | 20000-MIN | 20000-MIN. | | | | 0.5D | 3L and 3R | 10000-MIN | 5000-MIN. | | | | 0.5D | 6L and 6R | 3300-MIN | 2000-MIN. | | | | 0.5D | 9L and 9R | 1500-MIN | | | | | 0.5D | 12L and 12R | 800-MIN | | | | | 1D | 0.0R | 17500-MIN | 15000-MIN. | | | | 2D | 0.0R | 5000-MIN | 5000-MIN. | | | | 3D | 0.0R | 2500-MIN | 2500-MIN. | | | | 3D | 6L and 6R | | 800-MIN. | | | | 3D | 9L and 9R | 1500-MIN | | | | | 3D | 12L and 12R | 300-MIN | | | | | 4D | 0.0R | 1500-MIN | 7500 1443/ | | | | 4D | 0.0R | 7500-MAX | 7500-MAX. | | | | ANYWHERE | ANYWHERE | 75000-MAX | 75000-MAX. | | | TABLE I—REQUIRED MOTOR VEHICLE LIGHTING EQUIPMENT OTHER THAN HEADLAMPS Multipurpose Passenger Vehicles, Trucks, Trailers, and Buses, of 80 or More Inches Overall Width | Item | Multipurpose passenger vehicles, trucks, and buses | Trailers | Applicable SAE standard or
recommended practice (See
S5 for subreferenced SAE
materials) | |---|--|----------------|---| | Taillamps | 2 red | 2 red | J585e, September 1977. | | Stoplamps | 2 red | 2 red | SAE J1398, May 1985. | | License plate lamp | 1 white | 1 white | J587 October 1981. | | Reflex reflectors | 4 red; 2 amber | 4 red; 2 amber | J594f, January 1977. | | Side marker lamps | 2 red; 2 amber | 2 red; 2 amber | J592e, July 1972. | | Backup lamp | 1 white | None | J593c, February 1968. | | Turn signal lamps | 2 red or amber; 2 amber | 2 red or amber | SAE J1395, April 1985. | | Turn signal operating unit | 1 | None | J589, April 1964. | | Turn signal flasher | 1 | None | J590b, October 1965. | | Vehicular hazard warning signal operating unit. | 1 | None | J910, January 1966. | | Vehicular hazard warning signal flasher | 1 | None | J945, February 1966. | | Identification lamps | 3 amber; 3 red | 3 red | J592e, July 1972. | | Clearance lamps | 2 amber; 2 red | 2 amber, 2 red | J592e, July 1972. | | Intermediate side marker lamps. | 2 amber | 2 amber | J592e, July 1972. | | Intermediate side reflex reflectors. | 2 amber | 2 amber | J594f, January 1977. | | Conspicuity | See S5.7 | See S5.7 | See S5.7 | #### TABLE II—LOCATION OF REQUIRED EQUIPMENT Multipurpose Passenger Vehicles, Trucks, Trailers, and Buses, of 80 or More Inches Overall Width | | Location | on on— | Height above road
surface measured | |---|--|--|---| | Item | Multipurpose passenger vehicles, trucks, and buses | Trailers | from center of item
on vehicle at curb
weight | | Headlamps | On the front, each headlamp providing the upper beam, at the same height, 1 on each side of the vertical centerline, each headlamp providing the lower beam, at the same
height, 1 on each side of the vertical centerline, as far apart as practicable. See also S7. | Not required | Not less than 22
inches (55.9 cm)
nor more than 54
inches (137.2
cm). | | Taillamps | On the rear, 1 on each side of the verti-
cal centerline, at the same height,
and as far apart as practicable. | On the rear, 1 on each side of the verti-
cal centerline, at the same height,
and as far apart as practicable. | Not less than 15 inches, nor more than 72 inches. | | Stop lamps | do | do | Do. | | License plate lamp | At rear license plate, to illuminate the plate from the top or sides. | At rear license plate, to illuminate the plate from the top or sides. | No requirement. | | Backup lamp | On the rear | Not required | Do. | | Turn signal lamps | At or near the front—1 amber on each side of the vertical centerline, at the same height, and as far apart as practicable. On the rear—1 red or amber on each | On the rear—1 red or amber on each side of the vertical centerline, at the same height, and as far apart as practicable. | Not less than 15 inches, nor more than 83 inches. | | Identification lamps | side of the vertical centerline, at the same height, and as far apart as practicable. On the front and rear—3 lamps, amber | On the rear—3 lamps as close as prac- | No requirement. | | | in front, red in rear, as close as practicable to the top of the vehicle, at the same height, as close as practicable to the vertical centerline, with lamp centers spaced not less than 6 inches or more than 12 inches apart. Alternatively, the front lamps may be located as close as practicable to the top of the cab. | ticable to the top of the vehicle at the same height, as close as practicable to the vertical centerline, with lamp centers spaced not less than 6 inches or more than 12 inches apart. | | | Clearance lamps | On the front and rear—2 amber lamps on front, 2 red lamps on rear, to indicate the overall width of the vehicle, one on each side of the vertical centerline, at the same height, and as near the top as practicable. | On the front and rear—2 amber lamps on front, 2 red lamps on rear, to indicate the overall width of the vehicle, one on each side of the vertical centerline, at the same height, and as near the top thereof as practicable 2.34. | Do. | | Intermediate side
marker lamps. | On each side—1 amber lamp located at or near the midpoint between the front and rear side marker lamps. | On each side—1 amber lamp located at or near the midpoint between the front and rear side marker lamps. | Not less than 15 inches. | | Intermediate side re-
flex reflectors. | On each side—1 amber located at or near the midpoint between the front and rear side reflex reflectors. | On each side—1 amber located at or near the midpoint between the front and rear side reflex reflectors. | Not less than 15 inches nor more than 60 inches. | | Conspicuity | See S5.7 | See S5.7 | See S5.7 | | Reflex reflectors | On the rear—1 red on each side of the vertical centerline, as far apart as practicable, and at the same height. On each side—1 red as far to the rear as practicable, and 1 amber as far to the front as practicable. | On the rear—1 red on each side of the vertical centerline, as far apart as practicable, and at the same height. On each side—1 red as far to the rear as practicable, and 1 amber as far to the front as practicable. | Do. | | Side marker lamps | do | do | Not less than 15 inches, and on the rear of trailers not more than 60 inches. | #### TABLE III—REQUIRED MOTOR VEHICLE LIGHTING EQUIPMENT [All Passenger Cars and Motorcycles, and Multipurpose Passenger Vehicles, Trucks, Buses and Trailers of Less Than 80 (2032) Inches (mm) Overall Width] | Item | Passenger cars, multipurpose passenger vehicles, trucks, and buses | Trailers | Motorcycles | Applicable SAE
standard or rec-
ommended practice
(See S5 for subref-
erenced SAE mate-
rials) | |---|--|----------------|--------------------------|---| | Headlamps
Taillamps | See S72 red | None
2 red | See S7.9 | J566 January 1960.
J585e, September
1977. | | Stoplamps | 2 red | 2 red | 1 red | SAE J586, February | | High-mounted stoplamp. | 1 red | Not required | Not required | J186a, September | | License plate lamp | 1 white | 1 white | 1 white | J587, October 1981. | | Parking lamps | 2 amber or white | None | None | J222, December 1970. | | Reflex reflectors | 4 red; 2 amber | 4 red; 2 amber | 3 red; 2 amber | J594f, January 1977. | | Intermediate side
reflex reflectors. | 2 amber | 2 amber | None | J594f, January 1977. | | Intermediate side
marker lamps. | 2 amber | 2 amber | None | J592e, July 1972. | | Side marker lamps | 2 red; 2 amber | 2 red; 2 amber | None | J592e, July 1972. | | Backup lamp | 1 white | None | None | J593c, February
1968. | | Turn signal lamps | 2 red or amber; 2 amber | 2 red or amber | 2 amber; 2 red or amber. | SAE J588, November 1984. | | Turn signal operat-
ing unit.3,&4. | 1 | None | 1 | J589, April 1964. | | Turn signal flasher | 1 | None | 1 | J590b, October 1965. | | Vehicular hazard
warning signal
operating unit. | 1 | None | None | J910, January 1966. | | Vehicular hazard warning signal flasher. | 1 | None | None | J945, February 1966. | #### TABLE IV—LOCATION OF REQUIRED EQUIPMENT [All Passenger Cars and Motorcycles, and Multipurpose Passenger Vehicles, Trucks, Trailers, and Buses of Less than 80 (2032) Inches (MM) Overall Width] | | Lo | cation on- | Height above road surface measured | | |------------------------|---|---|--|--| | Item | Passenger cars, multipurpose
passenger vehicles, trucks, trail-
ers, and buses | Motorcycles | from center of item
on vehicle at curb
weight | | | Headlamps | On the front, each headlamp providing the lower beam, at the same height, 1 on each side of the vertical centerline, each headlamp providing the upper beam, at the same height, 1 on each side of the vertical centerline, as far apart as practicable. See also S7. | See S7.9 | Not less than 22
inches (55.9 cm)
nor more than 54
inches (137.2 cm). | | | Taillamps | On the rear—1 on each side of
the vertical centerline, at the
same height, and as far apart
as practicable. | On the rear—on the vertical centerline except that if two are used, they shall be symmetrically disposed about the vertical centerline. | Not less than 15 inches, nor more than 72 inches. | | | Stoplamps | On the rear—1 on each side of
the vertical centerline, at the
same height, and as far apart
as practicable. | On the rear—on the vertical centerline except that if two are used, they shall be symmetrically disposed about the vertical centerline. | Not less than 15 inches, nor more than 72 inches. | | | High-mounted stoplamp. | On the rear, on the vertical centerline [See S5.1.1.27, S5.3.1.8, and Table III], effective September 1, 1985, for passenger cars only. | Not required | See S5.3.1.8 for pas-
senger cars. Not
less than 34
inches for multipur-
pose passenger
vehicles, trucks,
and buses. | | #### TABLE IV—LOCATION OF REQUIRED EQUIPMENT—Continued [All Passenger Cars and Motorcycles, and Multipurpose Passenger Vehicles, Trucks, Trailers, and Buses of Less than 80 (2032) Inches (MM) Overall Width] | | Lo | cation on- | Height above road
surface measured | |--------------------------------------|--|--|---| | Item | Passenger cars, multipurpose passenger vehicles, trucks, trailers, and buses | Motorcycles | from center of item on vehicle at curb weight | | License plate lamp | At rear license plate, to illuminate the plate from the top or sides. | At rear license plate | No requirement. | | Parking lamps | On the front—1 on each side of the vertical centerline, at the same height, and as far apart as practicable. | Not required | Not less than 15 inches, nor more than 72 inches. | | Reflex reflectors | On the rear—1 red on each side of the vertical centerline, at the same height, and as far apart as practicable. On each side—1 red as far to the rear as practicable, and 1 amber as far to the front as practicable. | On the rear—1 red on the vertical center-
line except that, if two are used on the
rear, they shall be symmetrically dis-
posed about the vertical centerline.
On each side—1 red as far to the rear as
practicable, and 1 amber as far to the
front as practicable. | Not less than 15 inches, nor more than 60 inches. | | Backup lamp
Turn signal lamps | On the rear | Not required | No requirement.
No requirement.
Not less than 15
inches, nor more
than 83 inches. | | Side marker lamps | On each side—1 red
as far to the rear as practicable, and 1 amber as far to the front as practicable. | Not required | Not less than 15 inches. | | Intermediate side
marker lamps. | On each side—1 amber located at or near the midpoint between the front and rear side marker lamps. | Not required | Not less than 15 inches. | | Intermediate side marker reflectors. | On each side—1 amber located at or near the midpoint between the front and rear side marker reflectors. | Not required | Not less than 15 inches, nor more than 60 inches. | [41 FR 35522, Aug. 23, 1976] EDITORIAL NOTE: For FEDERAL REGISTER citations affecting \$571.108, see the List of $\,$ section of this volume. CFR Sections Affected in the Finding Aids >NOTE: (1) The term *overall width* refers to the nominal design dimension of the widest part of the vehicle, exclusive of signal lamps, marker lamps, outside rearview mirrors, flexible fender extensions, and mud flaps, determine with doors and windows closed, and the wheels in the straight-ahead position. This supersedes the interpretation of the term "overall width" appearing in the FEDERAL REGISTER of March 1, 1967 (32 FR 3390). (2) Paragraph S3.1 and Tables I and Ill of §571.108 as amended (32 FR 18033, Dec. 16, 1967), specify that certain lamp assemblies shall conform to applicable SAE Standards. Each of these basically referenced standards subreferences both SAE Standard J575 (tests for motor vehicle lighting devices and components) which in turn references SAE Standard J573 on bulbs, and SAE Standard J567 on bulb sockets. (3) Paragraph C of SAE Standard J575 states in part: "Where special bulbs are specified, they should be submitted with the devices and the same or similar bulbs used in the tests and operated at their rated mean spherical candlepower." The Administrator has determined that this provision of SAE Standard J575 permits the use of special bulbs, including tubular-type bulbs, which do not conform to the detailed requirements of Table I of SAE Standard J573. It follows that the sockets for special bulbs need not conform to the detailed requirements of SAE Standard J575. These provisions for special bulbs in no way except the lamp assemblies from meeting all performance requirements specified in Federal Standard No. 108, including those specified in the basically referenced SAE Standards, and in the subreferenced SAE Standard J575. # §571.109 Standard No. 109; New pneumatic tires. S1. Scope. This standard specifies tire dimensions and laboratory test requirements for bead unseating resistance, strength, endurance, and high speed performance; defines tire load ratings; and specifies labeling requirements for passenger car tires. S2. Application. This standard applies to new pneumatic tires for use on passenger cars manufactured after 1948. However, it does not apply to any tire which has been altered so as to render impossible its use, or its repair for use, as motor vehicle equipment. S3. Definitions *Bead* means that part of the tire made of steel wires, wrapped or reinforced by ply cords, that is shaped to fit the rim. Bead separation means a breakdown of bond between components in the bead area. Bias ply tire means a pneumatic tire in which the ply cords that extend to the beads are laid at alternate angles substantially less than 90° to the centerline of the tread. Carcass means the tire structure, except tread and sidewall rubber. *Chunking* means the breaking away of pieces of the tread or sidewall. *Cord* means the strands forming the plies in the tire. Cord separation means cords parting away from adjacent rubber compounds. Cracking means any parting within the tread, sidewall, or innerliner of the tire extending to cord material. CT means a pneumatic tire with an inverted flange tire and rim system in which the rim is designed with rim flanges pointed radially inward and the tire is designed to fit on the underside of the rim in a manner that encloses the rim flanges inside the air cavity of the tire. *Groove* means the space between two adjacent tread ribs. Innerliner means the layer(s) forming the inside surface of a tubeless tire that contains the inflating medium within the tire. Innerliner separation means the parting of the innerliner from cord material in the carcass. Load rating means the maximum load a tire is rated to carry for a given inflation pressure. Maximum permissible inflation pressure means the maximum cold inflation pressure to which a tire may be inflated *Maximum load rating* means the load rating at the maximum permissible inflation pressure for that tire. Open splice means any parting at any junction of tread, sidewall, or innerliner that extends to cord material. Overall width means the linear distance between the exteriors of the sidewalls of an inflated tire, including elevations due to labeling, decorations, or protective bands or ribs. *Ply* means a layer of rubber-coated parallel cords. *Ply separation* means a parting of rubber compound between adjacent plies. Pneumatic tire means a mechanical device made of rubber, chemicals, fabric and steel or other materials, which, when mounted on an automotive wheel, provides the traction and contains the gas or fluid that sustains the Radial ply tire means a pneumatic tire in which the ply cords which extend to the beads are laid at substantially 90° to the centerline of the tread. *Rim* means a metal support for a tire or a tire and tube assembly upon which the tire beads are seated. Section width means the linear distance between the exteriors of the sidewalls of an inflated tire, excluding elevations due to labeling, decoration, or protective bands. Sidewall means that portion of a tire between the tread and the bead. *Sidewall separation* means the parting of the rubber compound from the cord material in the sidewall. Test rim means, with reference to a tire to be tested, any rim that is listed as appropriate for use with that tire in accordance with S4.4. For purposes of this section and §571.110, each rim listing shall include dimensional specifications and a diagram of the rim. Tread means that portion of a tire that comes into contact with the road. *Tread rib* means a tread section running circumferentially around a tire. *Tread separation* means pulling away of the tread from the tire carcass. S4. Requirements. S4.1 *Size and construction.* Each tire shall be designed to fit each rim specified for its size designation in each reference cited in the definition of *test rim* in S3. S4.2 Performance requirements. S4.2.1 *General.* Each tire shall conform to each of the following: (a) It shall meet the requirements specified in S4.2.2 for its tire size designation, type, and maximum permissible inflation pressure. (b) Its maximum permissible inflation pressure shall be either 32, 36, 40, or 60 psi, or 240, 280, 300, 340, or 350 kPa. For a CT tire, the maximum permissible inflation pressure shall be either 290, 330, 350, or 390 kPa. (c) Its load rating shall be that specified in a submission made by an individual manufacturer, pursuant S4.4.1(a), or in one of the publications described in S4.4.1(b) for its size designation, type and each appropriate inflation pressure. If the maximum load rating for a particular tire size is shown in more than one of the publications described in S4.4.1(b), each tire of that size designation shall have a maximum load rating that is not less than the published maximum load rating, or if there are differing maximum load ratings for the same tire size designation, not less than the lowest published maximum load rating. (d) It shall incorporate a tread wear indicator that will provide a visual indication that the tire has worn to a tread depth of $\frac{1}{16}$ inch. (e) It shall, before being subjected to either the endurance test procedure specified in S5.4 or the high speed performance procedure specified in S5.5, exhibit no visual evidence of tread, sidewall, ply, cord, innerliner, or bead separation, chunking, broken cords, cracking, or open splices. (f) It shall meet the requirements of S4.2.2.5 and S4.2.2.6 when tested on a test wheel described in S5.4.2.1 either alone or simultaneously with up to 5 other tires. S4.2.2 Test requirements. S4.2.2.1 *Test sample.* For each test sample use: - (a) One tire for physical dimensions, resistance to bead unseating, and strength, in sequence; - (b) Another tire for tire endurance; and - (c) A third tire for high speed performance. S4.2.2.2 Physical dimensions. The actual section width and overall width for each tire measured in accordance with S5.1, shall not exceed the section width specified in a submission made by an individual manufacturer, pursuant to S4.4.1(a) or in one of the publications described in S4.4.1(b) for its size designation and type by more than: (a) (For tires with a maximum permissible inflation pressure of 32, 36, or 40 psi) 7 percent, or (b) (For tires with a maximum permissible inflation pressure of 240, 280, 290, 300, 330, 350 or 390 kPa, or 60 psi) 7 percent or 10 mm (0.4 inches), whichever is larger. S4.2.2.3 Tubeless tire resistance to bead unseating. S4.2.2.3.1 When a tubeless tire that has a maximum inflation pressure other than 60 psi is tested in accordance with S5.2, the applied force required to unseat the tire bead at the point of contact shall be not less than: (a) 1,500 pounds for tires with a designated section width of less than six (6) inches; (b) 2,000 pounds for tires with a designated section width of six (6) inches or more but less than eight (8) inches; (c) 2,500 pounds for tires with a designated section width of eight (8) inches or more, using the section width specified in a submission made by an individual manufacturer, pursuant to S4.4.1(a), or in one of the publications described in S4.4.1(b) for the applicable tire size designation and type. S4.2.2.3.2 When a tire that has a maximum inflation pressure of 60 psi is tested in accordance with S5.2, the applied force required to unseat the
bead at the point of contact shall be not less than: (a) 1,500 pounds for tires with a maximum load rating of less than 880 pounds; (b) 2,000 pounds for tires with a maximum load rating of 880 pounds or more but less than 1,400 pounds; (c) 2,500 pounds for tires with a maximum load rating of 1,400 pounds or more, using the maximum load rating marked on the sidewall of the tire. S4.2.2.4 *Tire strength.* Each tire shall meet the requirements for minimum breaking energy specified in Table 1 when tested in accordance with S5.3. S4.2.2.5 *Tire endurance.* When the tire has been subjected to the laboratory endurance test specified in S5.4, using a test rim that undergoes no permanent deformation and allows no loss of air through the portion that it comprises of the tire-rim pressure chamber: (a) There shall be no visual evidence of tread, sidewall, ply, cord, innerliner, or bead separation, chunking, broken cords, cracking, or open splices. (b) The tire pressure at the end of the test shall be not less than the initial pressures specified in S5.4.1.1. S4.2.2.6 High speed performance. When the tire has been subjected to the laboratory high speed performance test specified in S5.5, using a test rim that undergoes no permanent deformation and allows no loss of air through the portion that it comprises of the tirerim pressure chamber, the tire shall meet the requirements set forth in S4.2.2.5 (a) and (b). S4.3 Labeling Requirements. Except as provided in S4.3.1 and S4.3.2, each tire shall have permanently molded into or onto both sidewalls, in letters and numerals not less than 0.078 inches high, the information shown in paragraphs S4.3 (a) through (g). On at least one sidewall, the information shall be positioned in an area between the maximum section width and bead of the tire, unless the maximum section width of the tire falls between the bead and one-fourth of the distance from the bead to the shoulder of the tire. For tires where the maximum section width falls in that area, locate all required labeling between the bead and a point one-half the distance from the bead to the shoulder of the tire. However, in no case shall the information be positioned on the tire so that it is obstructed by the flange or any rim designated for use with that tire in Standards Nos. 109 and 110 (§ 571.109 and §571.110 of this part). (a) One size designation, except that equivalent inch and metric size designations may be used: - (b) Maximum permissible inflation pressure; - (c) Maximum load rating; - (d) The generic name of each cord material used in the plies (both sidewall and tread area) of the tire; - (e) Actual number of plies in the sidewall, and the actual number of plies in the tread area if different; - (f) The words "tubeless" or "tube type" as applicable; and - (g) The word "radial" if the tire is a radial ply tire. S4.3.1 Each tire shall be labeled with the symbol DOT in the manner specified in part 574 of this chapter, which shall constitute a certification that the tire conforms to applicable Federal motor vehicle safety standards. S4.3.2 Each tire shall be labeled with the name of the manufacturer, or brand name and number assigned to the manufacturer in the manner specified in part 574. S4.3.3 [Reserved] S4.3.4 If the maximum inflation pressure of a tire is 240, 280, 290, 300, 330, 340, 350, or 390 kPa, then: - (a) Each marking of that inflation pressure pursuant to S4.3(b) shall be followed in parenthesis by the equivalent inflation pressure in psi, rounded to the next higher whole number; and - (b) Each marking of the tire's maximum load rating pursuant to S4.3(c) in kilograms shall be followed in parenthesis by the equivalent load rating in pounds, rounded to the nearest whole number. S4.3.5 If the maximum inflation pressure of a tire is 420 kPa (60 psi), the tire shall have permanently molded into or onto both sidewalls, in letters and numerals not less than 1/2 inch high, the words "Inflate to 60 psi" or "Inflate to 420 kPa (60 psi)." On both sidewalls, the words shall be positioned in an area between the tire shoulder and the bead of the tire. However, in no case shall the words be positioned on the tire so that they are obstructed by the flange of any rim designated for use with that tire in this standard or in Standard No. 110 (§571.110 of this part). S4.4 Tire and rim matching information. - S4.4.1 Each manufacturer of tires shall ensure that a listing of the rims that may be used with each tire that he produces is provided to the public. A listing compiled in accordance with paragraph (a) of this section need not include dimensional specifications or diagram of a rim if the rim's dimensional specifications and diagram are contained in each listing published in accordance with paragraph (b) of this standard. The listing shall be in one of the following forms: - (a) Listed by manufacturer name or brand name in a document furnished to dealers of the manufacturer's tires, to any person upon request, and in duplicate to the Docket Section, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590; or - (b) Contained in publications, current at the date of manufacture of the tire or any later date, of at least one of the following organizations: The Tire and Rim Association The European Tyre and Rim Technical Organisation Japan Automobile Tire Manufacturers' Association, Inc. Deutsche Industrie Norm British Standards Institution Scandinavian Tire and Rim Organization The Tyre and Rim Association of Australia S4.4.2 Information contained in any publication specified in S4.4.1(b) which lists general categories of tires and rims by size designation, type of construction and/or intended use, shall be considered to be manufacturer's information pursuant to S4.4.1 for the listed tires and rims, unless the publication itself or specific information provided according to S4.4.1(a) indicates otherwise. S5. Test procedures. S5.1 *Physical Dimensions*. Determine tire physical dimensions under uniform ambient conditions as follows: - (a) Mount the tire on a test rim having the test rim width specified in a submission made by an individual manufacturer, pursuant to S4.4.1(a), or in one of the publications described in S4.4.1(b) for that tire size designation and inflate it to the applicable pressure specified in Table II. - (b) Condition it at ambient room temperature for at least 24 hours. - (c) Readjust pressure to that specified in (a). - (d) Caliper the section width and overall width at six points approximately equally spaced around the tire circumference. - (e) Record the average of these measurements as the section width and overall width, respectively. - (f) Determine tire outer diameter by measuring the maximum circumference of the tire and dividing this dimension by pi (3.14). - S5.2 Tubeless tire bead unseating resistance. - S5.2.1 Preparation of tire-wheel assembly. - S5.2.1.1 Wash the tire, dry it at the beads, and mount it without lubrication or adhesives on a clean, painted test rim. - S5.2.1.2 Inflate it to the applicable pressure specified in Table II at ambient room temperature. - S5.2.1.3 Mount the wheel and tire in a fixture shown in Figure 1, and force the bead unseating block shown in Figure 2 or Figure 2A against the tire sidewall as required by the geometry of the fixture. However, in testing a tire that has an inflation pressure of 60 psi, only use the bead unseating block described in Figure 2A. - S5.2.2 Test procedure. - S5.2.2.1 Apply a load through the block to the tire outer sidewall at the distance specified in Figure 1 for the applicable wheel size at a rate of 2 inches per minute, with the load arm substantially parallel to the tire and rim assembly at the time of engagement. - S5.2.2.2 Increase the load until the bead unseats or the applicable value specified in S4.2.2.3 is reached. - S5.2.2.3 Repeat the test at least four places equally spaced around the tire circumference. S5.3 Tire strength. S5.3.1 Preparation of tire. S5.3.1.1 Mount the tire on a test rim and inflate it to the applicable pressure specified in Table II. S5.3.1.2 Condition it at room temperature for at least 3 hours; and S5.3.1.3 Readjust its pressure to that specified in S5.3.1.1. S5.3.2 Test procedure. S5.3.2.1 Force a ¾-inch diameter cylindrical steel plunger with a hemispherical end perpendicularly into the tread rib as near to the centerline as possible, avoiding penetration into the tread groove, at the rate of 2 inches per minute. S5.3.2.2 Record the force and penetration at five test points equally spaced around the circumference of the tire. If the tire fails to break before the plunger is stopped by reaching the rim, record the force and penetration as the rim is reached and use these values in S5.3.2.3. S5.3.2.3 Compute the breaking energy for each test point by means of the following formula: #### $W=[(F\times P)/2]$ where *W*=Energy, inch-pounds; *F*=Force, pounds; and *P*=Penetration, inches. S5.3.2.4 Determine the breaking energy value for the tire by computing the average of the five values obtained in accordance with S5.3.2.3. S5.4 Tire endurance. S5.4.1 Preparation of tire. S5.4.1.1 Mount a new tire on a test rim and inflate it to the applicable pressure specified in Table II. S5.4.1.2 Condition the tire assembly to $100\pm5^{\circ}$ F. for at least three hours. S5.4.1.3 Readjust tire pressure to that specified in S5.4.1.1 immediately before testing. S5.4.2 Test procedure. S5.4.2.1 Mount the tire and wheel assembly on a test axle and press it against a flat-faced steel test wheel 67.23 inches in diameter and at least as wide as the section width of the tire to be tested or an approved equivalent test wheel, with the applicable test load specified in the table in S5.4.2.3 for the tire's size designation, type, and maximum permissible inflation pressure. S5.4.2.2 During the test, the air surrounding the test area shall be $100\pm5^{\circ}$ F. S5.4.2.3 Conduct the test at 50
miles per hour in accordance with the following schedule without pressure adjustment or other interruptions: The loads for the following periods are the specified percentage of the maximum load rating marked on the tire sidewall: | | Percent | |----------|---------| | 4 hours | 85 | | 6 hours | 90 | | 24 hours | 100 | S5.4.2.4 Immediately after running the tire the required time, measure its inflation pressure. Allow the tire to cool for one hour. Then deflate the tire, remove it from the test rim, and inspect it for the conditions specified in S4.2.2.5(a). S5.5 High speed performance. S5.5.1 After preparing the tire in accordance with S5.4.1, mount the tire and wheel assembly in accordance with S5.4.2.1, and press it against the test wheel with a load of 88 percent of the tire's maximum load rating as marked on the tire sidewall. S5.5.2 Break in the tire by running it for 2 hours at 50 m.p.h. S5.5.3 Allow to cool to $100\pm5^{\circ}F$ and readjust the inflation pressure to the applicable pressure specified in Table II S5.5.4 Without readjusting inflation pressure, test at 75 m.p.h. for 30 minutes, 80 m.p.h. for 30 minutes, and 85 m.p.h. for 30 minutes. S5.5.5 Immediately after running the tire the required time, measure its inflation pressure. Allow the tire to cool for one hour. Then deflate the tire, remove it from the test rim, and inspect it for the conditions specified in S4.2.2.5(a). S6. Nonconforming tires. No tire that is designed for use on passenger cars and manufactured on or after October 1, 1972, but does not conform to all the requirements of this standard, shall be sold, offered for sale, introduced or delivered for introduction into interstate commerce, or imported into the United States, for any purpose. # Privot on Centerline of Beam Horizontal) of Beam 9 3 to Bottom of Anvi FIGURE 1-BEAD UNSEATING FIXTURE-DIMENSIONS IN INCHES #### FIGURES TO STANDARD 109 | Wheel sizes | Dimension '
with maximu
press | um inflation | |-------------|-------------------------------------|------------------------| | | Other than 60 lbs/in ² | 60 lbs/in ² | | 19 | 13.00 | 12.00 | | 18 | 12.50 | 11.40 | | 17 | 12.00 | 10.60 | | 16 | 11.50 | 9.90 | | 15 | 11.00 | 9.40 | | 14 | 10.50 | 8.90 | | 13 | 10.00 | 8.40 | | 12 | 9.50 | | | 11 | 9.00 | | | 10 | 8.50 | | | 320mm | 8.50 | | | 340mm | 9.00 | | | 345mm | 9.25 | | | 365mm | 9.75 | | | 370mm | 10.00 | | | 390mm | 11.00 | | | 415mm | 11.50 | | | 400mm(1) | 10.25 | | | 425mm(1) | 10.75 | | | 450mm(1) | 11.25 | | | 475mm(1) | 11.75 | | | 500mm(1) | 12.25 | | ⁽¹⁾ for CT tires only. MATERIAL: Cast Aluminum 355 T-6 Condition Finish-50 Micro Inch FIGURE 2 — Diagram of Bead Unseating Block Dimensions in Inches FIGURE 2A — DIAGRAM OF BEAD UNSEATING BLOCK DIMENSIONS IN INCHES #### APPENDIX A—FEDERAL MOTOR VEHICLE SAFETY STANDARD NO. 109 The following tables list tire sizes and tire constructions with proper load and inflation values. The tables group tires of related constructions and load/inflation values. Persons requesting the addition of new tire sizes to the tables or the addition of tables for new tire constructions may, when the additions requested are compatible with existent groupings, or when adequate justification for new tables exists, submit five (5) copies of information and data supporting the request to the Vehicle Dynamics Division, Office of Crash Avoidance Standards, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590. The information should contain the following: 1. The tire size designation, and a statement either that the tire is an addition to a category of tires listed in the tables or that it is in a new category for which a table has not been deloped. - 2. The tire dimensions, including aspect ratio, size factor, section width, overall width, and test rim size. - 3. The load-inflation schedule of the tire. - 4. A statement as to whether the tire size designation and load inflation schedule has been coordinated with the Tire and Rim Association, the European Tyre and Rim Technical Organisation, the Japan Automobile Tire Manufacturers' Association, Inc., the Deutsche Industrie Norm, the British Standards Institution, the Scandinavian Tire and Rim Organization, and the Tyre and Rim Association of Australia. - 5. Copies of test data sheets showing test conditions, results and conclusions obtained for individual tests specified in §571.109. - 6. Justification for the additional tire sizes. TABLE I-A-FOR BIAS PLY TIRES WITH DESIGNATED SECTION WIDTH OF 6 INCHES AND ABOVE | Cord Material | | | Maximu | m permissible i | nflation | | | |---|-----------------------|-----------------------|-----------------------|-----------------|----------------|----------------|----------------| | | 32 lb/in ² | 36 lb/in ² | 40 lb/in ² | 240 kPa | 280 kPa | 300 kPa | 340 kPa | | Rayon (in-lbs)
Nylon or polyester (in-lbs) | 1,650
2,600 | 2,574
3,900 | 3,300
5,200 | 1,650
2,600 | 3,300
5,200 | 1,650
2,600 | 3,300
5,200 | TABLE I-B-FOR BIAS PLY TIRES WITH DESIGNATED SECTION WIDTH BELOW 6 INCHES | Cord Material | Maximum permissible inflation | | | | | | | | |---|-------------------------------|-----------------------|-----------------------|----------------|----------------|----------------|----------------|--| | Cord Material | 32 lb/in ² | 36 lb/in ² | 40 lb/in ² | 240 kPa | 280 kPa | 300 kPa | 340 kPa | | | Rayon (in-lbs)
Nylon or polyester (in-lbs) | 1,000
1,950 | 1,875
2,925 | 2,500
3,900 | 1,000
1,950 | 2,500
3,900 | 1,000
1,950 | 2,500
3,900 | | TABLE I-C-FOR RADIAL PLY TIRES | | | Maximum Permissible Inflation | | | | | | | | | | | | | |---|-------|-------------------------------|-------|------------|------------|-------|-------|-------|----------|-------|-------|-------|---|--| | Size Des- | | | Tir | es other t | han CT tir | es | | | CT Tires | | | | | | | ignation | | | ation | | psi kPa | | | | | | | kP | а | | | | 32 | 36 | 40 | 240 | 280 | 300 | 340 | 350 | 290 | 330 | 350 | 390 | | | | Below
160mm
(in-lbs)
160mm or
above | 1,950 | 2,925 | 3,900 | 1,950 | 3,900 | 1,950 | 3,900 | 1,950 | 1,950 | 3,900 | 1,950 | 3,900 | | | | (in-lbs) | 2,600 | 3,900 | 5,200 | 2,600 | 5,200 | 2,600 | 5,200 | 2,600 | 2,600 | 5,200 | 2,600 | 5,200 | | | Table I–D—For Tires With 60 Lb/in² Maximum Permissible Inflation Pressure and Maximum Load Rating Below 880 Lb. and above | Cord material | Inch-
pounds | |---------------|-----------------| | Rayon | 1,650
2,600 | Table I–E—For Tires With 60 Lb/In² Maximum Permissible Inflation Pressure and Maximum Load Rating Below 880 Lb. | Cord material | Inch-
pounds | |---------------|-----------------| | Rayon | 1,000
1,950 | #### TABLE II—TEST INFLATION PRESSURES [Maximum permissible inflation pressure to be used for the following test] | | | | Т | ires oth | er than | CT tire | s | | | | CT t | ires | | |--|----------|----------|----------|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Test type | | р | si | | | | kPa | | | | kP | 'a | | | | 32 | 36 | 40 | 60 | 240 | 280 | 300 | 340 | 350 | 290 | 300 | 350 | 390 | | Physical dimensions, bead unseating, tire strength, and tire endurance | 24
30 | 28
34 | 32
38 | 52
58 | 180
220 | 220
260 | 180
220 | 220
260 | 180
220 | 230
270 | 270
310 | 230
270 | 270
310 | [38 FR 30235, Nov. 1, 1973] EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §571.109, see the List of CFR Sections Affected in the Finding Aids section of this volume. EFFECTIVE DATE NOTE: At 63 FR 28914, May 27, 1998, §571.109 was amended by revising in S4.2.1, paragraph (d); revising S4.2.2.3.1; revising \$4.2.2.3.2; revising the first sentence of S4.3 Labeling Requirements introductory paragraph; revising the first sentence of S4.3.5; revising S5.2.2.1; revising S5.3.2.1; revising S5.3.2.3; revising S5.4.1.2; revising S5.4.2.1; revising S5.4.2.2; revising S5.4.2.3; revising S5.5.2; revising S5.5.3; and revising S5.5.4; by revising Figure 1—"Bead Unseating Fixture—Dimensions in Inches", the Table titled "Figures for Standard No. 109", Figure 2-"Diagram of Beat Unseating Block Dimensions in Inches", and Figure 2A-"Diagram of Bead Unseating Block-Dimensions in Inches' after S6, and preceding Appendix A; by revising in Appendix A, Table 1-A— "For Bias Ply Tires with Designated Section Width of 6 Inches and Above", Table 1-B 'For Bias Ply Tires with Designated Section Width Below 6 Inches", Table 1-C "For Radial Ply Tires", Table 1-D "For Tires with 60 lb/in2 Maximum Permissible Inflation Pressure and Maximum Load Rating Below 880 Lb. And Above", and Table 1-E "For Tires With 60 lb/in² Maximum Permissible Inflation Pressure and Maximum Load Rating Below 880 Lb", effective May 27, 2003. # § 571.109 Standard No. 109, New pneumatic tires. * * * * * S4.2.1. *General.* Each tire shall conform to each of the following: * * * * * (d) It shall incorporate a tread wear indicator that will provide a visual indication that the tire has worn to a tread depth of 1.6 mm (y_{16} inch). * * * * * S4.2.2.3.1 When a tubeless tire that has a maximum inflation pressure other than 420 kPa (60 psi) is tested in accordance with S5.2, the applied force required to unseat the tire bead at the point of contact shall be not less than: (a) 6,670 N (1,500 pounds) for tires with a designated section width of less than 160 mm (6 inches): (b) 8,890 N (2,000 pounds) for tires with a designated section width of 160 mm (6 inches) or more but less than 205 mm (8 inches): (c) 11,120 N (2,500 pounds) for tires with a designated section width of 205 mm (8 inches) or more, using the section width specified in a submission made
by an individual manufacturer, pursuant to S4.4.1(a), or in one of the publications described in S4.4.1(b) for the applicable tire size designation and type. S4.2.2.3.2 When a tire that has a maximum inflation pressure of 420 kPa (60 psi) is tested in accordance with S5.2, the applied force required to unseat the bead at the point of contact shall be not less than: - (a) 6,670 N (1,500 pounds) for tires with a maximum load rating of less than 399 kg (880 pounds); - (b) 8,890 N (2,000 pounds) for tires with a maximum load rating of 399 kg (880 pounds) or more but less than 635 kg (1,400 pounds); #### § 571.109, Nt. (c) 11,120 N (2,500 pounds) for tires with a maximum load rating of 635 kg (1,400 pounds) or more, using the maximum load rating marked on the sidewall of the tire. S4.3 Labeling Requirements. Except as provided in S4.3.1 and S4.3.2, each tire shall have permanently molded into or onto both sidewalls, in letters and numerals not less than 2 mm (0.078 inches) high, the information shown in paragraphs S4.3 (a) and (g). * * S4.3.5 If the maximum inflation pressure of a tire is 420 kPa (60 psi), the tire shall have permanently molded into or onto both sidewalls, in letters and numerals not less than 12.7 mm (1/2 inch), the words "Inflate to 420 kPa (60 psi)". * * * S5.2.2.1 Apply a load through the block to the tire's outer sidewall at the distance specified in Figure 1 for the applicable wheel size at a rate of 50 mm (2 inches) per minute, with the load arm substantially parallel to the tire and rim assembly at the time of engagement. S5.3.2.1 Force a 19 mm (¾ inch) diameter cylindrical steel plunger with a hemispherical end perpendicularly into the tread rib as near to the centerline as possible, avoiding penetration into the tread groove, at the rate of 50 mm (2 inches) per minute. S5.3.2.3 Compute the breaking energy for each test point by means of one of the two following formulas: $W=[(F\times P)/2]\times 10^{\times 3}$ (joules) Where W=Energy, in joules; F=Force, Newtons; and P=Penetration, mm; or 49 CFR Ch. V (10-1-98 Edition) Where $W=[(F\times P)/2]$ W=Energy, inch-pounds; F=Force, pounds; and P=Penetration, inches. S5.4.1.2 Condition the tire assembly to 38°±3° C (100°±5° F) for at least three hours. S5.4.2.1 Mount the tire and wheel assembly on a test axle and press it against a flatfaced steel test wheel 1708 mm (67.23 inches) in diameter and at least as wide as the section width of the tire to be tested or an approved equivalent test wheel, with the applicable test load specified in the table in S5.4.2.3 for the tire's size designation, type and maximum permissible inflation pressure. S5.4.2.2 During the test, the air surrounding the test area shall be 38°±3° C (100°±5° F). S5.4.2.3 Conduct the test at 80 kilometers per hour (km/h)(50 miles per hour) in accordance with the following schedule without pressure adjustment or other interruptions: The loads for the following periods are the specified percentage of the maximum load rating marked on the tire sidewall: | | Percent | |----------|---------| | 4 hours | 85 | | 6 hours | 90 | | 24 hours | 100 | | | | S5.5.2 Break in the tire by running it for 2 hours at 80 km/h (50 mph). S5.5.3 Allow to cool to 38°±3° C (100°±5° F) and readjust the inflation pressure to the applicable pressure specified in Table II. S5.5.4 Without readjusting inflation pressure, test at 121 km/h (75 mph) for 30 minutes, 129 km/h (80 mph) for 30 minutes, and 137 km/h (85 mph) for 30 minutes. Figure 1.—Bead Unseating Fixture All Dimensions in Millimeters (mm) FIGURES FOR STANDARD 109 | | Dimension "A | " for tires with | maximum inflation pressure | | |-------------|-------------------|-----------------------|----------------------------|---------| | Wheel sizes | Other than 60 psi | Other than
420 kPa | 60 psi | 420 kPa | | 19 | 13.00 in | 330 | 12.00 in | 305 | | 18 | 12.50 in | 318 | 11.40 in | 290 | | 17 | 12.00 in | 305 | 10.60 in | 269 | | 16 | 11.50 in | 292 | 9.90 in | 251 | | 15 | 11.00 in | 279 | 9.40 in | 239 | | 14 | 10.50 in | 267 | 8.90 in | 226 | | 13 | 10.00 in | 254 | 8.40 in | 213 | | 12 | 9.50 in | 241 | | | | 11 | 9.00 in | 229 | | | | 10 | 8.50 in | 216 | | | | 320 | 8.50 in | 216 | | | | 340 | 9.00 in | 229 | | | | 345 | 9.25 in | 235 | | | | 365 | 9.75 in | 248 | | | | 370 | 10.00 in | 254 | | | | 390 | 11.00 in | 279 | | | | 415 | 11.50 in | 292 | | | | 4001 | 10.25 in | 260 | | | | 4251 | 10.75 in | 273 | | | | 4501 | 11.25 in | 286 | | | | 4751 | 11.75 in | 298 | | | | 5001 | 12.25 in | 311 | | | ¹ For CT Tires only. Figure 2. DIAGRAM OF BEAD UNSEATING BLOCK All dimensions in millimeters (mm) T-6 Condition Finish-1.3 Micrometer (um) § 571.109, Nt. Figure 2A. DIAGRAM OF BEAD UNSEATING BLOCK All dimensions in millimeters (mm) T-6 Condition Finish-1.3 Micrometer (um) APPENDIX A—FEDERAL MOTOR VEHICLE SAFETY STANDARD NO. 109 #### § 571.109, Nt. Table I–A.—For Bias Ply Tires With Designated Section Width of 152 mm (6 Inches) and Above | Cord material | 32 psi | 36 psi | 40 psi | 240 kPa | 280 kPa | 300 kPa | 340 kPa | |---------------------|--------|--------|--------|---------|---------|---------|---------| | Rayon: | 1,650 | 2,574 | 3,300 | 1,650 | 3,300 | 1,650 | 3,300 | | (in-lbs)(joules) | 186 | 291 | 373 | 186 | 373 | 186 | 373 | | Nylon or polyester: | 2,600 | 3,900 | 5,200 | 2,600 | 5,200 | 2,600 | 5,200 | | (in-lbs)(joules) | 294 | 441 | 588 | 294 | 588 | 294 | 588 | Table I-B.—For Bias Ply Tires With Designated Section Width Below 152 mm (6 Inches) | Cord material | 32 psi | 36 psi | 40 psi | 240 kPa | 280 kPa | 300 kPa | 340 kPA | |------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Rayon:
(in-lbs) | 1,000 | 1,875 | 2,500 | 1,000 | 2,500 | 1,000 | 2,500 | | (joules) Nylon or polyester: | 113 | 212 | 282 | 113 | 282 | 113 | 282 | | (in-lbs)
(joules) | 1,950
220 | 2,925
330 | 3,900
441 | 1,950
220 | 3,900
441 | 1,950
220 | 3,900
441 | TABLE I-C.—FOR RADIAL PLY TIRES | | | | | | Maxim | Maximum permissible inflation | ssible infla | ation | | | | | |-------------------|-------|-------|-------|------------|---------------------------|-------------------------------|--------------|-------|-------|----------|-------|-------| | Social and Series | | | Ē | es other t | Tires other than CT tires | es | | | | CT tires | sə. | | | Olze designation | | isd | | | | кРа | | | | кРа | , m | | | | 32 | 36 | 40 | 240 | 280 | 300 | 340 | 320 | 290 | 330 | 350 | 390 | | Below 160 mm: | | | | | | | | | | | | | | (in-lbs) | 1,950 | 2,925 | 3,900 | 1,950 | 3,900 | 1,950 | 3,900 | 1,950 | 1,950 | 3,900 | 1,950 | 3,900 | | (joules) | 220 | 330 | 441 | 220 | 441 | 220 | 441 | 220 | 220 | 44 | 220 | 44 | | 160 mm or above: | | | | | | | | | | | | | | (sdl-ni) | 2,600 | 3,900 | 5,200 | 2,600 | 5,200 | 2,600 | 5,200 | 2,600 | 2,600 | 5,200 | 2,600 | 5,200 | | (joules) | 294 | 441 | 288 | | 288 | 294 | 288 | 294 | | 288 | 294 | 288 | TABLE I-D.—FOR TIRES WITH 420 KPA (60 PSI) MAXIMUM PERMISSIBLE INFLATION PRESSURE AND MAXIMUM LOAD RATING 399 KG (880 LB) AND ABOVE | Cord material | Inch-pounds joules (J) | |---------------|--| | | 1,650 inch pounds 186 joules (J).
2,600 inch pounds 294 joules (J). | TABLE I-E.—FOR TIRES WITH 420 KPA (60 PSI) MAXIMUM PERMISSIBLE INFLATION PRESSURE AND MAXIMUM LOAD RATING BELOW 399 KG (880 LB) | Cord material | Inch-pounds joules (J) | |---------------|--| | Rayon | 1,000 inch pounds 113 joules (J).
1,950 inch pounds 220 joules (J). | # §571.110 Standard No. 110; Tire selection and rims. S1. *Purpose and scope.* This standard specifies requirements for tire selection to prevent tire overloading. S2. Application. This standard applies to passenger cars and to non-pneumatic spare tire assemblies for use on passenger cars. S3. Definitions. Accessory weight means the combined weight (in excess of those standard items which may be replaced) of automatic transmission, power steering, power brakes, power windows, power seats, radio, and heater, to the extent that these items are available as factory-installed equipment (whether installed or not). Curb weight means the weight of a motor vehicle with standard equipment including the maximum capacity of fuel, oil, and coolant, and, if so equipped, air conditioning and additional weight optional engine. Maximum loaded vehicle weight means the sum of— - (a) Curb weight; - (b) Accessory weight; - (c) Vehicle capacity weight; and - (d) Production options weight. Non-pneumatic rim is used as defined in §571.129. Non-pneumatic spare tire assembly means a non-pneumatic tire assembly intended for temporary use in place of one of the pneumatic tires and rims that are fitted to a passenger car in compliance with the requirements of this standard. Non-pneumatic tire and non-pneumatic tire assembly are used as defined in §571.129. Normal occupant weight means $68 \ \text{kilograms}$ times the number of occupants specified in the second column of Table I Occupant distribution means distribution of occupants in a vehicle as specified in the third column of Table I. Production options weight means the combined weight of those installed regular production options weighing over 2.3 kilograms in excess of those standard items which they replace, not previously considered in curb weight or accessory weight, including heavy duty brakes, ride levelers, roof rack, heavy duty battery, and special trim. Rim is used as defined in §571.109. Vehicle capacity weight means the rated cargo and luggage load plus 68 kilograms times the vehicle's designated seating capacity. Vehicle maximum load on the tire means that load on an individual tire that is determined by distributing to each axle its share of the maximum loaded vehicle weight and dividing by two. Vehicle
normal load on the tire means that load on an individual tire that is determined by distributing to each axle its share of the curb weight, accessory weight, and normal occupant weight (distributed in accordance with Table I) and dividing by 2. Wheel center member is used as defined in §571.129. S4. Requirements. S4.1 *General.* Passenger cars shall be equipped with tires that meet the requirements of §571.109, *New Pneumatic Tires—Passenger Cars*, except that passenger cars may be equipped with a non-pneumatic spare tire assembly that meets the requirements of §571.129, New Non-Pneumatic Tires for Passenger Cars and S6 and S8 of this standard. Passenger cars equipped with such an assembly shall meet the requirements of S4.3(e), S5, and S7 of this standard S4.2 *Tire load limits.* S4.2.1 The vehicle maximum load on the tire shall not be greater than the applicable maximum load rating as marked on the sidewall of the tire. S4.2.2 The vehicle normal load on the tire shall not be greater than the test load used in the high speed performance test specified in S5.5 of §571.109 for that tire. S4.3 Placard. A placard, permanently affixed to the glove compartment door or an equally accessible lo- cation, shall display the— (a) Vehicle capacity weight; (b) Designated seating capacity (expressed in terms of total number of occupants and in terms of occupants for each seat location); (c) Vehicle m manufacturer's recommended cold tire inflation pressure for maximum loaded vehicle weight and, subject to the limitations of S4.3.1, for any other manufacturer- specified vehicle loading condition; (d) Vehicle manufacturer's ommended tire size designation; and (e) For a vehicle equipped with a nonpneumatic spare tire assembly, the non-penumatic tire identification code with which that assembly is labeled pursuant to the requirements of S4.3(a) of §571.129, New Non-Pneumatic Tires for Passenger Cars. S4.3.1 No inflation pressure other than the maximum permissible infla- tion pressure may be specified unless— (a) It is less than the maximum per missible inflation pressure; (b) The vehicle loading condition for that pressure is specified; and (c) The tire load rating specified in a submission by an individual manfacturer, pursuant to S4.4.1(a) of Motor Vehicle Safety Standard No. 109, or contained in one of the publications described in S4.4.1(b) of Motor Vehicle Safety Standard No. 109 for the tire size at that inflation pressure is not less than the vehicle load on the tire for that vehicle loading condition. S4.4 Rims. S4.4.1 Requirements. Each rim shall: (a) Be constructed to the dimensions of a rim that is listed pursuant to the definition of test rim in paragraph S3. of §571.109 (Standard No. 109) for use with the tire size designation with which the vehicle is equipped. (b) In the event of rapid loss of inflation pressure with the vehicle traveling in a straight line at a speed of 97 kilometers per hour, retain the deflated tire until the vehicle can be stopped with a controlled braking application. TABLE I-OCCUPANT LOADING AND DISTRIBU-TION FOR VEHICLE NORMAL LOAD FOR VAR-IOUS DESIGNATED SEATING CAPACITIES | Designated seating capacity, number of occupants Vehicle normal load, number of occupants | | Occupant distribution in a normally loaded vehicle | | | | |--|--|--|--|--|--| | 2 through 4
5 through 10 | | 2 in front.
2 in front, 1 in second seat. | | | | S5. Load Limits for Non-Pneumatic Spare Tires. The highest vehicle maximum load on the tire for the vehicle shall not be greater than the load rating for the non-pneumatic spare tire. S6 Labeling Requirements for Non-Pneumatic Spare Tires or Tire Assemblies. Each non-pneumatic tire or, in the case of a non-pneumatic tire assembly in which the non-pneumatic tire is an integral part of the assembly, each nonpneumatic tire assembly shall include, in letters or numerals not less than 4 millimeters high, the information specified in paragraphs S6 (a) and (b). The information shall be permanently molded, stamped, or otherwise permanently marked into or onto the nonpneumatic tire or non-pneumatic tire assembly, or shall appear on a label that is permanently attached to the tire or tire assembly. If a label is used, it shall be subsurface printed, made of material that is resistant to fade, heat, moisture and abrasion, and attached in such a manner that it cannot be removed without destroying or defacing the label on the non-pneumatic tire or tire assembly. The information specified in paragraphs S6 (a) and (b) shall appear on both sides of the non-pneumatic tire or tire assembly, except, in the case of a non-pneumatic tire assembly which has a particular side that must always face outward when mounted on a vehicle, in which case the information specified in paragraphs S6 (a) and (b) shall only be required on the outward facing side. The information shall be positioned on the tire or tire assembly such that it is not placed on the tread or the outermost edge of the tire and is not obstructed by any portion of any non-pneumatic rim or wheel center member designated for use with that tire in this standard or in Standard No. 129. - (a) FOR TEMPORARY USE ONLY; - (b) MAXIMUM 80 KM/H (50 M.P.H.). - S7. Requirements for Passenger Cars Equipped with Non-Pneumatic Spare Tire Assemblies - S7.1 Vehicle Placarding Requirements. A placard, permanently affixed to the inside of the vehicle trunk or an equally accessible location adjacent to the non-pneumatic spare tire assembly, shall display the information set forth in S6 in block capitals and numerals not less than 6 millimeters high preceded by the words "IMPORTANT—USE OF SPARE TIRE" in letters not less than 9 millimeters high. - S7.2 Supplementary Information. The owner's manual of the passenger car shall contain, in writing in the English language and in not less than 10 point type, the following information under the heading "IMPORTANT—USE OF SPARE TIRE": - (a) A statement indicating the information related to appropriate use for the non-pneumatic spare tire including at a minimum the information set forth in S6 (a) and (b) and either the information set forth in S4.3(e) or a statement that the information set forth in S4.3(e) is located on the vehicle placard and on the non-pneumatic tire; - (b) An instruction to drive carefully when the non-pneumatic spare tire is in use, and to install the proper pneumatic tire and rim at the first reasonable opportunity; and - (c) A statement that operation of the passenger car is not recommended with more than one non-pneumatic spare tire in use at the same time. - S8. Non-Pneumatic Rims and Wheel Center Members - S8.1 *Non-Pneumatic Rim Requirements.* Each non-pneumatic rim that is part of a separable non-pneumatic spare tire assembly shall be constructed to the dimensions of a non-pneumatic rim that is listed pursuant to S4.4 of §571.129 for use with the non-pneumatic tire, designated by its non-pneumatic tire identification code, with which the vehicle is equipped. S8.2 Wheel Center Member Requirements. Each wheel center member that is part of a separable non-pneumatic spare tire assembly shall be constructed to the dimensions of a wheel center member that is listed pursuant to S4.4 of §571.129 for use with the non-pneumatic tire, designated by its non-pneumatic tire identification code, with which the vehicle is equipped. [36 FR 22902, Dec. 2, 1971, as amended at 37 FR 23727, Nov. 8, 1972; 40 FR 5530, Feb. 6, 1975; 47 FR 36183, Aug. 19, 1982; 49 FR 38612, Oct. 1, 1984; 55 FR 29589, July 20, 1990; 56 FR 19311, Apr. 26, 1991; 60 FR 13643, Mar. 14, 1995] # §571.111 Standard No. 111; Rearview mirrors. - S1. *Scope.* This standard specifies requirements for the performance and location of rearview mirrors. - S2. *Purpose.* The purpose of this standard is to reduce the number of deaths and injuries that occur when the driver of a motor vehicle does not have a clear and reasonably unobstructed view to the rear. - S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, buses, schoolbuses and motorcycles. - S4. Definitions. Convex mirror means a mirror having a curved reflective surface whose shape is the same as that of the exterior surface of a section of a sphere. Effective mirror surface means the portions of a mirror that reflect images, excluding the mirror rim or mounting brackets. Unit magnification mirror means a plane or flat mirror with a reflective surface through which the angular height and width of the image of an object is equal to the angular height and width of the object when viewed directly at the same distance except for flaws that do not exceed normal manufacturing tolerances. For the purposes of this regulation a prismatic daynight adjustment rearview mirror one of whose positions provides unit magnification is considered a unit magnification mirror. S5. Requirements for passenger cars. S5.1 *Inside rearview mirror*. Each passenger car shall have an inside rearview mirror of unit magnification. S5.1.1 Field of view. Except as provided in S5.3, the mirror shall provide a field of view with an included horizontal angle measured from the projected eye point of at least 20 degrees, and a sufficient vertical angle to provide a view of a level road surface extending to the horizon beginning at a point not greater than 61 m to the rear of the vehicle when the vehicle is occupied by the driver and four passengers or the designated occupant capacity, if less, based on an average occupant weight of 68 kg. The line of sight may be partially obscured by seated occupants or by head restraints. The location of the driver's eye reference points shall be those established in Motor Vehicle Safety Standard No. 104 (§571.104) or a nominal location appropriate for any 95th percentile male driver. Š5.1.2
Mounting. The mirror mounting shall provide a stable support for the mirror, and shall provide for mirror adjustment by tilting in both the horizontal and vertical directions. If the mirror is in the head impact area, the mounting shall deflect, collapse or break away without leaving sharp edges when the reflective surface of the mirror is subjected to a force of 400 N in any forward direction that is not more than 45° from the forward longitudinal direction. S5.2 Outside rearview mirror—driver's side S5.2.1 Field of view. Each passenger car shall have an outside mirror of unit magnification. The mirror shall provide the driver a view of a level road surface extending to the horizon from a line, perpendicular to a longitudinal plane tangent to the driver's side of the vehicle at the widest point, extending 2.4 m out from the tangent plane 10.7 m behind the driver's eyes, with the seat in the rearmost position. The line of sight may be partially obscured by rear body or fender contours. The location of the driver's eye reference points shall be those established in Motor Vehicle Safety Standard No. 104 (§571.104) or a nominal location appropriate for any $95 \, \text{th}$ percentile male driver. S5.2.2 Mounting. The mirror mounting shall provide a stable support for the mirror, and neither the mirror nor the mounting shall protrude farther than the widest part of the vehicle body except to the extent necessary to produce a field of view meeting or exceeding the requirements of S5.2.1. The mirror shall not be obscured by the unwiped portion of the windshield, and shall be adjustable by tilting in both horizontal and vertical directions from the driver's seated position. The mirror and mounting shall be free of sharp points or edges that could contribute to pedestrian injury. S5.3 Outside rearview mirror passenger's side. Each passenger car whose inside rearview mirror does not meet the field of view requirements of S5.1.1 shall have an outside mirror of unit magnification or a convex mirror installed on the passenger's side. The mirror mounting shall provide a stable support and be free of sharp points or edges that could contribute to pedestrian injury. The mirror need not be adjustable from the driver's seat but shall be capable of adjustment by tilting in both horizontal and vertical directions. S5.4 Convex mirror requirements. Each motor vehicle using a convex mirror to meet the requirements of S5.3 shall comply with the following requirements: S5.4.1 When each convex mirror is tested in accordance with the procedures specified in S12. of this standard, none of the radii of curvature readings shall deviate from the average radius of curvature by more than plus or minus 12.5 percent. S5.4.2 Each convex mirror shall have permanently and indelibly marked at the lower edge of the mirror's reflective surface, in letters not less than 4.8 mm nor more than 6.4 mm high the words "Objects in Mirror Are Closer Than They Appear." S5.4.3 The average radius of curvature of each such mirror, as determined by using the procedure in S12., shall be not less than 889 mm and not more than 1,651 mm. S6. Requirements for multipurpose passenger vehicles, trucks, and buses, other than school buses, with GVWR of 4,536 kg or less. - S6.1 Each multipurpose passenger vehicle, truck and bus, other than a school bus, with a GVWR of 4,536 kg or less shall have either— - (a) Mirrors that conform to the requirements of S5.; or - (b) Outside mirrors of unit magnification, each with not less than 126 cm² of reflective surface, installed with stable supports on both sides of the vehicle, located so as to provide the driver a view to the rear along both sides of the vehicle, and adjustable in both the horizontal and vertical directions to view the rearward scene. - S7. Requirements for multipurpose passenger vehicles and trucks with a GVWR of more than 4,536 kg and less than 11,340 kg and buses, other than school buses, with a GVWR of more than 4,536 kg. - S7.1 Each multipurpose passenger vehicle and truck with a GVWR of more than 4,536 kg and less than 11,340 kg and each bus, other than a school bus, with a GVWR of more than 4,536 kg shall have outside mirrors of unit magnification, each with not less than 323 cm² of reflective surface, installed with stable supports on both sides of the vehicle. The mirrors shall be located so as to provide the driver a view to the rear along both sides of the vehicle and shall be adjustable both in the horizontal and vertical directions to view the rearward scene. - S8. Requirements for multipurpose passenger vehicles and trucks with a GVWR of 11,340 kg or more. - S8.1 Each multipurpose passenger vehicle and truck with a GVWR of 11,340 kg or more shall have outside mirrors of unit magnification, each with not less than 323 cm² of reflective surface, installed with stable supports on both sides of the vehicle. The mirrors shall be located so as to provide the driver a view to the rear along both sides of the vehicle and shall be adjustable both in the horizontal and vertical directions to view the rearward scene. - S9. Requirements for School Buses. When a school bus is tested in accordance with the procedures of S13, it shall meet the requirements of S9.1 through S9.4. - S9.1 Outside Rearview Mirrors. Each school bus shall have two outside rear- view mirror systems: System A and System B. - S9.2 System A shall be located with stable supports so that the portion of the system on the bus's left side, and the portion on its right side, each: - (a) Includes at least one mirror of unit magnification with not less than 323 cm² of reflective surface; and - (b) Includes one or more mirrors which together provide, at the driver's eye location, a view of: - (1) For the mirror system on the right side of the bus, the entire top surface of cylinder N in Figure 2, and of that area of the ground which extends rearward from the mirror surface not less than 61 meters. - (2) Each mirror shall be located such that the distance from the center point of the eye location of a 25th percentile adult female seated in the driver's seat to the center of the mirror shall be at least 95 cm. - S9.3(a) For each of the cylinders A though P whose entire top surface is not directly visible from the driver's eye location, System B shall provide, at that location: - (1) A view of the entire top surface of that cylinder. - (2) A view of the ground that overlaps with the view of the ground provided by System A. - (b) Each mirror installed in compliance with S9.3(a) shall meet the following requirements: - (1) Each mirror shall have a projected area of at least 258 cm², as measured on a plane at a right angle to the mirror's axis. - (2) Each mirror shall be located such that the distance from the center point of the eye location of a 25th percentile adult female seated in the driver's seat to the center of the mirror shall be at least 95 cm². - (3) Each mirror shall have no discontinuities in the slope of the surface of the mirror. - (4) Each mirror shall be installed with a stable support. - (c) Each school bus which has a mirror installed in compliance with S9.3(a) that has an average radius of curvature of less than 889 mm, as determined under S12, shall have a label visible to the seated driver. The label shall be printed in a type face and color that are clear and conspicuous. The label shall state the following: "USE CROSS VIEW MIRRORS TO VIEW PEDESTRIANS WHILE BUS IS STOPPED. DO NOT USE THESE MIRRORS TO VIEW TRAFFIC WHILE BUS IS MOVING. IMAGES IN SUCH MIRRORS DO NOT ACCURATELY SHOW ANOTHER VEHICLE'S LOCATION." S9.4(a) Each image required by S9.3(a)(1) to be visible at the driver's eye location shall be separated from the edge of the effective mirror surface of the mirror providing that image by a distance of not less than 3 minutes of arc. - (b) The image required by S9.3(a)(1) of cylinder P shall meet the following requirements: - (1) The angular size of the shortest dimension of that cylinder's image shall be not less than 3 minutes of arc; and - (2) The angular size of the longest dimension of that cylinder's image shall be not less than 9 minutes of arc. S10. Requirements for motorcycles. S10.1 Each motorcycle shall have either a mirror of unit magnification with not less than 8065 mm² of reflective surface, or a convex mirror with not less than 6450 mm² of reflective surface and an average radius of curvature not less than 508 mm and not greater than 1524 mm, installed with a stable support, and mounted so that the horizontal center of the reflective surface is at least 279 mm outward of the longitudinal centerline of the motorcycle. The mirror shall be adjustable by tilting in both the horizontal and vertical directions. S11. Mirror Construction. The average reflectance of any mirror required by this standard shall be determined in accordance with SAE Recommended Practice J964, OCT84. All single reflectance mirrors shall have an average reflectance of at least 35 percent. If a mirror is capable of multiple reflectance levels, the minimum reflectance level in the day mode shall be at least 35 percent and the minimum reflectance level in the night mode shall be at least 4 percent. A multiple reflectance mirror shall either be equipped with a means for the driver to adjust the mirror to a reflectance level of at least 35 percent in the event of electrical failure, or achieve such reflectance level automatically in the event of electrical failure. S12. Determination of radius of curvature. S12.1 To determine the average radius of curvature of a convex mirror, use a 3-point linear spherometer, which meets the requirements of S12.2, at the 10 test positions shown in Figure 1 and record the readings for each position. S12.2 The 3-point linear spherometer has two outer fixed legs 38 mm apart and one inner movable leg at the midpoint. The spherometer has a dial indicator with a scale that can be read accurately to .0025 mm, with the zero
reading being a flat surface. S12.3 The 10 test positions on the image display consist of two positions at right angles to each other at each of five locations as shown in Figure 1. The locations are at the center of the mirror, at the left and right ends of a horizontal line that bisects the mirror and at the top and bottom ends of a vertical line that bisects the mirror. None of the readings are within a 6.4 mm border on the edge of the image display. S12.4 At each position, the spherometer is held perpendicular to the convex mirror-surface and a record is made of the reading on the dial indicator to the nearest .0025 mm. S12.5 Convert the dial reading data for each of the 10 test positions to radius of curvature calculations using Table I. Consider the change as linear for dial readings that fall between two numbers in Table I. S12.6 Calculate the average radius of curvature by adding all 10 radius of curvature calculations and dividing by ten. S12.7 Determine the numerical difference between the average radius of curvature and each of the 10 individual radius of curvature calculations determined in S12.5. S12.8 Calculate the greatest percentage deviation by dividing the greatest numerical difference determined in S12.7 by the average radius of curvature and multiply by 100. Figure 1-LOCATION OF TEN CONVEX MIRROR TESTING POSITIONS All dimensions in millimeters (mm) TABLE I.—CONVERSION TABLE FROM SPHEROM-ETER DIAL READING TO RADIUS OF CUR-VATURE Radius of Dial reading curvature (Inches) (mm) .00330 2164.1 .00350 2042.92 80.4 00374 75.2 1910.1 .00402 70.0 1778.0 67.6 00432 65 1 1653.5 1587.5 .00450 62.5 .00468 60.1 1526.5 .00476 59.1 1501.1 58.1 1475.7 .00492 57.2 1452.9 .00502 56.0 1422.4 1394.5 00522 53.9 1369 1 .00536 1333.5 52.5 .00544 51.7 1313.2 .00554 50.8 1290.3 1262.4 .00580 48.5 1231 9 .00592 1206.5 47.5 1178.6 .00606 46.4 00622 45.2 1148 1 .0063600654 43.0 1092 2 .00668 1069.3 42.1 41.0 1041.4 .00694 40.5 1028 7 39.1 .0072000740 38.0 965.2 .00760 939.8 37.000802 35 1 891.5 .00822 868.7 .00850 33 1 840.7 .00878 32.0 812.8 31.0 .00906 787.4 .00922 30.5 774 7 762.0 30.0 .0093800960 29.3 744.2 .00980 28.7 729.0 .01004 28.0 27.5 27.0 .01022 698.5 .01042 685.8 .01060 26.5 673.1 .01080 26.0 25.3 660.4 642.6 .0111001130 24.9 632.5 .01170 24.0 609.6 .01200 23.4 .01240 22.7 576.6 .01280 22.0 558.8 .01310 546.1 .01360 20.7 525.8 .01400 20.1 510.5 .01430 500.4 .01480 19 0 482 6 .01540 464.8 18.3 .0157001610 17.5 444 5 434.3 .01650 17.1 .0170001750 16.1 408 9 .01800 396.2 15.6 .01910 147 373 4 360.7 .01980 14.2 13.8 02100 TABLE I.—CONVERSION TABLE FROM SPHEROM-ETER DIAL READING TO RADIUS OF CUR-VATURE—Continued | Dial reading | Radius of
curvature
(Inches) | Radius of curvature (mm) | | |--------------|------------------------------------|--------------------------|--| | .02160 | 13.0 | 330.2 | | | .02250 | 12.5 | 317.5 | | | .02340 | 12.0 | 304.8 | | | .02450 | 11.5 | 292.1 | | | .02560 | 11.0 | 279.4 | | | .02680 | 10.5 | 266.7 | | | .02810 | 10.0 | 254.0 | | | .02960 | 9.5 | 241.3 | | | .03130 | 9.0 | 228.6 | | | .03310 | 8.5 | 215.9 | | S13. School bus mirror test procedures. The requirements of S9.1 through S9.4 shall be met when the vehicle is tested in accordance with the following conditions. S13.1 The cylinders shall be a color which provides a high contrast with the surface on which the bus is parked. S13.2 The cylinders are 0.3048 m high and 0.3048 m in diameter, except for cylinder P which is 0.9144 m high and 0.3048 m in diameter. S13.3 Place cylinders at locations as specified in S13.3(a) through S13.3(g) and illustrated in Figure 2. Measure the distances shown in Figure 2 from a cylinder to another object from the center of the cylinder as viewed from above. - (a) Place cylinders G, H, and I so that they are tangent to a transverse vertical plane tangent to the forward-most surface of the bus's front bumper. Place cylinders D, E, F so that their centers are located in a transverse vertical plane that is 1.8288 meters (6 feet) forward of a transverse vertical plane passing through the centers of cylinders G, H, and I. Place cylinders A, B, and C so that their centers are located in a transverse vertical plane that is 3.6576 meters (12 feet) forward of the transverse vertical plane passing through the centers of cylinders G, H, and I. - (b) Place cylinders B, E, and H so that their centers are in a longitudinal vertical plane that passes through the bus's longitudinal centerline. - (c) Place cylinders A, D, and G so that their centers are in a longitudinal vertical plane that is tangent to the most outboard edge of the left side of the bus's front bumper. 340 4 134 - (d) Place cylinders C, F, and I so that their centers are in a longitudinal vertical plane that is tangent to the most outboard edge of the right side of the bus's front bumper. - (e) Place cylinder J so that its center is in a longitudinal vertical plane 0.3048 meters (1 foot) to the left of the longitudinal vertical plane passing through the centers of cylinders A, D, and G, and is in the transverse vertical plane that passes through the centerline of the bus's front axle. - (f) Place cylinder K so that its center is in a longitudinal vertical plane 0.3048 meters (1 foot) to the right of the longitudinal vertical plane passing through the centers of cylinders C, F, and I, and is in the transverse vertical plane that passes through the centerline of the bus's front axle. - (g) Place cylinders L, M, N, O, and P so that their centers are in the transverse vertical plane that passes through the centerline of the bus's rear axle. Place cylinder L so that its center is in a longitudinal vertical plane that is 1.8288 meters (6 feet) to the left of the longitudinal vertical plane tangent to the bus's most outboard left surface (excluding the mirror system). Place cylinder M so that its center is in a longitudinal vertical plane that is 0.3048 meters (1 foot) to the left of the longitudinal vertical plane tangent to the left side of the bus. Place cylinder N so that its center is in a longitudinal vertical plane that is 0.3048 meters (1 foot) to the right of the longitudinal vertical plane tangent to the right side of the bus. Place cylinder O so that its center is in a longitudinal vertical plane that is 1.8288 meters (6 feet) to the right of the longitudinal vertical plane tangent to the right side of the bus. Place cylinder P so that its center is in a longitudinal vertical plane that is 3.6576 meters (12 feet) to the right of the longitudinal vertical plane tangent to the right side of the bus. Figure 2.—Location of Test Cylinders for School Bus Field-of-View Test All Dimensions in Meters (m) 81 Figure 3. Camera Locations for School Bus Field-of-View Test - S13.4 The driver's eye location is the eye location of a 25th percentile adult female, when seated in the driver's seat as follows: - (a) The center point of the driver's eye location is the point located 68.58 centimeters (27 inches) vertically above the intersection of the seat cushion and the seat back at the longitudinal centerline of the seat. - (b) Adjust the driver's seat to the midway point between the forward-most and rear-most positions, and if separately adjustable in the vertical direction, adjust to the lowest position. If an adjustment position does not exist at the midway point, use the closest adjustment position to the rear of the midpoint. If a seat back is adjustable, adjust the seat back angle to the manufacturer's nominal design riding position in accordance with the manufacturer's recommendations. - S13.5 Adjustable mirrors are adjusted before the test in accordance with the manufacturer's recommenda- tions. Such mirrors are not moved or readjusted at any time during the test. - 13.6 Place a 35 mm or larger format camera, or video camera, so that its image plane is located at the center point of the driver's eye location or at any single point within a semicircular area established by a 15.24 centimeter (6 inch) radius parallel to and forward of the center point (see figure 3). With the camera at any single location on or within that semicircle look through the camera and the windows of the bus and determine whether the entire top surface of each cylinder is directly visible. - S13.7 For each cylinder whose entire top surface is determined under paragraph 13.4 of this section not to be directly visible at the driver's eye location, - (a) Place a comparison chart (see figure 4) above the mirror that provides the fullest view of the cylinder in situations where a cylinder is partially visible through more than one mirror. Figure 4. # Comparison Chart for Indirect Field-of-View Measurements The width of the bars in Figure 4 indicating three minutes of arc and nine minutes of arc are derived from the following formula: For 3 minutes of arc: $X=D\times0.000873$, Where: X=the width of a line, in the unit of measurement D, representing 3 minutes of arc: D=distance from center point of driver's eye location to the center of the mirror's surface; and 0.000873=tangent of 3 minutes of arc. For 9 minutes of arc: $X=D\times0.002618$, Where: X=the width of a line, in the unit of measurement D, representing 9 minutes of arc; D=distance from center point of driver's eye location to the center of the mirror's surface; and 0.002618=tangent of 9 minutes of arc. (b) Photograph each cylinder through the mirror(s) that provides a view of the cylinder. Photograph each cylinder with the camera located so that the view through its film or image plane is located at any single location within the semicircle established under 13.4, [POINT A,B,C, OR D] ensuring that the image of the
mirror and comparison chart fill the camera's view finder to the extent possible. 13.8 Make all observations and take all photographs with the service/entry door in the closed position and the stop signal arm(s) in the fully retracted position. [41 FR 36025, Aug. 26, 1976, as amended at 41 FR 56813, Dec. 30, 1976; 47 FR 38700, Sept. 2, 1982; 48 FR 38844, Aug. 26, 1983; 48 FR 40262, Sept. 6, 1983; 56 FR 58516, Nov. 20, 1991; 57 FR 57015, Dec. 2, 1992; 58 FR 60402, Nov. 16, 1993; 60 FR 15692, Mar. 27, 1995; 63 FR 28929-28931, May 27, 1998; 63 FR 51000, Sept. 24, 1998] EFFECTIVE DATE NOTE: At 63 FR 28929, May 27, 1998, §571.111 was amended by revising S5.1.1, S5.1.2, S5.2.1, S5.4.2, S5.4.3, S6, S6.1, S7, S7.1, S8, S8.1, S9.2, S9.3, S10.1, S12.2, S12.3, S12.4, and S13.2; revising Table I-"Conversion Table from Spherometer Dial Reading to Radius of Curvature", following Figure 1 in S12.8; andrevising Figure 2 "Location of Test Cylinders for School Bus Field-of-View Test", after S13.3(g). At 63 FR 51000, Sept. 24, 1998, §571.111 was amended by revising S5.1.1, the first sentence, S9.3(b)(2), Figure 1 in S12.8, and Table I—"Conversion Table from Spherometer Dial Reading to Radius of Curvature," following Figure 1 in S12.8. All of the above amendments are effective May 27, 1999. For the convenience of the user, the supersed text follows: # §571.111 Standard No. 111, Rearview mirrors. * * * * * S5.1.1 Field of view. Except as provided in S5.3, the mirror shall provide a field of view with an included horizontal angle measured from the projected eye point of at least 20 degrees, and sufficient vertical angle to provide a view of a level road surface extending to the horizon beginning at a point not greater than 200 feet to the rear of the vehicle when the vehicle is occupied by the driver and four passengers or the designed occupant capacity, if less, based on an average occupant weight of 150 pounds. The line of sight may be partially obscured by seated occupants or by head restraints. The location of the driver's eye reference points shall be those established in Motor Vehicle Safety Standard No. 104 (§571.104) or a nominal location appropriate for any 95th percentile male driver S5.1.2 Mounting. The mirror mounting shall provide a stable support for the mirror, and shall provide for mirror adjustment by tilting in both the horizontal and vertical directions. If the mirror is in the head impact area, the mounting shall deflect, collapse or break away without leaving sharp edges when the reflective surface of the mirror is subjected to a force of 90 pounds in any forward direction that is not more than 45° from the forward longitudinal direction. * * * * * S5.2.1 Field of view. Each passenger car shall have an outside mirror of unit magnification. The mirror shall provide the driver a view of a level road surface extending to the horizon from a line, perpendicular to a longitudinal plane tangent to the driver's side of the vehicle at the widest point, extending 8 feet out from the tangent plane 35 feet behind the driver's eyes, with the seat in the rearmost position. The line of sight may be partially obscured by rear body or fender contours. The location of the driver's eye reference points shall be those established in Motor Vehicle Safety Standard No. 104 (§571.104) or a nominal location appropriate for any 95th percentile male driver. * * * * * S5.4.2 Each convex mirror shall have permanently and indelibly marked at the lower edge of the mirror's reflective surface, in letters not less than 3/16 of an inch nor more than 1/4 inch high the words "Objects in Mirror Are Closer Than They Appear." S5.4.3 The average radius of curvature of each such mirror, as determined by using the procedure in S12., shall be not less than 35 inches and not more than 65 inches. S6. Requirements for multipurpose passenger vehicles, trucks, and buses, other than schoolbuses, with GVWR of 10,000 pounds or less. S6.1 Each multipurpose passenger vehicle, truck and bus, other than a school bus, with a GVWR of 10,000 pounds or less shall have either— - (a) Mirrors that conform to the requirements of S5.; or - (b) Outside mirrors of unit magnification, each with not less than $19.5~\rm in^2$ of reflective surface, installed with stable supports on both sides of the vehicle, located so as to provide the driver a view to the rear along both sides of the vehicle, and adjustable in both the horizontal and vertical directions to view the rearward scene. - S7. Requirements for multipurpose passenger vehicles and trucks with a GVWR of more than 10,000 and less than 25,000 pounds and buses, other than school buses, with a GVWR of more than 10,000 pounds. - S7.1 Each multipurpose passenger vehicle and truck with a GVWR of more than 10,000 pounds and less than 25,000 pounds and each bus, other than a school bus, with a GVWR of more than 10,000 pounds shall have outside mirrors of unit magnification, each with not less than 50 in 3 of reflective surface, installed with stable supports on both sides of the vehicle. The mirrors shall be located so as to provide the driver a view to the rear along both sides of the vehicle and shall be adjustable both in the horizontal and vertical directions to view the rearward scene. # § 571.111, Nt. S8. Requirements for multipurpose passenger vehicles and trucks with a GVWR of 25,000 pounds or more. S8.1 Each multipurpose passenger vehicle and truck with a GVWR of 25,000 pounds or more shall have outside mirrors of unit magnification, each with not less than 50 in² of reflective surface, installed with stable supports on both sides of the vehicle. The mirrors shall be located so as to provide the driver a view to the rear along both sides of the vehicle and shall be adjustable both in the horizontal and vertical directions to view the rearward scene. * * * * * S9.2 System A shall be located with stable supports so that the portion of the system on the bus's left side, and the portion on its right side, each: - (a) Includes at least one mirror of unit magnification with not less than 322.60 square centimeters (50 square inches) of reflective surface; and - (b) Includes one or more mirrors which together provide, at the driver's eye location, a view of: - (1) For the mirror system on the right side of the bus, the entire top surface of cylinder N in Figure 2, and that area of the ground which extends rearward from cylinder N to a point not less than 60.93 meters (200 feet) from the mirror surface. - (2) For the mirror system on the left side of the bus, the entire top surface of cylinder M in Figure 2, and that area of the ground which extends rearward from cylinder M to a point not less than 60.93 meters (200 feet) from the mirror surface. S9.3(a) For each of the cylinders A through P whose entire top surface is not directly visible from the driver's eye location, System B shall provide, at that location: - (1) A view of the entire top surface of that cylinder. - (2) A view of the ground that overlaps with the view of the ground provided by system A. - (b) Each mirror installed in compliance with S9.3(a) shall meet the following requirements: - (1) Each mirror shall have a projected area of at least 258.08 square centimeters (40 square inches), as measured on a plane at a right angle to the mirror's axis. - (2) Each mirror shall be located such that the distance from the center point of the eye location of a 25th percentile adult female seated in the driver's seat to the center of the mirror shall be at least 95.25 centimeters (37.5 inches). - (3) Each mirror shall have no discontinuities in the slope of the surface of the mirror. - (4) Each mirror shall be installed with a stable support. - (c) Each school bus which has a mirror installed in compliance with S9.3(a) that has an average radius of curvature of less than 88.90 centimeters (35 inches), as determined under S12, shall have a label visible to the seated driver. The label shall be printed in a type face and color that are clear and conspicuous. The label shall state the following: "USE CROSS VIEW MIRRORS TO VIEW PEDESTRIANS WHILE BUS IS STOPPED. DO NOT USE THESE MIRRORS TO VIEW TRAFFIC WHILE BUS IS MOVING. IMAGES IN SUCH MIRRORS DO NOT ACCURATELY SHOW ANOTHER VEHICLE'S LOCATION." * * * * * S10.1 Each motorcycle shall have either a mirror of unit magnification with not less than 12.5 in 2 of reflective surface, or a convex mirror with not less than 10 in 2 of reflective surface and an average radius of curvature not less than 20 inches and not greater than 60 inches, installed with a stable support, and mounted so that the horizontal center of the reflective surface is at least 11 inches outward of the longitudinal centerline of the motorcycle. The mirror shall be adjustable by tilting in both the horizontal and vertical directions. * * * * * S12.2 The 3-point linear spherometer has two outer fixed legs 1.5 inches apart and one inner movable leg at the mid-point. The spherometer has a dial indicator with a scale that can be read accurately to 0.0001 inches, with the zero reading being a flat surface. S12.3 The 10 test positions on the image display consist of two positions at right angles to each other at each of five locations as shown in Figure 1. The locations are at the center of the mirror, at the left and right ends of a horizontal line that bisects the mirror and at the top and bottom ends of a vertical line that bisects the mirror. None of the readings are within a 0.25-inch border on the edge of the image display. S12.4 At each position, the spherometer is held perpendicular to the convex mirror-surface and a record is made of the reading on the dial indicator to the nearest 0.0001 inch. 335 # 49 CFR Ch. V (10-1-98 Edition) § 571.111, Nt. TABLE I—CONVERSION TABLE FROM SPHEROM-ETER DIAL READING TO RADIUS OF CUR-VATURE | Dial reading | Radius of curvature (inches) | |--------------|------------------------------| | .00330 | 85.2 | | .00350 | 80.4 | |
.00374 | 75.2 | | .00402 | 70.0 | | .00416 | 67.6 | | .00432 | 65.1 | | .00450 | 62.5 | | .00468 | 60.1 | | .00476 | 59.1 | | .00484 | 58.1 | | .00492 | 57.2 | | .00502 | 56.0 | | .00512 | 54.9 | | .00522 | 53.9 | | .00536 | 52.5 | | .00544 | 51.7 | | .00554 | 50.8 | | .00566 | 49.7 | | .00580 | 48.5 | | .00592 | 47.5 | | .00606 | 46.4 | | .00622 | 45.2 | | .00636 | 44.2 | | .00654 | 43.0 | | .00668 | 42.1 | | .00686 | 41.0 | | .00694 | 40.5 | | .00720 | 39.1 | | .00740 | 38.0 | | .00760 | 37.0 | | .00780 | 36.1 | | .00802 | 35.1 | | .00822 | 34.2 | | .00850 | 33.1 | | .00878 | 32.0 | | .00906 | 31.0 | | .00922 | 30.5 | | .00938 | 30.0 | | .00960 | 29.3 | | .00980 | 28.7 | | .01004 | 28.0 | | .01022 | 27.5 | | .01042 | 27.0 | | .01060 | 26.5 | | .01080 | 26.0 | TABLE I—CONVERSION TABLE FROM SPHEROMETER DIAL READING TO RADIUS OF CUR-VATURE—Continued | Dial reading | Radius of curvature (ir inches) | | | | |--------------|---------------------------------|--|--|--| | .01110 | 25.3 | | | | | .01130 | 24.9 | | | | | .01170 | 24.0 | | | | | .01200 | 23.4 | | | | | .01240 | 22.7 | | | | | .01280 | 22.0 | | | | | .01310 | 21.5 | | | | | .01360 | 20.7 | | | | | .01400 | 20.1 | | | | | .01430 | 19.7 | | | | | .01480 | 19.0 | | | | | .01540 | 18.3 | | | | | .01570 | 17.9 | | | | | .01610 | 17.5 | | | | | .01650 | 17.1 | | | | | .01700 | 16.6 | | | | | .01750 | 16.1 | | | | | .01800 | 15.6 | | | | | .01860 | 15.1 | | | | | .01910 | 14.7 | | | | | .01980 | 14.2 | | | | | .02040 | 10=0.10 | | | | | .02100 | 13.4 | | | | | .02160 | 13.0 | | | | | .02250 | 12.5 | | | | | .02340 | 12.0 | | | | | .02450 | 11.5 | | | | | .02560 | 11.0 | | | | | .02680 | 10.5 | | | | | .02810 | 10.0 | | | | | .02960 | 9.5 | | | | | .03130 | 9.0 | | | | | .03310 | 8.5 | | | | S13.2 The cylinders are 0.3048 meters (1 foot) high and 0.3048 meters (1 foot) in diameter, except for cylinder P which is 0.9114 meters (3 feet) high and 0.3048 meters (1 foot) in diameter. Figure 2. Location of Test Cylinders for School Bus Field-of-View Test # §571.112 [Reserved] # §571.113 Standard No. 113; Hood latch system. S1. *Purpose and scope.* This standard establishes the requirement for providing a hood latch system or hood latch systems. - S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses. - S3. *Definitions. Hood* means any exterior movable body panel forward of the windshield that is used to cover an engine, luggage, storage, or battery compartment. - S4. Requirements. S4.1 Éach hood must be provided with a hood latch system. S4.2 A front opening hood which, in any open position, partially or completely obstructs a driver's forward view through the windshield must be provided with a second latch position on the hood latch system or with a second hood latch system. # §571.114 Standard No. 114; Theft protection. S1. Purpose and Scope. This standard specifies requirements primarily for theft protection to reduce the incidence of crashes resulting from unauthorized operation of a motor vehicle. It also specifies requirements to reduce the incidence of crashes resulting from the rollaway of parked vehicles with automatic transmissions as a result of children moving the shift mechanism out of the "park" position. S2. Application. This standard applies S2. Application. This standard applies to passenger cars, and to trucks and multipurpose passenger vehicles having a GVWR of 4536 kilograms or less. However, it does not apply to walk-in van-type vehicles. #### S3. Definitions. Combination means one of the specifically planned and constructed variations of a locking system which, when properly actuated, permits operation of the locking system. Key includes any other device designed and constructed to provide a method for operating a locking system which is designed and constructed to be operated by that device. Vehicle type refers to passenger car, truck, or multipurpose passenger vehicle, as those terms are defined in 49 CFR 571.3. ### S4. Requirements. S4.1 Each truck and multipurpose passenger vehicle having a GVWR of 4536 kilograms or less and each passenger car shall meet the requirements of S4.2, S4.3, S4.4, and S4.5. However, open-body type vehicles that are manufactured for operation without doors and that either have no doors or have doors that are designed to be easily attached to and removed from the vehicle by the vehicle owner are not required to comply with S4.5. S4.2 Each vehicle shall have a keylocking system which, whenever the key is removed, prevents: - (a) The normal activation of the vehicle's engine or motor; and - (b) Either steering or forward self-mobility of the vehicle or both. S4.2.1 (a) Except as provided in S4.2.2 (a) and (b), the key-locking system required by S4.2 in each vehicle which has an automatic transmission with a "park" position shall, when tested under the procedures in S5.2, prevent removal of the key unless the transmission or transmission shift lever is locked in "park" or becomes locked in "park" as the direct result of removing the key. (b) Each vehicle shall not move more than 150 mm on a 10 percent grade when the transmission or transmission shift lever is locked in "park." S4.2.2 (a) Notwithstanding S4.2.1, provided that steering is prevented upon the key's removal, each vehicle specified therein may permit key removal when electrical failure of this system (including battery discharge) occurs or may have a device which, when activated, permits key removal. The means for activating any such device shall be covered by a non-transparent surface which, when installed, prevents sight of and activation of the device. The covering surface shall be removable only by use of a screwdriver or other tool. - (b) Notwithstanding S4.2.1, each vehicle specified therein may have a device which, when activated, permits moving the transmission shift lever from "park" after the removal of the key. The device shall either be operable: - (1) By the key, as defined in S3; or - (2) By another means, provided that steering is prevented when the key is removed from the ignition, and provided that the means for activating the device is covered by a non-transparent surface which, when installed, prevents sight of and activation of the device. The covering surface shall be removable only by use of a screwdriver or other tool. S4.3 Except when an automatic transmission vehicle is in "park," the means for deactivating the vehicle's engine or motor shall not activate any device installed pursuant to S4.2(b) to prevent the vehicle's steering or forward self-mobility or both. S4.4. For each vehicle type manufactured by a manufacturer, the number of different combinations of the keylocking systems required by S4.2 shall be at least 1,000, or a number equal to the number of vehicles of that type manufactured by such manufacturer, whichever is less. The same combinations may be used for more than one vehicle type. S4.5. A warning to the driver shall be activated whenever the key required by S4.2 has been left in the locking system and the driver's door is opened. The warning to the driver need not operate— - (a) After the key has been manually withdrawn to a position from which it may not be turned; - (b) When the key-locking system is in the "on" or "start" position; or - (c) After the key has been inserted in the locking system and before it has been turned. - S5. Compliance Test Procedure for vehicles with automatic transmissions. - S5.1 *Test Conditions.* (a) The vehicle shall be tested at curb weight plus 91 kg (including the driver). - (b) Except where specified otherwise, the test surface shall be level. - S5.2 Test procedure. (a) Move the transmission shift lever to any position where it will remain without assistance, including a position between the detent positions, except for the "park" position. Try to remove the key from each possible key position in each such shift position. - (b) Drive the vehicle forward up a 10 percent grade and stop it with the service brakes. Apply the parking brake (if present). Move the shift mechanism to the "park" position. Note the vehicle position. Release the parking brake. Release the service brakes. Remove the key. Verify that the transmission shift lever or transmission is locked in "park." Verify that the vehicle, at rest, has moved no more than 150 mm from the position noted prior to release of the brakes. [46 FR 32253, June 22, 1981, as amended at 56 FR 12468, Mar. 26, 1991; 57 FR 2043, Jan. 17, 1992; 60 FR 13644, Mar. 14, 1995; 60 FR 30011, June 7, 1995; 60 FR 41028, Aug. 11, 1995; 62 FR 2978, Jan. 21, 1997] #### §571.115 [Reserved] # §571.116 Standard No. 116; Motor vehicle brake fluids. - S1. *Scope.* This standard specifies requirements for fluids for use in hydraulic brake systems of motor vehicles, containers for these fluids, and labeling of the containers. - S2. *Purpose.* The purpose of this standard is to reduce failures in the hydraulic braking systems of motor vehicles which may occur because of the manufacture or use of improper or contaminated fluid. - S3. Application. This standard applies to all fluid for use in hydraulic brake systems of motor vehicles. In addition, S5.3 applies to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers, and motorcycles. S4. Definitions. *Blister* means a cavity or sac on the surface of a brake cup. Brake fluid means a liquid designed for use in a motor vehicle hydraulic brake system in which it will contact elastomeric components made of styrene and butadiene rubber (SBR), ethylene and propylene rubber (EPR), polychloroprene (CR) brake hose inner tube stock or natural rubber (NR). Chipping means a condition in which small pieces are missing from the outer surface of a brake cup. Duplicate samples means two samples of brake fluid taken from a single packaged lot and tested simultaneously. Hydraulic system mineral oil means a mineral-oil-based fluid designed for use in motor
vehicle hydraulic brake systems in which the fluid is not in contact with components made of SBR, EPR or NR. Packager means any person who fills containers with brake fluid that are subsequently distributed for retail sale. Packaged lot is that quantity of brake fluid shipped by the manufacturer to the packager in a single container, or that quantity of brake fluid manufactured by a single plant run of 24 hours or less, through the same processing equipment and with no change in ingredients. Scuffing means a visible erosion of a portion of the outer surface of a brake cup. A silicone base brake fluid (SBBF) is a brake fluid which consists of not less than 70 percent by weight of a diorgano polysiloxane. Sloughing means degradation of a brake cup as evidenced by the presence of carbon black loosely held on the brake cup surface, such that a visible black streak is produced when the cup, with a 500±10 gram deadweight on it, is drawn base down over a sheet of white bond paper placed on a firm flat sur- Stickiness means a condition on the surface of a brake cup such that fibers will be pulled from a wad of U.S.P. absorbent cotton when it is drawn across the surface. S5. Requirements. This section specifies performance requirements for DOT 3, DOT 4 and DOT 5 brake fluids; requirements for brake fluid certification; and requirements for container sealing, labeling and color coding for brake fluids and hydraulic system mineral oils. Where a range of tolerances is specified, the brake fluid shall meet the requirements at all points within the range. S5.1 Brake fluid. When tested in accordance with S6, brake fluids shall meet the following requirements: S5.1.1 Equilibrium reflux boiling point (ERBP). When brake fluid is tested according to S6.1, the ERBP shall not be less than the following value for the grade indicated: - (a) DOT 3: 205° C. (401° F.). - (b) DOT 4: 230° C. (446° F.). - (c) DOT 5: 260° C. (500° F.). S5.1.2 Wet ERBP. When brake fluid is tested according to S6.2, the wet ERBP shall not be less than the following value for the grade indicated: - (a) DOT 3: 140° C. (284° F.). (b) DOT 4: 155° C. (311° F.). - (c) DOT 5: 1 180° C. (356° F.). S5.1.3. Kinematic viscosities. When brake fluid is tested according to S6.3, the kinematic viscosities in square millimeters per second at stated temperatures shall be neither less than 1.5 mm²/s at 100° C. (212° F.) nor more than the following maximum value for the grade indicated: - (a) DOT 3: 1,500 mm²/s at minus 40° C. (minus 40° F.). - (b) DOT 4: 1,800 mm²/s at minus 40° C. (minus 40° F.). (c) DOT 5: 900 mm²/s at minus 40° C. (minus 40° F.). S5.1.4 pH value. When brake fluid, except DOT 5 SBBF, is tested according to S6.4, the pH value shall not be less than 7.0 nor more than 11.5. S5.1.5 Brake fluid stability. S5.1.5.1 *High-temperature* When brake fluid is tested according to S6.5.3 the ERBP shall not change by more than 3° C. (5.4° F.) plus 0.05° for each degree that the ERBP of the fluid exceeds 225° C. (437° F.). S5.1.5.2 Chemical stability. brake fluid, except DOT 5 SBBF, is tested according to S6.5.4, the change in temperature of the refluxing fluid mixture shall not exceed 3.0° C (5.4° F.) plus 0.05° for each degree that the ERBP of the fluid exceeds 225° C (437° F.). S5.1.6 Corrosion. When brake fluid is tested according to S6.6— (a) The metal test strips shall not show weight changes exceeding the limits stated in Table I. TABLE I | Test strip material | Maximum permis- sible weight change, mg./sq. cm. of sur- face | | |-------------------------------|---|--| | Steel, tinned iron, cast iron | 0.2
.1
.4 | | - (b) Excluding the area of contact (13 \pm 1 mm. ($\frac{1}{2}\pm\frac{1}{32}$ inch) measured from the bolt hole end of the test strip), the metal test strips shall not show pitting or etching to an extent discernible without magnification; - (c) The water-wet brake fluid at the end of the test shall show no jelling at 23±5° C (73.4±9°F.); - (d) No crystalline deposit shall form and adhere to either the glass jar walls or the surface of the metal strips; - (e) At the end of the test, sedimentation of the water-wet brake fluid shall not exceed 0.10 percent by volume; - (f) The pH value of water-wet brake fluid, except DOT 5 SBBF, at the end of the test shall not be less than 7.0 nor more than 11.5: - (g) The cups at the end of the test shall show no disintegration, as evidenced by blisters or sloughing; - (h) The hardness of the cup shall not decrease by more than 15 International Rubber Hardness Degrees (IRHD); and - (i) The base diameter of the cups shall not increase by more than 1.4 mm. (0.055 inch). - S5.1.7 Fluidity and appearance at low temperature. When brake fluid is tested according to S6.7, at the storage temperature and for the storage times given in Table II— - (a) The fluid shall show no sludging, sedimentation, crystallization, or stratification: - (b) Upon inversion of the sample bottle, the time required for the air bubble to travel to the top of the fluid shall not exceed the bubble flow times shown in Table II; and - (c) On warming to room temperature, the fluid shall resume the appearance and fluidity that it had before chilling. TABLE II—FLUIDITY AND APPEARANCE AT LOW TEMPERATURES | Storage temperature | Storage
time
(hours) | Maximum
bubble
flow time
(seconds) | | |-----------------------------------|----------------------------|---|--| | Minus 40±2° C. (minus 40±3.6° F.) | 144±4.0 | 10 | | | Minus 50±2° C. (minus 58±3.6° F.) | 6±0.2 | 35 | | - S5.1.8 *Evaporation.* When brake fluid is tested according to S6.8— - (a) The loss by evaporation shall not exceed 80 percent by weight; - (b) The residue from the brake fluid after evaporation shall contain no precipitate that remains gritty or abrasive when rubbed with the fingertip; and - (c) The residue shall have a pour point below minus 5° C. (+23° F.). - S5.1.9 *Water tolerance.* (a) *At low temperature.* When brake fluid is tested according to S6.9.3(a)— - (1) The fluid shall show no sludging, sedimentation, crystallization, or stratification: - (2) Upon inversion of the centrifuge tube, the air bubble shall travel to the top of the fluid in not more than 10 seconds: - (3) If cloudiness has developed, the wet fluid shall regain its original clarity and fluidity when warmed to room temperature; and - (b) $At 60 \,^{\circ}C$. (140 $^{\circ}F$.). When brake fluid is tested according to S6.9.3(b)— - (1) The fluid shall show no stratification; and - (2) Sedimentation shall not exceed 0.15 percent by volume after centrifuging. - S5.1.10 *Compatibility.* - (a) At low temperature. When brake fluid is tested according to S6.10.3(a), the test specimen shall show no sludging, sedimentation, or crystallization. In addition, fluids, except DOT 5 SBBF, shall show no stratification. - (b) At 60° C. $(140^{\circ}$ F.). When brake fluid is tested according to S6.10.3(b)— - (1) Sedimentation shall not exceed 0.05 percent by volume after centrifuging; and - (2) Fluids, except DOT 5 SBBF, shall show no stratification. - S5.1.11 Resistance to oxidation. When brake fluid is tested according to S6.11— - (a) The metal test strips outside the areas in contact with the tinfoil shall not show pitting or etching to an extent discernible without magnification; - (b) No more than a trace of gum shall be deposited on the test strips outside the areas in contact with the tinfoil; - (c) The aluminum strips shall not change in weight by more than 0.05 mg./sq. cm.; and - (d) The cast iron strips shall not change in weight by more than 0.3 mg./sq. cm. - S5.1.12 Effects on cups. When brake cups are subjected to brake fluid in accordance with S6.12— - (a) The increase in the diameter of the base of the cups shall be not less than 0.15 mm. (0.006 inch) or more than 1.40 mm. (0.055 inch); - (b) The decrease in hardness of the cups shall be not more than 10 IRHD at 70° C. (158° F.) or more than 15 IRHD at 120° C. (248° F.), and there shall be no increase in hardness of the cups; and - (c) The cups shall show no disintegration as evidenced by stickiness, blisters, or sloughing. - S5.1.13 *Stroking properties.* When brake fluid is tested according to S6.13— - (a) Metal parts of the test system shall show no pitting or etching to an extent discernible without magnification: - (b) The change in diameter of any cylinder or piston shall not exceed 0.13 mm. (0.005 inch): - (c) The average decrease in hardness of seven of the eight cups tested (six wheel cylinder and one master cylinder primary) shall not exceed 15 IRHD. Not more than one of the seven cups shall have a decrease in hardness greater than 17 IRHD; - (d) None of the eight cups shall be in an unsatisfactory operating condition as evidenced by stickiness, scuffing, blisters, cracking, chipping, or other change in shape from its original appearance; - (e) None of the eight cups shall show an increase in base diameter greater than 0.90 mm (0.035 inch); - (f) The average lip diameter set of the eight cups shall not be greater than 65 percent. - (g) During any period of 24,000 strokes, the volume loss of fluid shall not exceed 36 milliliters; - (h) The cylinder pistons shall not freeze or function improperly throughout the test; - (i) The total loss of fluid during the 100 strokes at the end of the test shall not exceed 36 milliliters; - (j) The fluid at the end of the test shall show no formation of gels; - (k) At the end of the test the amount of sediment shall not exceed 1.5 percent by volume; and - (l) Brake cylinders shall be free of deposits that are abrasive or that cannot be removed when rubbed moderately with a nonabrasive cloth wetted with ethanol. - S5.1.14 *Fluid color*. Brake fluid and hydraulic system mineral oil shall be of the color indicated: DOT 3, DOT 4, and DOT 5.1
non-SBBF—color-less to amber. DOT 5 SBBF—purple. Hydraulic system mineral oil—green. S5.2 Packaging and labeling requirements for motor vehicle brake fluids. S5.2.1 Container sealing. Each brake fluid or hydraulic system mineral oil container with a capacity of 177 mL or more shall be provided with a resealable closure that has an inner seal impervious to the packaged brake fluid. The container closure shall include a tamper-proof feature that will either be destroyed or substantially altered when the container closure is initially opened. - S5.2.2 Certification, marking, and labeling. - S5.2.2.1 Each manufacturer of a DOT grade brake fluid shall furnish to each packager, distributor, or dealer to whom he delivers brake fluid, the following information: - (a) A serial number identifying the production lot and the date of manufacture of the brake fluid. - (b) The grade (DOT 3, DOT 4, DOT 5) of the brake fluid. If DOT 5 grade brake fluid , it shall be further distinguished as "DOT 5 SILICONE BASE" or "DOT 5.1 NON-SILICONE BASE." - (c) The minimum wet boiling point in Fahrenheit of the brake fluid. - (d) Certification that the brake fluid conforms to §571.116. - S5.2.2.2 Each packager of brake fluid shall furnish the information specified in paragraphs (a) through (g) of this S5.2.2.2 by clearly marking it on each brake fluid container or on a label (labels) permanently affixed to the container, in any location except a removable part such as a lid. After being subjected to the operations and conditions specified in S6.14, the information required by this section shall be legible to an observer having corrected visual acuity of 20/40 (Snellen ratio) at a distance of 305 mm, and any label affixed to the container in compliance with this section shall not be removable without its being destroyed or defaced. - (a) Certification that the brake fluid conforms to §571.116. - (b) The name of the packager of the brake fluid, which may be in code form. - (c) The name and complete mailing address of the distributor. - (d) A serial number identifying the packaged lot and date of packaging. - (e) Designation of the contents as "DOT—MOTOR VEHICLE BRAKE FLUID" (Fill in DOT 3, DOT 4, DOT 5 SILICONE BASE, or DOT 5.1 NON-SILICONE BASE as applicable). - (f) The minimum wet boiling point in Fahrenheit of the DOT brake fluid in the container. - (g) The following safety warnings in capital and lower case letters as indicated: - (1) FOLLOW VEHICLE MANUFACTURER'S RECOMMENDATIONS WHEN ADDING BRAKE FLUID. - (2) KEEP BRAKE FLUID CLEAN AND DRY. Contamination with dirt, water, petroleum products or other materials may result in brake failure or costly repairs. - (3) STORE BRAKE FLUID ONLY IN ITS ORIGINAL CONTAINER. KEEP CONTAINER CLEAN AND TIGHTLY CLOSED TO PREVENT ABSORPTION OF MOISTURE. - (4) CAUTION: DO NOT REFILL CONTAINER, AND DO NOT USE FOR OTHER LIQUIDS. (Not required for containers with a capacity in excess of 19 L.) - S5.2.2.3 Each packager of hydraulic system mineral oil shall furnish the information specified in paragraphs (a) through (e) of this S5.2.2.3 by clearly marking it on each brake fluid container or on a label (labels) permanently affixed to the container, in any location except a removable part such as a lid. After being subjected to the operations and conditions specified in S6.14, the information required by this section shall be legible to an observer having corrected visual acuity of 20/40 (Snellen ratio) at a distance of 305 mm and any label affixed to the container in compliance with this section shall not be removable without its being destroyed or defaced. - (a) The name of the packager of the hydraulic system mineral oil, which may be in code form. - (b) The name and complete mailing address of the distributor. - (c) A serial number identifying the packaged lot and date of packaging. - (d) Designation of the contents as "HYDRAULIC SYSTEM MINERAL OIL" in capital letters at least 3 mm high. - (e) The following safety warnings in capital and lower case letters as indicated: - (1) FOLLOW VEHICLE MANUFACTURER'S RECOMMENDATIONS WHEN ADDING HYDRAULIC SYSTEM MINERAL OIL. - (2) Hydraulic System Mineral Oil is NOT COMPATIBLE with the rubber components of brake systems designed for use with DOT brake fluids. - (3) KEEP HYDRAULIC SYSTEM MINERAL OIL CLEAN. Contamination with dust or other materials may result in brake failure or costly repair. - (4) CAUTION: STORE HYDRAULIC SYSTEM MINERAL OIL ONLY IN ITS ORIGINAL CONTAINER. KEEP CONTAINER CLEAN AND TIGHTLY CLOSED. DO NOT REFILL CONTAINER OR USE OTHER LIQUIDS. (The last sentence is not required for containers with a capacity in excess of 19 L.) - S5.2.2.4 If a container for brake fluid or hydraulic system mineral oil is not normally visible but designed to be protected by an outer container or carton during use, the outer container or carton rather than the inner container shall meet the labeling requirements of S5.2.2.2 or S5.2.2.3, as appropriate. - S5.3 Motor vehicle requirement. Each passenger car, multipurpose passenger vehicle, truck, bus, trailer, and motorcycle that has a hydraulic brake system shall be equipped with fluid that has been manufactured and packaged in conformity with the requirements of this standard. - S6. Test procedures. - S6.1 Equilibrium reflux boiling point. Determine the ERBP of a brake fluid by running duplicate samples according to the following procedure and averaging the results. - S6.1.1 Summary of procedure. Sixty milliliters (ml.) of brake fluid are boiled under specified equilibrium conditions (reflux) at atmospheric pressure in a 100-ml. flask. The average temperature of the boiling fluid at the end of the reflux period, corrected for variations in barometric pressure if necessary, is the ERBP. - S6.1.2 *Apparatus.* (See Figure 1) The test apparatus shall consist of— - (a) Flask. (See Figure 2) A 100-ml. round-bottom, short-neck heat-resistant glass flask having a neck with a ¹⁹/₃₈ standard taper, female ground-glass joint and a side-entering tube, with an outside diameter of 10 millimeters (mm.), which centers the thermometer bulb in the flask 6.5 mm. from the bottom; - (b) Condenser. A water-cooled, reflux, glass-tube type, condenser having a jacket 200 mm. in length, the bottom end of which has a 19/38 standard-taper, drip-tip, male ground-glass joint; - (c) *Boiling stones*. Three clean, unused silicon carbide grains (approximately 2 mm. (0.08 inch) in diameter, grit No. 8); - (d) *Thermometer.* Standardized calibrated partial immersion (76 mm.), solid stem, thermometers conforming to the requirements for an ASTM 2C or 2F, and an ASTM 3C or 3F thermometer; and - (e) *Heat source.* Variable autotransformer-controlled heating mantle designed to fit the flask, or an electric heater with rheostat heat control. FIG. 1. BOILING POINT TEST APPARATUS FIG. 2. DETAIL OF 100 ML SHORT-NECK FLASK - S6.1.3 *Preparation of apparatus.* (a) Thoroughly clean and dry all glassware. - (b) Insert thermometer through the side tube until the tip of the bulb is 6.5 mm. (1/4 inch) from the bottom center of the flask. Seal with a short piece of natural rubber, EPDM, SBR, or butyl tubing. - (c) Place 60±1 ml. of brake fluid and the silicon carbide grains into the flask. - (d) Attach the flask to the condenser. When using a heating mantle, place the mantle under the flask and support it with a ring-clamp and laboratory-type stand, holding the entire assembly in place by a clamp. When using a rheostat-controlled heater, center a standard porcelain or hard asbestos refractory, having a diameter opening 32 to 38 mm., over the heating element and mount the flask so that direct heat is applied only through the opening in the refractory. Place the assembly in an area free from drafts or other types of sudden temperature changes. Connect the cooling water inlet and outlet tubes to the condenser. Turn on the cooling water. The water supply temperature shall not exceed 28° C. (82.4° F.) and the temperature rise through the condenser shall not exceed 2° C. (3.6° F.). S6.1.4 *Procedure.* Apply heat to the flask so that within 10±2 minutes the fluid is refluxing in excess of 1 drop per second. The reflux rate shall not exceed 5 drops per second at any time. Immediately adjust the heating rate to obtain an equilibrium reflux rate of 1 to 2 drops per second over the next 5±2 minutes. Maintain this rate for an additional 2 minutes, taking four temperature readings at 30-second intervals. Record the average of these as the observed ERBP. If no reflux is evident when the fluid temperature reaches 260° C (500° F), discontinue heating and report ERBP as in excess of 260° C (500° F). S6.1.5 *Calculation.* (a) *Thermometer inaccuracy.* Correct the observed ERBP by applying any correction factor obtained in standardizing the thermometer. (b) Variation from standard barometric pressure. Apply the factor shown in Table III to calculate the barometric pressure correction to the ERBP. TABLE III—CORRECTION FOR BAROMETRIC PRESSURE | Observed ERBP corrected for ther-
mometer inaccuracy | Correction per 1 mm
difference in pressure ^a | | | | |---|--|------------------|--|--| | mometer maccuracy | °C. | (°F.) | | | | 100° C. (212° F.) to 190° C. (374° F.) | 0.039
0.04 | (0.07)
(0.08) | | | a To be added in case barometric pressure is below 760 mm.; to be subtracted in case barometric pressure is above 670 mm. (c) If the two corrected observed ERBP's agree within 2° C. (4° C. for brake fluids having an ERBP over 230° C./446° F.) average the duplicate runs as the ERBP; otherwise, repeat the entire test, averaging the four corrected observed values to determine the original ERBP. S6.2 Wet ERBP. Determine the wet ERBP of a brake fluid by running duplicate samples according to the following procedure. S6.2.1. Summary of procedure. A 350 ml. sample of the brake fluid is
humidified under controlled conditions; 350 ml. of SAE triethylene glycol monomethyl ether, brake fluid grade, referee material (TEGME) as described in appendix E of SAE Standard J1703 Nov. 83, "Motor Vehicle Brake Fluid," November 1983, is used to establish the end point for humidification. After humidification, the water content and ERBP of the brake fluid are determined. S6.2.2 *Apparatus for humidification.* (See Figure 3). Test apparatus shall consist of— (a) Glass jars. Four SAE RM-49 corrosion test jars or equivalent screwtop, straight-sided, round glass jars each having a capacity of about 475 ml. and approximate inner dimensions of 100 mm. in height by 75 mm. in diameter, with matching lids having new, clean inserts providing water-vapor-proof seals; (b) *Desiccator and cover.* Two bowlform glass desiccators, 250-mm. inside diameter, having matching tubulated covers fitted with No. 8 rubber stoppers; and (c) *Desiccator plate.* Two 230-mm. diameter, perforated porcelain desiccator plates, without feet, glazed on one side. S6.2.3 Reagents and materials. (a) Distilled water, see S7.1. (b) SAE TEGME referee material. S6.2.4 Preparation of apparatus. Lubricate the ground-glass joint of the desiccator. Pour 450±10 ml. of distilled water into each desiccator and insert perforated porcelain desiccator plates. Place the desiccators in an oven with temperature controlled at 50±1 °C. (122±1.8 °F.) throughout the humidification procedure. S6.2.5 Procedure. Pour 350±5 ml. of brake fluid into an open corrosion test jar. Prepare in the same manner a duplicate test fluid sample and two duplicate specimens of the SAE TEGME referee material (350±5 ml. of TEGME in each jar). The water content of the SAE TEGME fluid is adjusted to 0.50±0.05 percent by weight at the start of the test in accordance with S7.2. Place one sample each of the test brake fluid and the prepared TEGME sample into the same desiccator. Repeat for the second sample of test brake fluid and TEGME in a second desiccator. Place the desiccators in the 50 °C. (122 °F.) controlled oven and replace desiccator covers. At intervals, during oven humidification, remove the rubber stoppers in the tops of desiccators. Using a long needled hypodermic syringe, take a sample of not more than 2 ml. from each TEGME sample and determine its water content. Remove no more than 10 ml. of fluid from each SAE TEGME sample during the humidification procedure. When the water content of the SAE fluid reaches 3.70 ± 0.05 percent by weight (average of the duplicates). remove the two test fluid specimens from their desiccators and promptly cap each jar tightly. Allow the sealed jars to cool for 60 to 90 minutes at $23^{\circ}\pm5$ °C. ($73.4^{\circ}\pm9$ °F.). Meas- ure the water contents of the test fluid specimens in accordance with S7.2 and determine their ERBP's in accordance with S6.1. If the two ERBPs agree within 4 °C. (8 °F.), average them to determine the wet ERBP; otherwise repeat and average the four individual ERBPs as the wet ERBP of the brake fluid. FIG.3 HUMIDIFICATION APPARATUS S6.3 *Kinematic viscosities.* Determine the kinematic viscosity of a brake fluid in mm²/s by the following procedure. Run duplicate samples at each of the specified temperatures, making two timed runs on each sample. S6.3.1 Summary of the procedure. The time is measured for a fixed volume of the brake fluid to flow through a calibrated glass capillary viscometer under an accurately reproducible head and at a closely controlled temperature. The kinematic viscosity is then calculated from the measured flow time and the calibration constant of the viscometer. - S6.3.2 Apparatus. (a) Viscometers. Calibrated glass capillary-type viscometers, ASTM D2515-66, "Standard Specification for Kinematic Glass Viscometers," measuring viscosity within the precision limits of S6.4.7. Use suspended level viscometers for viscosity measurements at low temperatures. Use Cannon-Fenske Routine or other modified Ostwald viscometers at ambient temperatures and above. - (b) Viscometer holders and frames. Mount a viscometer in the constant-temperature bath so that the mounting tube is held within 1° of the vertical. - (c) Viscometer bath. A transparent liquid bath of sufficient depth such that at no time during the measurement will any portion of the sample in the viscometer be less than 2 cm. below the surface or less than 2 cm. above the bottom. The bath shall be cylindrical in shape, with turbulent agitation sufficient to meet the temperature control requirements. For measurements within 15° to 100° C. $(60^{\circ}$ to 212° F.) the temperature of the bath medium shall not vary by more than 0.01° C. (0.02° F.) over the length of the viscometers, or positions of the viscometers, or at the locations of the thermometers. Outside this range, the variation shall not exceed 0.03° C. (0.05° F.). (d) Thermometers. Liquid-in-Glass Kinematic Viscosity Test Thermometers, covering the range of test temperatures indicated in Table IV and conforming to ASTM E1-68, "Specifications for ASTM Thermometers," and in the IP requirements for IP Standard Thermometers. Standardize before use (see S6.3.3(b)). Use two standardized thermometers in the bath. TABLE IV—KINEMATIC VISCOSITY THERMOMETERS | Temperature range | | For tests at | | Subdivi-
sions | | Thermometer number | | |---|------|--------------|-----------------------------|----------------------|-------------------|--------------------|---| | ° C. | ° F. | ° C. | ° F. | ° C. | | ASTM | IP | | Minus 55.3 to minus 52.5
Minus 41.4 to minus 38.6
98.6 to 101.4 | | | Minus 67
Minus 40
212 | 0.05
0.05
0.05 | 0.1
0.1
0.1 | 73 F | 69 F. or C.
68 F. or C.
32 F. or C. | (e) Timing device. Stop watch or other timing device graduated in divisions representing not more than 0.2 second, with an accuracy of at least ± 0.05 percent when tested over intervals of 15 minutes. Electrical timing devices may be used when the current frequency is controlled to an accuracy of 0.01 percent or better. S6.3.3 Standardization. (a) Viscometers. Use viscometers calibrated in accordance with appendix 1 of ASTM D445-65, "Viscosity of Transparent and Opaque Liquids (Kinematic and Dynamic Viscosities)." The calibration constant, C, is dependent upon the gravitational acceleration at the place of calibration. This must, therefore, be supplied by the standardization laboratory together with the instrument constant. Where the acceleration of gravity, g, in the two locations dif- fers by more than 0.1 percent, correct the calibration constant as follows: $$C_2=(g_2/g_1)\times C_1$$ where the subscripts 1 and 2 indicate respectively the standardization laboratory and the testing laboratory. (b) Thermometers. Check liquid-inglass thermometers to the nearest 0.01° C. (0.02° F.) by direct comparison with a standardized thermometer. Kinematic Viscosity Test Thermometers shall be standardized at "total immersion." The ice point of standardized thermometers shall be determined before use and the official corrections shall be adjusted to conform to the changes in ice points. (See ASTM E77-66, "Verification and Calibration of Liquid-in-Glass Thermometers.") - (c) *Timers.* Time signals are broadcast by the National Bureau of Standards, Station WWV, Washington, DC at 2.5, 5, 10, 15, 20, 25, 30, and 35 Mc/sec (MHz). Time signals are also broadcast by Station CHU from Ottawa, Canada, at 3.330, 7.335, and 14.670 Mc/sec, and Station MSF at Rugby, United Kingdom, at 2.5, 5, and 10 Mc/sec. - S6.3.4 *Procedure.* (a) Set and maintain the bath at the appropriate test temperature (see S5.1.3) within the limits specified in S6.3.2(c). Apply the necessary corrections, if any, to all thermometer readings. - (b) Select a clean, dry, calibrated viscometer giving a flow time not less than its specified minimum, or 200 seconds, whichever is the greater. - (c) Charge the viscometer in the manner used when the instrument was calibrated. Do not filter or dry the brake fluid, but protect it from contamination by dirt and moisture during filling and measurements. - (1) Charge the suspended level viscometers by tilting about 30° from the vertical and pouring sufficient brake fluid through the fill tube into the lower reservoir so that when the viscometer is returned to vertical position the meniscus is between the fill marks. For measurements below 0° C. (32° F.), before placing the filled viscometer into the constant temperature bath, draw the sample into the working capillary and timing bulb and insert small rubber stoppers to suspend the fluid in this position, to prevent accumulation of water condensate on the walls of the critical portions of the viscometer. Alternatively, fit loosely packed drying tubes into the open ends of the viscometer to prevent water condensation, but do not restrict the flow of the sample under test by the pressures created in the instrument. - (2) If a Cannon-Fenske Routine viscometer is used, charge by inverting and immersing the smaller arm into the brake fluid and applying vacuum to the larger arm. Fill the tube to the upper timing mark, and return the viscometer to an upright position. - (d) Mount the viscometer in the bath in a true vertical position (see S6.3.2(b)). - (e) The viscometer shall remain in the bath until it reaches the test temperature. - (f) At temperatures below 0° C. (32° F.) conduct an untimed preliminary run by allowing the brake fluid to drain through the capillary into the lower reservoir after the test temperature has been established. - (g) Adjust the head level of the brake fluid to a position in the capillary arm about 5 mm. above the first timing mark. - (h) With brake fluid flowing freely measure to within 0.2 second the time required for the meniscus to pass from the first timing mark to the second. If this
flow time is less than the minimum specified for the viscometer, or 200 seconds, whichever is greater, repeat using a viscometer with a capillary of smaller diameter. - (i) Repeat S6.3.4 (g) and (h). If the two timed runs do not agree within 0.2 percent, reject and repeat using a fresh sample of brake fluid. - S6.3.5 Cleaning the viscometers. (a) Periodically clean the instrument with chromic acid to remove organic deposits. Rinse thoroughly with distilled water and acetone, and dry with clean dry air. - (b) Between successive samples rinse the viscometer with ethanol (isopropanol when testing DOT 5 fluids) followed by an acetone or ether rinse. Pass a slow stream of filtered dry air through the viscometer until the last trace of solvent is removed. - S6.3.6 Calculation. (a) The following viscometers have a fixed volume charged at ambient temperature, and as a consequence C varies with test temperature: Cannon-Fenske Routine, Pinkevitch, Cannon-Manning Semi-Micro, and Cannon Fenske Opaque. To calculate C at test temperatures other than the calibration temperature for these viscometers, see ASTM D2515-66, "Kinematic Glass Viscometers" or follow instructions given on the manufacturer's certificate of calibration. - (b) Average the four timed runs on the duplicate samples to determine the kinematic viscosities. - S6.3.7 Precision (at 95 percent confidence level). - (a) *Repeatability.* If results on duplicate samples by the same operator differ by more than 1 percent of their mean, repeat the tests. - S6.4 *pH* value. Determine the pH value of a brake fluid by running one sample according to the following procedure. - S6.4.1 Summary of the procedure. Brake fluid is diluted with an equal volume of an ethanol-water solution. The pH of the resultant mixture is measured with a prescribed pH meter assembly at 23° C. $(73.4^{\circ}$ F.). - S6.4.2 *Apparatus*. The pH assembly consists of the pH meter, glass electrode, and calomel electrode, as specified in Appendices A1.1, A1.2, and A1.3 of ASTM D 1121-67, "Standard Method of Test for Reserve Alkalinity of Engine Antifreezes and Antirusts." The glass electrode is a full range type (pH 0-14), with low sodium error. - S6.4.3 *Reagents.* Reagent grade chemicals conforming to the specifications of the Committee on Analytical Reagents of the American Chemical Society. - (a) Distilled water. Distilled water (S7.1) shall be boiled for about 15 minutes to remove carbon dioxide, and protected with a soda-lime tube or its equivalent while cooling and in storage. (Take precautions to prevent contamination by the materials used for protection against carbon dioxide.) The pH of the boiled distilled water shall be between 6.2 and 7.2 at 25° C. (77° F.). - (b) Standard buffer solutions. Prepare buffer solutions for calibrating the pH meter and electrode pair from salts sold specifically for use, either singly or in combination, as pH standards. Dry salts for 1 hour at 110° C. (230° F.) before use except for borax which shall be used as the decahydrate. Store solutions with pH less than 9.5 in bottles of chemically resistant glass or polyethylene. Store the alkaline phosphate solution in a glass bottle coated inside with paraffin. Do not use a standard with an age exceeding three months. - (1) Potassium hydrogen phthalate buffer solution (0.05 M, pH=4.01 at 25° C. (77° F.)). Dissolve 10.21 g. of potassium hydrogen phthalate (KHC $_8$ H $_4$ O $_4$) in distilled water. Dilute to 1 liter. - (2) Neutral phosphate buffer solution (0.025 M with respect to each phosphate - salt, pH=6.86 at 25° C. (77° F.)). Dissolve 3.40 g. of potassium dihydrogen phosphate (KH $_2$ PO $_4$) and 3.55 g. of anhydrous disodium hydrogen phosphate (Na $_2$ HPO $_4$) in distilled water. - (3) Borax buffer solution (0.01 M, pH=9.18 at 25° C. (77° F.)). Dissolve 3.81 g. of disodium tetraborate decahydrate (Na₂ B₄ O_7 °10H**2** O) in distilled water, and dilute to 1 liter. Stopper the bottle except when actually in use. - (4) Alkaline phosphate buffer solution (0.01 M trisodium phosphate, pH=11.72 at 25° C. (77° F.)). Dissolve 1.42 g. of anhydrous disodium hydrogen phosphate (Na₂ HPO₄) in 100 ml. of a 0.1 M carbonate-free solution of sodium hydroxide. Dilute to 1 liter with distilled water. - (5) Potassium chloride electrolyte. Prepare a saturated solution of potassium chloride (KCl) in distilled water. - (c) Ethanol-water mixture. To 80 parts by volume of ethanol (S7.3) add 20 parts by volume of distilled water. Adjust the pH of the mixture to 7±0.1 using 0.1 N sodium hydroxide (NaOH) solution. If more than 4 ml. of NaOH solution per liter of mixture is required for neutralization, discard the mixture. - S6.4.4 Preparation of electrode system. (a) Maintenance of electrodes. Clean the glass electrode before using by immersing in cold chromic-acid cleaning solution. Drain the calomel electrode and fill with KCl electrolyte, keeping level above that of the mixture at all times. When not in use, immerse the lower halves of the electrodes in distilled water, and do not immerse in the mixture for any appreciable period of time between determinations. - (b) Preparation of electrodes. Condition new glass electrodes and those that have been stored dry as recommended by the manufacturer. Before and after using, wipe the glass electrode thoroughly with a clean cloth, or a soft absorbent tissue, and rinse with distilled water. Before each pH determination, soak the prepared electrode in distilled water for at least 2 minutes. Immediately before use, remove any excess water from the tips of the electrode. - S6.4.5 Standardization of the pH assembly and testing of the electrodes. (a) Immediately before use, standardize the pH assembly with a standard buffer solution. Then use a second standard buffer solution to check the linearity of the response of the electrodes at different pH values, and to detect a faulty glass electrode or incorrect temperature compensation. The two buffer solutions bracket the anticipated pH value of the test brake fluid. (b) Allow instrument to warm up, and adjust according to the manufacturer's instructions. Immerse the tips of the electrodes in a standard buffer solution and allow the temperature of the buffer solution and the electrodes to equalize. Set the temperature knob at the temperature of the buffer solution. Adjust the standardization or asymmetry potential control until the meter registers a scale reading, in pH units, equal to the known pH of the standardizing buffer solution. (c) Rinse the electrodes with distilled water and remove excess water from the tips. Immerse the electrodes in a second standard buffer solution. The reading of the meter shall agree with the known pH of the second standard buffer solution within ± 0.05 unit without changing the setting of the standardization of asymmetry potential control. (d) A faulty electrode is indicated by failure to obtain a correct value for the pH of the second standard buffer solution after the meter has been standardized with the first. S6.4.6 Procedure. To 50±1 ml. of the test brake fluid add 50±1 ml. of the ethanol-water (S6.4.3(c)) and mix thoroughly. Immerse the electrodes in the mixture. Allow the system to come to equilibrium, readjust the temperature compensation if necessary, and take the pH reading. S6.5 Fluid stability. Evaluate the heat and chemical stability of a brake fluid by the following procedure, running duplicate samples for each test and averaging the results. S6.5.1 Summary of the procedure. The degradation of the brake fluid at elevated temperature, alone or in a mixture with a reference fluid, is evaluated by determining the change in boiling point after a period of heating under reflux conditions. S6.5.2 Apparatus. Use the apparatus and preparation specified in S6.1.2 and S6.1.3. S6.5.3 High temperature stability. S6.5.3.1 Procedure. (a) Heat a new 60 ± 1 ml. sample of the brake fluid to $185^{\circ}\pm2^{\circ}$ C. $(365^{\circ}\pm3.6^{\circ}$ F.). Hold at this temperature for 120±5 minutes. Bring to a reflux rate in excess of 1 drop per second within 5 minutes. The reflux rate should not exceed 5 drops per second at any time. Over the next 5±2 minutes adjust the heating rate to obtain an equilibrium reflux rate of 1 to 2 drops per second. Maintain this rate for an additional 2 minutes, taking four temperature readings at 30-second intervals. Average these as the observed ERBP. If no reflux is evident when the fluid temperature reaches 260° C. (500° F), discontinue heating and report ERBP as in excess of 260° C. (500° F.). S6.5.3.2 Calculation. Correct the observed ERBP for thermometer and barometric pressure factors according to S6.1.5 (a) and (b). Average the corrected ERBP's of the duplicate samples. The difference between this average and the original ERBP obtained in S6.1 is the change in ERBP of the fluid. S6.5.4 Chemical stability. S6.5.4.1 *Materials.* SAE RM-66-04 Compatibility Fluid as described in appendix B of SAE Standard J1703 JAN 1995, "Motor Vehicle Brake Fluid." (SAE RM-66-03 Compatibility Fluid as described in appendix A of SAE Standard J1703 Nov83, "Motor Vehicle Brake Fluid," November 1983, may be used in place of SAE RM-66-04 until January 1, 1995.) S6.5.4.2 *Procedure.* (a) Mix 30 ± 1 ml. of the brake fluid with 30 \pm 1 ml. of SAE RM-66-04 Compatibility Fluid in a boiling point flask (S6.1.2(a)). Determine the initial ERBP of the mixture by applying heat to the flask so that the fluid is refluxing in 10 ± 2 minutes at a rate in excess of 1 drop per second, but not more than 5 drops per second. Note the maximum fluid temperature observed during the first minute after the fluid begins refluxing at a rate in excess of 1 drop per second. Over the next 15 ± 1 minutes, adjust and maintain the reflux rate at 1 to 2 drops per second. Maintain this rate for an additional 2 minutes, recording the average value of four temperature readings taken at 30 second intervals as
the final ERBP. (b) Thermometer and barometric corrections are not required. S6.5.4.3 *Calculation.* The difference between the initial ERBP and the final average temperature is the change in temperature of the refluxing mixture. Average the results of the duplicates to the nearest 0.5 $^{\circ}$ C (1.0 $^{\circ}$ F). S6.6 *Corrosion.* Evaluate the corrosiveness of a brake fluid by running duplicate samples according to the fol- lowing procedure. S6.6.1 Summary of the procedure. Six specified metal corrosion test strips are polished, cleaned, and weighed, then assembled as described. Assembly is placed on a standard wheel cylinder cup in a corrosion test jar, immersed in the water-wet brake fluid, capped and placed in an oven at 100° C. (212° F.) for 120 hours. Upon removal and cooling, the strips, fluid, and cups are examined and tested. S6.6.2 Equipment. (a) Balance. An analytical balance having a minimum capacity of 50 grams and capable of weighing to the nearest 0.1 mg. (b) Desiccators. Desiccators containing silica gel or other suitable desiccant (c) Oven. Gravity convection oven capable of maintaining the desired set point within 2° C. $(3.6^{\circ}$ F.). (d) *Micrometer*. A machinist's micrometer 25 to 50 mm. (1 to 2 inches) capacity, or an optical comparator, capable of measuring the diameter of the SBR wheel cylinder (WC) cups to the nearest 0.02 mm. (0.001 inch). S6.6.3 *Materials.* (a) *Corrosion test strips.* Two sets of strips from each of the metals listed in appendix C of SAE Standard J1703b. Each strip shall be approximately 8 cm. long, 1.3 cm. wide, not more than 0.6 cm. thick, and have a surface area of 25±5 sq. cm. and a hole 4 to 5 mm. (0.16 to 0.20 inch) in diameter on the centerline about 6 mm. from one end. The hole shall be clean and free from burrs. Tinned iron strips shall be unused. Other strips, if used, shall not be employed if they cannot be polished to a high finish. (b) *SBR cups.* Two unused standard SAE SBR wheel cylinder (WC) cups, as specified in S7.6. (c) Corrosion test jars and lids. Two screw-top straight-sided round glass jars, each having a capacity of approximately 475 ml. and inner dimensions of approximately 100 mm. in height and 75 mm. in diameter, and a tinned steel lid (no insert or organic coating) vented with a hole 0.8 ± 0.1 mm. $(0.031\pm0.004$ inch) in diameter (No. 68 drill). (d) Machine screws and nuts. Clean, rust and oil-free, uncoated mild steel round or fillister head machine screws, size 6 or 8-32 UNC-Class 2A, five-eighths or three-fourths inch long (or equivalent metric sizes), and matching uncoated nuts. (e) Supplies for polishing strips. Waterproof silicon carbide paper, grit No. 320 A; grade 00 steel wool, lint-free polishing cloth. (f) Distilled water as specified in S7.1. (g) Ethanol as specified in S7.3. (h) Isopropanol as specified in S7.7. S6.6.4 Preparation. (a) Corrosion test strips. Except for the tinned iron strips, abrade corrosion test strips on all surface areas with silicon carbide paper wet with ethanol (isopropanol when testing DOT 5 SBBF fluids) until all surface scratches, cuts and pits are removed. Use a new piece of paper for each different type of metal. Polish the strips with the 00 grade steel wool. Wash all strips, including the tinned iron and the assemhardware, with ethanol (isopropanol when testing DOT 5 SBBF fluids); dry the strips and assembly hardware with a clean lint free cloth or use filtered compressed air and place the strips and hardware in a desiccator containing silica gel or other suitable desiccant and maintained at 23°±5° C. (73.4°±9° F.), for at least 1 hour. Handle the strips with forceps after polishing. Weigh and record the weight of each strip to the nearest 0.1 mg. Assemble the strips on a clean dry machine screw, with matching plain nut, in the order of tinned iron, steel, aluminum, cast iron, brass, and copper. Bend the strips, other than the cast iron, so that there is a separation of $3\pm\frac{1}{2}$ mm. ($\frac{1}{8}\pm\frac{1}{64}$ inch) between adjacent strips for a distance of about 5 cm. (2 inches) from the free end of the strips. (See Figure 4.) Tighten the screw on each test strip assembly so that the strips are in electrolytic contact, and can be lifted by either of the outer strips (tinned iron or copper) without any of the strips moving relative to the others when held horizontally. Immerse the strip assemblies in 90 percent ethyl alcohol. Dry with dried filtered compressed air, then desiccate at least 1 hour before use. FIG. 4. CORROSION STRIP ASSEMBLY (b) SBR WC cups. Measure the base diameters of the two standard SBR cups, using an optical comparator or micrometer, to the nearest 0.02 mm. (0.001 inch) along the centerline of the SAE and rubber-type identifications and at right angles to this centerline. Take the measurements at least 0.4 mm. (0.015 inch) above the bottom edge and parallel to the base of the cup. Discard any cup if the two measured diameters differ by more than 0.08 mm. (0.003 inch). Average the two readings on each cup. Determine the hardness of the cups according to S7.4. S6.6.5 *Procedure*. Rinse the cups in ethanol (isopropanol when testing DOT 5 SBBF fluids) for not more than 30 seconds and wipe dry with a clean lintfree cloth. Place one cup with lip edge facing up, in each jar. Insert a metal strip assembly inside each cup with the fastened end down and the free end extending upward. (See Figure 5.) When testing brake fluids, except DOT 5 SBBF, mix 760 ml. of brake fluid with 40 ml. of distilled water. When testing DOT 5 SBBF's, humidify 800 ml. of brake fluid in accordance with S6.2. eliminating determination of the ERBP. Using this water-wet mixture, cover each strip assembly to a minimum depth of 10 mm. above the tops of the strips. Tighten the lids and place the jars for 120±2 hours in an oven maintained at 100°±2° C. (212°±3.6° F.). Allow the jars to cool at 23°±5° C. $(73.4^{\circ}\pm9^{\circ}F.)$ for 60 to 90 minutes. Immediately remove the strips from the jars using forceps, agitating the strip assembly in the fluid to remove loose adhering sediment. Examine the test strips and jars for adhering crystalline deposits. Disassemble the metal strips, and remove adhering fluid by flushing with water; clean each strip by wiping with a clean cloth wetted with ethanol (isopropanol when testing DOT 5 fluids). Examine the strips for evidence of corrosion and pitting. Disregard staining or discoloration. Place the strips in a desiccator containing silica gel or other suitable desiccant, maintained at $23^{\circ}\pm5^{\circ}$ C. $(73.4^{\circ}\pm9^{\circ}$ F.), for at least 1 hour. Weigh each strip to the nearest 0.1 mg. Determine the change in weight of each metal strip. Average the results for the two strips of each type of metal. Immediately following the cooling period, remove the cups from the jars with forceps. Remove loose adhering sediment by agitation of the cups in the mixture. Rinse the cups in ethanol (isopropanol when testing DOT 5 fluids) and air-dry. Examine the cups for evidence of sloughing, blisters, and other forms of disintegration. Measure the base diameter and hardness of each cup within 15 minutes after removal from the mixture. Examine the mixture for gelling. Agitate the mixture to suspend and uniformly disperse sediment. From each jar, transfer a 100 ml. portion of the mixture to an ASTM cone-shaped centrifuge tube. Determine the percent sediment after centrifuging as described in S7.5. Measure the pH value of the corrosion text fluid according to S6.4.6. Measure the pH value of the test mixture according to S6.4.6. FIG. 5. CORROSION TEST APPARATUS S6.6.6 *Calculation.* (a) Measure the area of each type of test strip to the nearest square centimeter. Divide the average change in mass for each type by the area of that type. (b) Note other data and evaluations indicating compliance with S5.1.6. In the event of a marginal pass on inspection by attributes, or of a failure in one of the duplicates, run another set of duplicate samples. Both repeat samples shall meet all requirements of S5.1.6. S6.7 Fluidity and appearance at low temperatures. Determine the fluidity and appearance of a sample of brake fluid at each of two selected temperatures by the following procedure. S6.7.1 Summary of procedure. Brake fluid is chilled to expected minimum exposure temperatures and observed for clarity, gellation, sediment, separation of components, excessive viscosity or thixotropy. S6.7.2 Apparatus. (a) Oil sample bottle. Two clear flint glass 4-ounce bottles made especially for sampling oil and other liquids, with a capacity of approximately 125 ml., an outside diameter of 37±0.05 mm. and an overall height of 165±2.5 mm. (b) Cold chamber. An air bath cold chamber capable of maintaining storage temperatures down to minus 55° C. (minus 67° F.) with an accuracy of $\pm 2^{\circ}$ C. (3.6° F.). (c) *Timing device*. A timing device in accordance with S6.3.2(e). S6.7.3 Procedure. (a) Place 100±1 ml. of brake fluid at room temperature in an oil sample bottle. Stopper the bottle with an unused cork and place in the cold chamber at the higher storage temperature specified in Table (S5.1.7(c)). After 144±4 hours remove the bottle from the chamber, quickly wipe it with a clean, lint-free cloth, saturated with ethanol (isopropanol when testing DOT 5 fluids) or acetone. Examine the fluid for evidence of sludging, sedimentation, crystallization, stratification. Invert the bottle and determine the number of seconds required for the air bubble to travel to the top of the fluid. Let sample warm to room temperature and examine. (b) Repeat S6.7.3(a), substituting the lower cold chamber temperature specified in Table II, and a storage period of 6 hours ± 12 minutes. NOTE: Test specimens from either storage temperature may be used for the other only after warming up to room temperature. S6.8 Evaporation. The evaporation residue, and pour point of the evaporation
residue of brake fluid, are determined by the following procedure. Four replicate samples are run. S6.8.1 Summary of the procedure. The volatile diluent portion of a brake fluid is evaporated in an oven at 100° C. (212° F.). The nonvolatile lubricant portion (evaporation residue) is measured and examined for grittiness; the residues are then combined and checked to assure fluidity at minus 5° C. (23° F.). S6.8.2 Apparatus. (a) *Petri dishes.* Four covered glass petri dishes approximately 100 mm. in diameter and 15 mm. in height. (b) *Oven.* A top-vented gravity-convection oven capable of maintaining a temperature of 100°±2° C. (212°±3.6° F.). (c) Balance. A balance having a capacity of at least 100 grams, capable of weighing to the nearest 0.01 gram, and suitable for weighing the petri dishes. (d) Oil sample bottle. A glass sample bottle as described in S6.7.2(a). (e) *Cold chamber*. Air bath cold chamber capable of maintaining an oil sample bottle at minus 5°±1° C. (23°±2° F.). (f) *Timing device*. A timing device as described in S6.3.2(e). S6.8.3 *Procedure.* Obtain the tare weight of each of the four covered petri dishes to the nearest 0.01 gram. Place 25±1 ml. of brake fluid in each dish, replace proper covers and reweigh. Determine the weight of each brake fluid test specimen by the difference. Place the four dishes, each inside its inverted cover, in the oven at 100°±2° C. (212°±4° F.) for 46±2 hours. (Note: Do not simultaneously heat more than one fluid in the same oven.) Remove the dishes from the oven, allow to cool to $23^{\circ}\pm5^{\circ}$ C. (73.4°±9° F.), and weigh. Return to the oven for an additional 24±2 hours. If at the end of 72±4 hours the average loss by evaporation is less than 60 percent, discontinue the evaporation procedure and proceed with examination of the residue. Otherwise, continue this procedure either until equilibrium is reached as evidenced by an incremental mass loss of less than 0.25 gram in 24 hours on all individual dishes or for a maximum of 7 days. During the heating and weighing operation, if it is necessary to remove the dishes from the oven for a period of longer than 1 hour, the dishes shall be stored in a desiccator as soon as cooled to room temperature. Calculate the percentage of fluid evaporated from each dish. Examine the residue in the dishes at the end of 1 hour at 23°±5° C. (73.4°±9° F.). Rub any sediment with the fingertip to determine grittiness or abrasiveness. Combine the residues from all four dishes in a 118 mL (4-ounce) oil-sample bottle and store vertically in a cold chamber at minus $5^{\circ}\pm1^{\circ}$ C. (23° $\pm5^{\circ}$ F.) for 60 ± 10 minutes. Quickly remove the bottle and place in the horizontal position. The residue must flow at least 5 mm (0.2 inch) along the tube within 5 seconds. S6.8.4 *Calculation.* The average of the percentage evaporated from all four dishes is the loss by evaporation. S6.9 *Water tolerance*. Evaluate the water tolerance characteristics of a brake fluid by running one test specimen according to the following procedure. S6.9.1 Summary of the procedure. Brake fluid, except DOT 5 SBBF, is diluted with 3.5 percent water (DOT 5 SBBF is humidified), then stored at minus 40 °C. (minus 40 °F.) for 120 hours. The cold, water-wet fluid is first examined for clarity, stratification, and sedimentation, then placed in an oven at 60 °C. (140 °F.) for 24 hours. On removal, it is again examined for stratification, and the volume percent of sediment determined by centrifuging. S6.9.2 Apparatus. - (a) Centrifuge tube. See S7.5.1(a). - (b) Centrifuge. See S7.5.1(b). - (c) Cold chamber. See S6.7.2(b). - (d) Oven. Gravity or forced convection oven. - (e) Timing device. See S6.3.2(e). S6.9.3 Procedure. (a) At low temperature. Humidify 100±1 ml. of DOT 5 SBBF brake fluid in accordance with S6.2 eliminating determination of the ERBP. When testing brake fluids except DOT 5 SBBF, mix 3.5±0.1 ml. of distilled water with 100±1 ml. of the brake fluid; pour into a centrifuge tube. Stopper the tube with a clean cork and place in the cold chamber maintained at minus 40±2° C. (minus $40\pm3.6^{\circ}$ F.). After 120 hours ±2 hours remove the tube, quickly wipe with clean lint-free cloth saturated with ethanol or acetone and examine the fluid for evidence of sludging, sedimentation, crystallization, or stratification. Invert the tube and determine the number of seconds required for the air bubble to travel to the top of the fluid. (The air bubble is considered to have reached the top of the fluid when the top of the bubble reaches the 2 ml. graduation of the centrifuge tube.) If the wet fluid has become cloudy, warm to 23±5° C. (73.4±9° F.) and note appearance and fluidity. (b) At 60° C. (140° F.). Place tube and brake fluid from S6.9.3(a) in an oven maintained at $60^{\circ}\pm2^{\circ}$ C. ($140^{\circ}\pm3.6^{\circ}$ F.) for 24 ± 2 hours. Remove the tube and immediately examine the contents for evidence of stratification. Determine the percent sediment by centrifuging as described in S7.5. S6.10 *Compatibility.* The compatibility of a brake fluid with other brake fluids shall be evaluated by running one test sample according to the following procedure. S6.10.1 Summary of the procedure. Brake fluid is mixed with an equal volume of SAE RM-66-04 Compatibility Fluid, then tested in the same way as for water tolerance (S6.9) except that the bubble flow time is not measured. This test is an indication of the compatibility of the test fluid with other motor vehicle brake fluids at both high and low temperatures. S6.10.2 Apparatus and materials. - (a) Centrifuge tube. See S7.5.1(a). - (b) Centrifuge. See S7.5.1(b). - (c) Cold Chamber. See S6.7.2(b) - (d) Oven. See S6.9.2(d) - (e) SAE RM-66-04 Compatibility Fluid. As described in appendix B of SAE Standard J1703 JAN 1995 "Motor Vehicle Brake Fluid." (SAE RM-66-03 Compatibility Fluid as described in appendix A of SAE Standard J1703 NOV83, "Motor Vehicle Brake Fluid," November 1983, may be used in place of SAE RM-66-04 until January 1, 1995.) S6.10.3 Procedure. (a) At low temperature. - Mix 50±0.5 mL of brake fluid with 50±0.5 mL of SAE RM-66-04 Compatibility Fluid. Pour this mixture into a centrifuge tube and stopper with a clean dry cork. Place tube in the cold chamber maintained at minus 40°±2° C. (minus 40°±4° F). After 24±2 hours, remove tube, quickly wipe with a clean lint-free cloth saturated with ethanol (isopropanol when testing DOT 5 fluids) or acetone. Examine the test specimen for evidence of slugging, sedimentation, or crystallization. Test fluids, except DOT 5 SBBF, shall be examined for stratification. - S6.11 Resistance to oxidation. The stability of a brake fluid under oxidative conditions shall be evaluated by running duplicate samples according to the following procedure. S6.11.1 Summary of procedure. Brake fluids, except DOT 5 SBBF, are activated with a mixture of approximately 0.2 percent benzoyl peroxide and 5 percent water. DOT 5 SBBF is humidified in accordance with S6.2 eliminating determination of the ERBP, and then approximately 0.2 percent benzoyl peroxide is added. A corrosion test strip assembly consisting of cast iron and an aluminum strip separated by tinfoil squares at each end is then rested on a piece of SBR WC cup positioned so that the test strip is half immersed in the fluid and oven aged at 70° C. (158° F.) for 168 hours. At the end of this period, the metal strips are examined for pitting, etching, and loss of mass. S6.11.2 Equipment. - (a) Balance. See S6.6.2(a). - (b) Desiccators. See S6.6.2(b). - (c) Oven. See S6.6.2(c). - (d) Three glass test tubes approximately 22 mm. outside diameter by 175 mm. in length. - S6.11.3 Reagents and materials. - (a) Benzoyl peroxide, reagent grade, 96 percent. (Benzoyl peroxide that is brownish, or dusty, or has less than 90 percent purity, must be discarded.) Reagent strength may be evaluated by ASTM E298-68, "Standard Methods for Assay of Organic Peroxides." - (b) *Corrosion test strips.* Two sets of cast iron and aluminum metal test strips as described in appendix C of SAE Standard J1703b. - (c) Tinfoil. Four unused pieces of tinfoil approximately 12 mm. ($\frac{1}{2}$ inch) square and between 0.02 and 0.06 mm. (0.0008 and 0.0024 inch) in thickness. The foil shall be at least 99.9 percent tin and contain not more than 0.025 percent lead. - (d) *SBR cups.* Two unused, approximately one-eighth sections of a standard SAE SBR WC cup (as described in S7.6). - (e) Machine screw and nut. Two clean oil-free, No. 6 or $8-32\times\%-$ or 1/2-inch long (or equivalent metric size), round or fillister head, uncoated mild steel machine screws, with matching plain nuts. #### S6.11.4 Preparation. - (a) Corrosion test strips. Prepare two sets of aluminum and cast iron test strips according to S6.6.4(a) except for assembly. Weigh each strip to the nearest 0.1 mg. and assemble a strip of each metal on a machine screw, separating the strips at each end with a piece of tinfoil. Tighten the nut enough to hold both pieces of foil firmly in place. - (b) Test mixture.Place 30±1 ml. of the brake fluid under test in a 22 by 175 mm. test tube. For all fluids except DOT 5 SBBF, add 0.060±.002 grams of benzoyl peroxide, and 1.50±0.05 ml. of distilled water. For DOT 5 SBBF, use test fluid humidified in accordance with S6.2, and add only the benzoyl peroxide. Stopper the tube loosely with a clean dry cork, shake, and place in an oven for 2 hours at 70°±2 °C. (158°±3.6°F.). Shake every 15 minutes to effect solution of the peroxide, but do not wet cork. Remove the tube from the oven and allow to cool to 23°±5 °C. (73.4°±9 °F.) Begin testing according to paragraph S6.11.5 not later than 24 hours after removal of tube from oven. S6.11.5 Procedure. Place a one-eighth SBR cup section in the bottom of each tube. Add 10 ml. of prepared test mixture to each test tube. Place a metalstrip assembly in each, the end of the strip without the screw resting on
the rubber, and the solution covering about one-half the length of the strips. Stopper the tubes with clean dry corks and store upright for 70±2 hours at 23°±5° C. (73.4°±9° F.). Loosen the corks and place the tubes for 168±2 hours in an oven maintained at $70^{\circ}\pm2^{\circ}$ C. $(158^{\circ}\pm3.6^{\circ}$ F.). Afterwards remove and disassemble strips. Examine the strips and note any gum deposits. Wipe the strips with a cloth wet with ethanol (isopropanol when testing DOT 5 fluids) and note any pitting, etching or roughening of surface disregarding stain or discoloration. Place the strips in a desiccator over silica gel or other suitable desiccant, at 23°±5° C. (73.4°±9° F.) for at least 1 hour. Again weigh each strip to the nearest 0.1 mg. S6.11.6 Calculation. Determine corrosion loss by dividing the change in mass of each metal strip by the total surface area of each strip measured in square millimeters (mm²), to the nearest square millimeter (mm²). Average the results for the two strips of each type of metal, rounding to the nearest 0.05 mg. per 100 square millimeter (mm²). If only one of the duplicates fails for any reason, run a second set of duplicate samples. Both repeat samples shall meet all requirements of S5.1.11. S6.12 Effect on SBR cups. The effects of a brake fluid in swelling, softening, and otherwise affecting standard SBR WC cups shall be evaluated by the following procedure. S6.12.1 Summary of the procedure. Four standard SAE SBR WC cups are measured and their hardnesses determined. The cups, two to a jar, are immersed in the test brake fluid. One jar is heated for 70 hours at 70° C. (158° F), and the other for 70 hours at 120° C (248° F). Afterwards, the cups are washed, examined for disintegration, remeasured and their hardnesses redetermined. S6.12.2 Equipment and supplies. (a) Oven. See S6.6.2(c). (b) Glass jars and lids. Two screw-top, straight-sided round glass jars, each having a capacity of approximately 250 ml. and inner dimensions of approximately 125 mm. in height and 50 mm. in diameter, and a tinned steel lid (no insert or organic coating). (c) *SBR cups.* See S7.6. S6.12.3 *Preparation.* Measure the base diameters of the SBR cups as described in S6.6.4(b), and the hardness of each as described in S7.4. S6.12.4 Procedure. Wash the cups in 90 percent ethanol (isopropanol when testing DOT 5 fluids) (see S7.3), for not longer than 30 seconds and quickly dry with a clean, lint-free cloth. Using forceps, place two cups into each of the two jars; add 75 ml. of brake fluid to each jar and cap tightly. Place one jar in an oven held at 70°±2° C. (158±3.6° F.) for 70±2 hours. Place the other jar in an oven held at 120°±2° C. (248°±3.6° F.) for 70±2 hours. Allow each jar to cool for 60 to 90 minutes at $23^{\circ}\pm5^{\circ}$ C. $(73.4^{\circ}\pm9^{\circ}$ F.). Remove cups, wash with ethanol (isopropanol when testing DOT 5 fluids) for not longer than 30 seconds, and quickly dry. Examine the cups for disintegration as evidenced by stickiness, blisters, or sloughing. Measure the base diameter and hardness of each cup within 15 minutes after removal from the fluid. S6.12.5 *Calculation.* (a) Calculate the change in base diameter for each cup. If the two values, at each temperature, do not differ by more than 0.10 mm. (0.004 inch) average them to the nearest 0.02 mm. (0.001 inch). If the two values differ by more than 0.10 mm., repeat the test at the appropriate temperature and average the four values as the change in base diameter. (b) Calculate the change in hardness for each cup. The average of the two values for each pair is the change in hardness. (c) Note disintegration as evidenced by stickiness, blisters, or sloughing. S6.13 Stroking properties. Evaluate the lubricating properties, component compatibility, resistance to leakage, and related qualities of a brake fluid by running one sample according to the following procedures. S6.13.1 Summary of the procedure. Brake fluid is stroked under controlled conditions at an elevated temperature in a simulated motor vehicle hydraulic braking system consisting of three slave wheel cylinders and an actuating master cylinder connected by steel tubing. Referee standard parts are used. All parts are carefully cleaned, examined, and certain measurements made immediately prior to assembly for test. During the test, temperature, rate of pressure rise, maximum pressure, and rate of stroking are specified and controlled. The system is examined periodically during stroking to assure that excessive leakage of fluid is not occurring. Afterwards, the system is torn down. Metal parts and SBR cups are examined and remeasured. The brake fluid and any resultant sludge and debris are collected, examined, and test- S6.13.2 Apparatus and equipment. Either the drum and shoe type of stroking apparatus (see Figure 1 of SAE Standard J1703b) except using only three sets of drum and shoe assemblies, or the stroking fixture type apparatus as shown in Figure 2 of SAE J1703Nov83, with the components arranged as shown in Figure 1 of SAE J1703Nov83. The following components are required. - (a) Brake assemblies. With the drum and shoe apparatus: three drum and shoe assembly units (SAE RM-29a) consisting of three forward brake shoes and three reverse brake shoes with linings and three front wheel brake drum assemblies with assembly component parts. With stroking fixture type apparatus: three fixture units including appropriate adapter mounting plates to hold brake wheel cylinder assemblies. - (b) Braking pressure actuation mechanism. An actuating mechanism for applying a force to the master cylinder pushrod without side thrust. amount of force applied by the actuating mechanism shall be adjustable and capable of applying sufficient thrust to the master cylinder to create a pressure of at least 6895 kPa (1,000 p.s.i.) in the simulated brake system. A hydraulic gage or pressure recorder, having a range of at least 0 to 6895 kPa (0 to 1,000 p.s.i), shall be installed between the master cylinder and the brake assemblies and shall be provided with a shutoff valve and with a bleeding valve for removing air from the connecting tubing. The actuating mechanism shall be designed to permit adjustable stroking rates of approximately 1,000 strokes per hour. Use a mechanical or electrical counter to record the total number of strokes. - (c) Heated air bath cabinet. An insulated cabinet or oven having sufficient capacity to house the three mounted brake assemblies or stroking fixture assemblies, master cylinder, and necessary connections. A thermostatically controlled heating system is required to maintain a temperature of $70^{\circ}\pm5$ ° C ($158^{\circ}\pm9$ ° F) or $120^{\circ}\pm5$ ° C ($248^{\circ}\pm9$ ° F). Heaters shall be shielded to prevent direct radiation to wheel or master cylinder. - (d) Master cylinder (MC) assembly (SAE RM-15a). One cast iron housing hydraulic brake system cylinder having a diameter of approximately 28 mm. (1^{1} % inch) and fitted for a filler cap and standpipe (see S6.13.2(e)). The MC piston shall be made from SAE CA360 copperbase alloy (half hard). A new MC assembly is required for each test. - (e) Filler cap and standpipe. MC filler cap provided with a glass or uncoated steel standpipe. Standpipe must provide adequate volume for thermal expansion, yet permit measurement and adjustment of the fluid level in the system to ± 3 ml. Cap and standpipe may be cleaned and reused. - (f) Wheel cylinder (WC) assemblies (SAE RM-14a). Three unused cast iron housing straight bore hydraulic brake WC assemblies having diameters of approximately 28 mm (1½ inch) for each test. Pistons shall be made from unanodized SAE AA 2024 aluminum alloy. - (g) Micrometer. Same as S6.6.2(d). S6.13.3 Materials. - (a) Standard SBR brake cups. Six standard SAE SBR wheel cylinder test cups, one primary MC test cup, and one secondary MC test cup, all as described in S7.6, for each test. - (b) Steel tubing. Double wall steel tubing meeting SAE specification J527. A complete replacement of tubing is essential when visual inspection indicates any corrosion or deposits on inner surface of tubing. Tubing from master cylinder to one wheel cylinder shall be replaced for each test (minimum length .9 m.) Uniformity in tubing size is required between master cylinder and wheel cylinder. The standard master cylinder has two outlets for tubing, both of which must be used. S6.13.4 Preparation of test apparatus. (a) Wheel cylinder assemblies. Use unused wheel cylinder assemblies. Disassemble cylinders and discard cups. Clean all metal parts with ethanol (isopropanol when testing DOT 5 fluids). Inspect the working surfaces of all metal parts for scoring, galling, or pitting and cylinder bore roughness, and discard all defective parts. Remove any stains on cylinder walls with crocus cloth and ethanol (isopropanol when testing DOT 5 fluids). If stains cannot be removed, discard the cylinder. Measure the internal diameter of each cylinder at a location approximately 19 mm. (0.75 inch) from each end of the cylinder bore, taking measurements in line with the hydraulic inlet opening and at right angles to this centerline. Discard the cylinder if any of these four readings exceeds the maximum or minimum limits of 28.66 to 28.60 mm. (1.128 to 1.126 inch). Measure the outside diameter of each piston at two points approximately 90° apart. Discard any piston if either reading exceeds the maximum or minimum limits of 28.55 to 28.52 mm. (1.124 to 1.123 inch). Select parts to insure that the clearance between each piston and mating cylinder is within 0.08 to 0.13 mm. (0.003 to 0.005 inch). Use unused SBR cups. To remove dirt and debris, rinse the cups in 90 percent ethyl alcohol for not more than 30 seconds and wipe dry with a clean lint-free cloth. Discard any cups showing defects such as cuts, molding flaws, or blisters. Measure the lip and base diameters of all cups with an optical comparator or
micrometer to the nearest 0.02 mm. (0.001 inch) along the centerline of the SAE and rubber-type identifications and at right angles to this centerline. Determine base diameter measurements at least 0.4 mm. (0.015 inch) above the bottom edge and parallel to the base of the cup. Discard any cup if the two measured lip or base diameters differ by more than 0.08 mm. (0.003 inch). Average the lip and base diameters of each cup. Determine the hardness of all cups according to S7.4. Dip the rubber and metal parts of wheel cylinders, except housing and rubber boots, in the fluid to be tested and install them in accordance with the manufacturer's instructions. Manually stroke the cylinders to insure that they operate easily. Install cylinders in the simulated brake system. (b) Master cylinder assembly. Use an unused master cylinder and unused standard SBR primary and secondary MC cups which have been inspected, measured and cleaned in the manner specified in S6.13.4(a), omitting hardness of the secondary MC cup. However, prior to determining the lip and base diameters of the secondary cup, dip the cup in test brake fluid, assemble on the MC piston, and maintain the assembly in a vertical position at 23°±5° C. (73.4°±9°F.) for at least 12 hours. Inspect the relief and supply ports of the master cylinder; discard the cylinder if ports have burrs or wire edges. Measure the internal diameter of the cylinder at two locations (approximately midway between the relief and supply ports and approximately 19 mm. (0.75 inch) beyond the relief port toward the bottom or discharge end of the bore), taking measurements at each location on the vertical and horizontal centerline of the bore. Discard the cylinder if any reading exceeds the maximum or minimum limits of 28.65 to 28.57 mm. (1.128 to 1.125 inch). Measure the outside diameter of each end of the master cylinder piston at two points approximately 90° apart. Discard the piston if any of these four readings exceed the maximum or minimum limits of 28.55 to 28.52 mm. (1.124 to 1.123 inch). Dip the rubber and metal parts of the master cylinder, except the housing and push rod-boot assembly, in the brake fluid and install in accordance with manufacturer's instructions. Manually stroke the master cylinder to insure that it operates easily. Install the master cylinder in the simulated brake system. (c) Assembly and adjustment of test apparatus. (1) When using a shoe and drum type apparatus, adjust the brake shoe toe clearances to 1.0±0.1 mm (0.040±0.004 inch). Fill the system with brake fluid, bleeding all wheel cylinders and the pressure gage to remove entrapped air. Operate the actuator manually to apply a pressure greater than the required operating pressure and inspect the system for leaks. Adjust the actuator and/or pressure relief valve to obtain a pressure of 6895 kPa±345 kPa (1,000±50 p.s.i.). A smooth pressure stroke pattern is required when using a shoe and drum type apparatus. The pressure is relatively low during the first part of the stroke and then builds up smoothly to the maximum stroking pressure at the end of the stroke, to permit the primary cup to pass the compensating hole at a relatively low pressure. Using stroking fixtures, adjust the actuator and/or pressure relief valve to obtain a pressure of 6895 kPa±345 kPa (1,000±50 p.s.i.). (2) Adjust the stroking rate to 1,000±100 strokes per hour. Record the fluid level in the master cylinder standpipe. S6.13.5 *Procedure.* Operate the system for $16,000\pm1,000$ cycles at $23^{\circ}\pm5^{\circ}$ C. (73.4°±9° F.). Repair any leakage, readjust the brake shoe clearances, and add fluid to the master cylinder standpipe to bring to the level originally recorded, if necessary. Start the test again and raise the temperature of the cabinet within 6±2 hours to 120°±5° C. (248°±9° F.). During the test observe operation of wheel cylinders for improper functioning and record the amount of fluid required to replenish any loss, at intervals of 24,000 strokes. Stop the test at the end of 85,000 total recorded strokes. These totals shall include the number of strokes during operation at 23°±5° C. (73.4°±9° F.) and the number of strokes required to bring the system to the operating temperature. Allow equipment to cool to room temperature. Examine the wheel cylinders for leakage. Stroke the assembly an additional 100 strokes, examine wheel cylinders for leakage and record volume loss of fluid. Within 16 hours after stopping the test, remove the master and wheel cylinders from the system, retaining the fluid in the cylinders by immediately capping or plugging the ports. Disassemble the cylinders, collecting the fluid from the master cylinder and wheel cylinders in a glass jar. When collecting the stroked fluid, remove all residue which has deposited on rubber and metal internal parts by rinsing and agitating such parts in the stroked fluid and using a soft brush to assure that all loose adhering sediment is collected. Clean SBR cups in ethanol (isopropanol when testing DOT 5 fluids) and dry. Inspect the cups for stickiness, scuffing, blistering, cracking, chipping, and change in shape from original appearance. Within 1 hour after disassembly, measure the lip and base diameters of each cylinder cup by the procedures specified in S6.13.4 (a) and (b) with the exception that lip or base diameters of cups may now differ by more than 0.08 mm. (0.003 inch). Determine the hardness of each cup according to S7.4. Note any sludge or gel present in the test fluid. Within 1 hour after draining the cylinders, agitate the fluid in a glass jar to suspend and uniformly disperse sediment and transfer a 100 ml. portion of this fluid to a centrifuge tube and determine percent sediment as described in S7.5. Allow the tube and fluid to stand for 24 hours, recentrifuge and record any additional sediment recovered. Inspect cylinder parts, note any gumming or any pitting on pistons and cylinder walls. Disregard staining or discoloration. Rub any deposits adhering to cylinder walls with a clean soft cloth wetted with ethanol (isopropanol when testing DOT 5 fluids) to determine abrasiveness and removability. Clean cylinder parts in ethanol (isopropanol when testing DOT 5 fluids) and dry. Measure and record diameters of pistons and cylinders according to S6.13.4(a) and (b). Repeat the test if mechanical failure occurs that may affect the evaluation of the brake fluid. S6.13.6 *Calculation.* (a) Calculate the changes in diameters of cylinders and pistons (see S5.1.13(b)). - (b) Calculate the average decrease in hardness of the seven cups tested, as well as the individual values (see S5.1.13(c)). - (c) Calculate the increases in base diameters of the eight cups (see S5.1.13(e)). - (d) Calculate the lip diameter interference set for each of the eight cups by the following formula and average the eight values (see S5.1.13(f)). $[(D_1-D_2)/(D_1-D_3)] \times 100 = PERCENTAGE LIP$ DIAMETER INTERFERENCE SET where: D_1 =Original lip diameter. D_2 =Final lip diameter. D_3 =Original cylinder bore diameter. S6.14 Container information. Each container with information marked directly on the container surface or on a label (labels) affixed to the container pursuant to S5.2.2.2 or S5.2.2.3 is subjected to the following procedure: (a) If the container has a label affixed to it, make a single vertical cut all the way through the label with the container in the vertical position. - (b) Immerse the container in the same brake fluid or hydraulic system mineral oil contained therein for 15 minutes at room temperature (23 \pm 5 °C; 73.4 \pm 9 °F). - (c) Within 5 minutes after removing the container from the fluid or oil, remove excess liquid from the surface of the container by wiping with a clean dry cloth. - S7. Auxiliary test methods and reagent standards. - S7.1 *Distilled water.* Nonreferee reagent water as specified in ASTM D1193-70, "Standard Specifications for Reagent Water," or water of equal purity. S7.2 Water content of motor vehicle brake fluids. Use analytical methods based on ASTM D1123-59, "Standard Method of Test for Water in Concentrated Engine Antifreezes by the Iodine Reagent Method," for determining the water content of brake fluids, or other methods of analysis yielding comparable results. To be acceptable for use, such other method must measure the weight of water added to samples of the SAE RM-66-04 and TEGME Compatibility Fluids within ± 15 percent of the water added for additions up to 0.8 percent by weight, and within ± 5 percent of the water added for additions greater than 0.8 percent by weight. The SAE RM-66-04 Compatibility Fluid used to prepare the samples must have an original ERBP of not less than 205 °C (401 ${\rm \widetilde{o}F})$ when tested in accordance with S6.1. The SAE TEGME fluid used to prepare the samples must have an original ERBP of not less than 240 °C (464 °F) when tested in accordance with S6.1. S7.3 Ethanol. 95 percent (190 proof) ethyl alcohol, USP or ACS, or Formula 3-A Specially Denatured Alcohol of the same concentration (as specified at 27 CFR 21.35). For pretest washings of equipment, use approximately 90 percent ethyl alcohol, obtained by adding 5 parts of distilled water to 95 parts of ethanol. S7.4 Measuring the hardness of SBR brake cups. Hardness measurements on SBR wheel cylinder cups and master cylinder primary cups shall be made by using the following apparatus and the following procedure. S7.4.1 Apparatus. - (a) *Anvil*. A rubber anvil having a flat circular top 20±1 mm. (¹³/₁₆±¹/₁₆ inch) in diameter, a thickness of at least 9 mm. (¾ inch) and a hardness within 5 IRHDs of the SBR test cup. - (b) Hardness tester. A hardness tester meeting the requirements for the standard instrument as described in ASTM D1415-68, "Standard Method of Test for International Hardness of Vulcanized Natural and Synthetic Rubbers," and graduated directly in IRHD units. - S7.4.2 *Procedure.* Make hardness measurements at 23°±2° C.
(73.4°±4°F.). Equilibrate the tester and anvils at this temperature prior to use. Center brake cups lip side down on an anvil of appropriate hardness. Following the manufacturer's operating instructions for the hardness tester, make one measurement at each of four points 6 mm from the center of the cup and spaced 90° apart. Average the four values, and round off to the nearest IRHD. - S7.5 Sediment by centrifuging. The amount of sediment in the test fluid shall be determined by the following procedure. S7.5.1 Apparatus. (a) Centrifuge tube. Cone-shaped centrifuge tubes conforming to the dimensions given in Figure 6, and made of thoroughly annealed glass. The graduations shall be numbered as shown in Figure 6, and shall be clear and distinct. Scale-error tolerances and smallest graduations between various calibration marks are given in Table V and apply to calibrations made with airfree water at 20° C. (68° F.). Fig. 6. ASTM 8-in. Centrifuge Tube TABLE V—CALIBRATION TOLERANCES FOR 8-INCH CENTRIFUGE TUBE | Range, ml | Subdivi-
sion, ml | Volume
tolerance,
ml | |------------------|----------------------|----------------------------| | 0 to 0.1 | 0.05 | ±0.02 | | Above 0.1 to 0.3 | 0.05 | ±0.03 | | Above 0.3 to 0.5 | 0.05 | ±0.05 | | Above 0.5 to 1 | 0.10 | ±0.05 | | Above 1 to 2 | 0.10 | ±0.10 | | Above 2 to 3 | 0.20 | ±0.10 | | Above 3 to 5 | 0.5 | ±0.20 | | Above 5 to 10 | 1. | ±0.50 | | Above 10 to 25 | 5. | ±1.00 | | Above 25 to 100 | 25. | ±1.00 | (b) Centrifuge. A centrifuge capable of whirling two or more filled centrifuge tubes at a speed which can be controlled to give a relative centrifugal force (r.c.f.) between 600 and 700 at the tip of the tubes. The revolving head, trunnion rings, and trunnion cups, including the rubber cushion, shall withstand the maximum centrifugal force capable of being delivered by the power source. The trunnion cups and cushions shall firmly support the tubes when the centrifuge is in motion. Calculate the speed of the rotating head using this equation: $r.p.m. = 265[\sqrt{25.4} \times r.c.f./d]$ ### Where: r.c.f. = Relative centrifugal force, and d = Diameter of swing, in millimeters, measured between tips of opposing tubes when in rotating position. Table VI shows the relationship between diameter, swing, relative centrifugal force (r.c.f.), and revolutions per minute. TABLE VI.—ROTATION SPEEDS FOR CENTRIFUGES OF VARIOUS DIAMETERS | Diameter of swing in millimeters a | r.p.m. at
600 r.c.f | r.p.m. at
700 r.c.f. | |------------------------------------|------------------------------|------------------------------| | 483 | 1490
1450
1420
1390 | 1610
1570
1530
1500 | ^a Measured in millimeters between tips of opposite tubes when in rotating position. S7.5.2 Procedure. Balance the corked centrifuge tubes with their respective trunnion cups in pairs by weight on a scale, according to the centrifuge manufacturer's instructions, and place them on opposite sides of the centrifuge head. Use a dummy assembly when one sample is tested. Then whirl them for 10 minutes, at a rate sufficient to produce a r.c.f. between 600 and 700 at the tips of the whirling tubes. Repeat until the volume of sediment in each tube remains constant for three consecutive readings. S7.5.3 *Calculation.* Read the volume of the solid sediment at the bottom of the centrifuge tube and report the percent sediment by volume. Where replicate determinations are specified, report the average value. S7.6 Standard styrene-butadiene rubber (SBR) brake cups. SBR brake cups for testing motor vehicle brake fluids shall be manufactured using the following formulation: FORMULATION OF RUBBER COMPOUND | Ingredient | Parts by
weight | |---|--------------------| | SBR type 1503 ^a | 100 | | Oil furnace black (NBS 378) | 40 | | Zinc oxide (NBS 370) | 5 | | Sulfur (NBS 371) | 0.25 | | Stearic Acid (NBS 372) | 1 | | n-tertiary butyl-2-benzothiazole sulfenamide | | | (NBS 384) | 1 | | Symmetrical dibetanaphthyl-p-phenylenediamine | 1.5 | | Dicumyl peroxide (40 percent on precipitated | | | CaCO ₃) ^b | 4.5 | ### § 571.116, Nt. FORMULATION OF RUBBER COMPOUND-Continued | Ingredient | Parts by weight | |------------|-----------------| | Total | 153.25 | NOTE: The ingredients labeled (NBS) must have properties identical with those supplied by the National Bureau of Standards. Compounding, vulcanization, physical properties, size of the finished cups, and other details shall be as specified in appendix B of SAE J1703b. The cups shall be used in testing brake fluids either within 6 months from date of manufacture when stored at room temperature below 30° C. (86° F.) or within 36 months from date of manufacture when stored at temperatures below minus 15° C. (+5° F.). After removal of cups from refrigeration they shall be conditioned base down on a flat surface for at least 12 hours at room temperature in order to allow cups to reach their true configuration before measurement. S7.7 Isopropanol. ACS or reagent grade. [36 FR 22902, Dec. 2, 1971] EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §571.116, see the List of Sections Affected in the Finding Aids section of this volume EFFECTIVE DATE NOTE: At 63 FR 28932, May 27, 1998, §571.116 was amended by revising S5.1.3, S5.2.1, revising in S5.2.2.2, the introductory paragraph and paragraph (g)(4); revising in S5.2.2.3, the introductory paragraph, paragraph (d) and paragraph (e)(4); revising S6.3; revising in S6.6.6, paragraph (a); revising S6.8.3; revising in S6.10.3, paragraph (a); revising S6.11.1; revising S6.11.6; revising, in S6.13.2, paragraph (b); revising in S6.13.3, paragraph (b), revising in S6.13.4, paragraph (c)(1); revising S7.4.2; and revising in S7.5.1, paragraph (b). At 63 FR 51001, Sept. 24, 1998, §571.116 was amended by revising S6.3. All of the above amendments are effective May 27. 1999. For the convenience of the user, the superseded text follows: ### §571.116 Standard No. 116, Motor vehicle brake fluids. S5.1.3 Kinematic viscosities. When brake fluid is tested according to S6.3, the kinematic viscosities in centistokes (cSt.) at stated temperatures shall be neither less than 1.5 cSt. at 100° C. (212° F.) nor more than the following maximum value for the grade indicated: (a) DOT 3: 1.500 cSt. at minus 40° C. (minus 40° F.). (b) DOT 4: 1,800 cSt. at minus 40° C. (minus 40° F.) (c) DOT 5: 900 cSt. at minus 40° C. (minus 40° F.). S5.1.4 pH value. When brake fluid, except DOT 5 SBBF, is tested according to S6.4, the pH value shall not be less than 7.0 nor more than 11.5. S5.2.1 Container sealing. Each brake fluid or hydraulic system mineral oil container with a capacity of 6 fluid ounces or more shall be provided with a resealable closure that has an inner seal impervious to the packaged brake fluid. The container closure shall include a tamper-proof feature that will either be destroyed or substantially altered when the container closure is initially opened. S5.2.2.2 Each packager of brake fluid shall furnish the information specified in paragraphs (a) through (g) of this S5.2.2.2 by clearly marking it on each brake fluid container or on a label (labels) permanently affixed to the container, in any location except a removable part such as a lid. After being subjected to the operations and conditions specified in S6.14, the information required by this section shall be legible to an observer having corrected visual acuity of 20/40 (Snellen ratio) at a distance of one foot, and any label affixed to the container in compliance with this section shall not be removable without its being destroyed or defaced. CAUTION: DO NOT REFILL CON-TAINER, AND DO NOT USE FOR OTHER LIQUIDS. (Not required for containers with a capacity in excess of 5 gallons.) S5.2.2.3 Each packager of hydraulic system mineral oil shall furnish the information specified in paragraphs (a) through (e) of this S5.2.2.3 by clearly marking it on each brake fluid container or on a label (labels) permanently affixed to the container, in any location except a removable part such as a lid. After being subjected to the operations and conditions specified in S6.14, the information required by this section shall be legible to an observer having corrected visual acuity of 20/40 (Snellen ratio) at a distance of one foot, and any label affixed to the container in compliance with this section shall $^{^{\}rm a}$ Philprene 1503 has been found suitable. $^{\rm b}$ Use only within 90 days of manufacture and store at temperature below 27° C. (80° F.). not be removable without its being destroyed or defaced. * * * * * (d) Designation of the contents as "HYDRAULIC SYSTEM MINERAL OIL" in capital letters at least 1/8 of an inch high. * * * * * * (4) CAUTION: STORE HYDRAULIC SYSTEM MINERAL OIL ONLY IN ITS ORIGINAL CONTAINER. KEEP CONTAINER CLEAN AND TIGHTLY CLOSED. DO NOT REFILL CONTAINER OR USE OTHER LIQUIDS. (The last sentence is not required for containers with a capacity in excess of 5 gallons.) * * * * * S6.3 Kinematic viscosity. Determine the kinematic viscosity of a brake fluid in centistokes (cSt.) by the following procedure. Run duplicate samples at each of the specified temperatures, making two timed runs on each sample. * * * * * S6.6.6 *Calculation.* (a) Measure the area of each type of test strip to the nearest square centimeter. Divide the average change in weight for each type by the area of that type. * * * * * S6.8.3 Procedure. Obtain the tare weight of each of the four covered petri dishes to the nearest 0.01 gram. Place 25±1 ml. of brake fluid in each dish, replace proper covers and reweigh. Determine the weight of each brake fluid test specimen by the difference. Place the four dishes, each inside its inverted cover, in the oven at 100°±2° C. (212°±3.6° F.) for 46±2 hours. (NOTE: Do not simultaneously heat more than one fluid in the same oven.) Remove the dishes from the oven, allow to cool to 23°±5° C. (73.4°±9° F.), and weigh.
Return to the oven for an additional 24±2 hours. If at the end of 72±4 hours the average loss by evaporation is less than 60 percent, discontinue the evaporation procedure and proceed with examination of the residue. Otherwise, continue this procedure either until equilibrium is reached as evidenced by an incremental weight loss of less than 0.25 gram in 24 hours on all individual dishes or for a maximum of 7 days. During the heating and weighing operation, if it is necessary to remove the dishes from the oven for a period of longer than 1 hour, the dishes shall be stored in a desiccator as soon as cooled to room temperature. Calculate the percentage of fluid evaporated from each dish. Examine the residue in the dishes at the end of 1 hour at $23^{\circ}\pm5^{\circ}$ C. $(73.4^{\circ}\pm9^{\circ}$ F.). Rub any sediment with the fingertip to determine grittiness or abrasiveness. Combine the residues from all four dishes in a 4-ounce oil sample bottle and store vertically in a cold chamber at minus $5^{\circ}\pm1^{\circ}$ C. $(23^{\circ}\pm2^{\circ}\text{F.})$ for 60 ± 10 minutes. Quickly remove the bottle and place in the horizontal position. The residue must flow at least 5 mm. (0.2 inch) along the tube within 5 seconds. * * * * * ### S6.10.3 Procedure. (a) At low temperature. Mix 50 \pm 0.5 ml. of the brake fluid with 50 \pm 0.5 ml. of SAE RM-66-04 Compatibility Fluid. Pour this mixture into a centrifuge tube and stopper with a clean dry cork. Place tube in the cold chamber maintained at minus 40° \pm 2°C (minus 40° \pm 3.6°F) After 24 \pm 2 hours, remove tube, quickly wipe with a clean lint-free cloth saturated with ethanol (isopropanol when testing DOT 5 fluids) or acetone. Examine the test specimen for evidence of sludging, sedimentation, or crystallization. Test fluids, except DOT 5 SBBF, shall be examined for stratification. * * * * * ### S6.11.1 Summary of procedure. Brake fluids, except DOT 5 SBBF, are activated with a mixture of approximately 0.2 percent benzoyl peroxide and 5 percent water. DOT 5 SBBF is humidified in accordance with S6.2 eliminating determination of the ERBP, and then approximately 0.2 percent benzoyl peroxide is added. A corrosion test strip assembly consisting of cast iron and an aluminum strip separated by tinfoil squares at each end is then rested on a piece of SBR WC cup positioned so that the test strip is half immersed in the fluid and oven aged at 70 °C. (158 °F.) for 168 hours. At the end of this period, the metal strips are examined for pitting, etching, and weight loss. * * * * * S6.11.6 *Calculation.* Determine corrosion loss by dividing the change in weight of each metal strip by the total surface area of each strip measured in square centimeters, to the nearest square centimeter. Average the results for the two strips of each type of metal, rounding to the nearest 0.05 mg. per square centimeter. If only one of the duplicates fails for any reason, run a second set of duplicate samples. Both repeat samples shall meet all requirements of S5.1.11. * * * * * S6.13.2 Apparatus and equipment. * * * * * (b) Braking pressure actuation mechanism. An actuating mechanism for applying a force to the master cylinder pushrod without side thrust. The amount of force applied by the actuating mechanism shall be adjustable and capable of applying sufficient thrust to the master cylinder to create a pressure of at least 70 kg./sq. cm. (1,000 p.s.i.) in the simulated brake system. A hydraulic gage or pressure recorder, having a range of at least 0 to 70 kg./sq. cm. (0 to 1,000 p.s.i.), shall be installed between the master cylinder and the brake assemblies and shall be provided with a shutoff valve and with a bleeding valve for removing air from the connecting tubing. The actuating mechanism shall be designed to permit adjustable stroking rates of approximately 1,000 strokes per hour. Use a mechanical or electrical counter to record the total number of strokes. * * * * * * * S6.13.3 *Materials*. S6.13.3 Materials. * * * * * (b) Steel tubing. Double wall steel tubing meeting SAE specification J527. A complete replacement of tubing is essential when visual inspection indicates any corrosion or deposits on inner surface of tubing. Tubing from master cylinder to one wheel cylinder shall be replaced for each test (minimum length 3 feet). Uniformity in tubing size is required between master cylinder and wheel cylinder. The standard master cylinder has two outlets for tubing, both of which must be used. * * * * * * * * * S6.13.4 Preparation of test apparatus. * * * * * (c) Assembly and adjustment of test apparatus. (1) When using a shoe and drum type apparatus, adjust the brake shoe toe clearances to 1.0±0.1 mm. (0.040±0.004 inch). Fill the system with brake fluid, bleeding all wheel cylinders and the pressure gage to remove entrapped air. Operate the actuator manually to apply a pressure greater than the required operating pressure and inspect the system for leaks. Adjust the actuator and/or pressure relief valve to obtain a pressure of 70±3.5 kg./sq. cm. (1,000±50 p.s.i.). A smooth pressure-stroke pattern is required when using a shoe and drum type apparatus. The pressure is relatively low during the first part of the stroke and then builds up smoothly to the 49 CFR Ch. V (10-1-98 Edition) maximum stroking pressure at the end of the stroke, to permit the primary cup to pass the compensating hole at a relatively low pressure. Using stroking fixtures, adjust the actuator and/or pressure relief valve to obtain a pressure of 70 ± 3.5 kg./sq. cm. $(1,000\pm50$ p.s.i.). * * * * * S7.4.2 *Procedure.* Make hardness measurements at $23^{\circ}\pm2^{\circ}$ C. (73.4° $\pm3.6^{\circ}$ F.). Equilibrate the tester and anvils at this temperature prior to use. Center brake cups lip side down on an anvil of appropriate hardness. Following the manufacturer's operating instructions for the hardness tester, make one measurement at each of four points one-fourth inch from the center of the cup and spaced 90° apart. Average the four values, and round off to the nearest IRHD. S7.5.1 Apparatus. * * * * * (b) Centrifuge. A centrifuge capable of whirling two or more filled centrifuge tubes at a speed which can be controlled to give a relative centrifugal force (r.c.f.) between 600 and 700 at the tip of the tubes. The revolving head, trunnion rings, and trunnion cups, including the rubber cushion, shall withstand the maximum centrifugal force capable of being delivered by the power source. The trunnion cups and cushions shall firmly support the tubes when the centrifuge is in motion. Calculate the speed of the rotating head using this equation: $$r. p. m. = 265 \left[\sqrt{r. c. f./d} \right]$$ where: r.c.f.=Relative centrifugal force, and d=Diameter of swing, in inches, measured between tips of opposite tubes when in rotating position. Table VI shows the relationship between diameter, swing, relative centrifugal force (r.c.f.), and revolutions per minute. TABLE VI—ROTATION SPEEDS FOR CENTRIFUGES OF VARIOUS DIAMETERS | Diameter of swing, inches a | R.p.m. at
600 r.c.f. | R.p.m. at 700 r.c.f. | |-----------------------------|-------------------------|----------------------| | 19 | 1490 | 1610 | | 20 | 1450 | 1570 | | 21 | 1420 | 1530 | | 22 | 1390 | 1500 | ^aMeasured in inches between tips of opposite tubes when n rotating position. ## §571.117 Standard No. 117; Retreaded pneumatic tires. S1. *Scope.* This standard specifies performance, labeling, and certification requirements for retreaded pneumatic passenger car tires. S2. *Purpose*. The purpose of this standard is to require retreaded pneumatic passenger car tires to meet safety criteria similar to those for new pneumatic passenger car tires. S3. Application. This standard applies to retreaded pneumatic tires for use on passenger cars manufactured after 1948. S4. Definitions. S4.1 *Casing* means a used tire to which additional tread may be attached for the purpose of retreading. Retreaded means manufactured by a process in which a tread is attached to a casing. S4.2 All terms defined in §§571.109 and 571.110 are used as defined therein. S5. *Requirements*. S5.1 Retreaded tires. S5.1.1 Except as specified in S5.1.3, each retreaded tire, when mounted on a test rim of the width specified for the tire's size designation in appendix A of §571.109 shall comply with the following requirements of §571.109: (a) S4.1 (Size and construction). (b) S4.2.1 (General). (c) S4.2.2.3 (Tubeless tire resistance to bead unseating). (d) S4.2.2.4 (Tire strength). S5.1.2 Except as specified in S5.1.3, each retreaded tire, when mounted on a test rim of the width specified for the tire's size designation in appendix A of §571.109, shall comply with the requirements of S4.2.2.2 of §571.109, except that the tire's section width shall not be more than 110 percent of the section width specified, and the tire's size factor shall be at least 97 percent of the size factor specified, in appendix A of §571.109 for the tire's size designation. S5.1.3 Each retreaded tire shall be capable of meeting the requirements of S5.1.1 and S5.1.2 when mounted on any rim in accordance with those sections. S5.1.4 No retreaded tire shall have a size designation, recommended maximum load rating, or maximum permissible inflation pressure that is greater than that originally specified on the casing pursuant to S4.3 of §571.109, or specified for the casing in Table I. S5.2 Casings. S5.2.1 No retreaded tire shall be manufactured with a casing— (a) On which bead wire or cord fabric is exposed before processing. (b) On which any cord fabric is exposed during processing, except that cord fabric that is located at a splice, i.e., where two or more segments of the same ply overlap, or cord fabric that is part of the belt material, may be exposed but shall not be penetrated or removed to any extent whatsoever. S5.2.2 No retreaded tire shall be manufactured with a casing— (a) From which a belt or
ply, or part thereof, is removed during processing; (b) On which a belt or ply, or part thereof, is added or replaced during processing. S5.2.3 Each retreaded tire shall be manufactured with a casing that bears, permanently molded at the time of its original manufacture into or onto the tire sidewall, each of the following: (a) The symbol DOT; (b) The size of the tire; and (c) The actual number of plies or ply rating. S5.2.4 [Reserved] S6. Certification and labeling. S6.1 Each manufacturer of a retreaded tire shall certify that its product complies with this standard pursuant to Section 30115 of Title 49, United States Code, by labeling the tire with the symbol DOT in the location specified in section 574.5 of this chapter. S6.2 [Reserved] S6.3 Labeling. Each retreaded tire shall bear permanent labeling through molding, branding, or other method that will produce a permanent label, or through the retention of the original casing labeling, in at least one location on the tire sidewall, in letters and numbers not less than 0.078 inch high, consisting of the following information: (a) The tire's size designation; (b) The tire's maximum permissible inflation pressure, either as it appears on the casing or as set forth in Table 1; (c) The tire's maximum load, either as it appears on the casing or as set forth in Table 1; ### § 571.117, Nt. - (d) The actual number of plies in or the ply rating of the tire sidewall and, if different, the actual number of plies in or the ply rating of the tread area; - in or the ply rating of the tread area; (e) The generic name of each cord material used in the plies of both sidewall and the tread area of the tire; - (f) The word "tubeless" if the tire is a tubeless tire, or the words "tubetype" if the tire is a tube-type tire; - (g) If the tire is of bias/belted construction, the words "bias/belted;" - (h) If the tire is of radial construction, the word "radial." The information shall either be retained from the casing used in the manufacture of the tire, or may be labeled onto the tire during the retreading process. TABLE I—PLIES | | 2 ply-4 ply (| 4 ply rating) | 4 ply (6 p | oly rating) | 4 ply (8 p | ly rating) | |--------------------|-----------------|----------------------------------|-----------------|----------------------------|-----------------|----------------------------| | Tire size | Maximum
load | Maximum
inflation
pressure | Maximum
load | Maximum inflation pressure | Maximum
load | Maximum inflation pressure | | 6.00–13 | 1010 | 32 | 1080 | 36 | 1140 | 40 | | 6.50–13 | 1150 | 32 | 1230 | 36 | 1300 | 40 | | 7.00–13 | 1270 | 32 | 1360 | 36 | 1440 | 40 | | 6.45–14 | 1120 | 32 | 1200 | 36 | 1270 | 40 | | 6.95–14 | 1230 | 32 | 1310 | 36 | 1390 | 40 | | 7.35–14 | 1360 | 32 | 1450 | 36 | 1540 | 40 | | 7.75–14 | 1500 | 32 | 1600 | 36 | 1690 | 40 | | 8.25–14 | 1620 | 32 | 1730 | 36 | 1830 | 40 | | 8.55–14 | 1770 | 32 | 1890 | 36 | 2000 | 40 | | 8.85–14 | 1860 | 32 | 1990 | 36 | 2100 | 40
40 | | 5.60–15
5.90–15 | 970
1050 | 32
32 | 1040
1130 | 36
36 | 1105
1200 | 40 | | | 1230 | 32 | 1320 | 36 | 1390 | 40 | | 6.85–15 | 1390 | 32 | 1480 | 36 | 1570 | 40 | | 7.75–15 | 1490 | 32 | 1590 | 36 | 1690 | 40 | | 8.15–15 | 1610 | 32 | 1720 | 36 | 1820 | 40 | | 8.25–15 | 1620 | 32 | 1730 | 36 | 1830 | 40 | | 8.45–15 | 1740 | 32 | 1860 | 36 | 1970 | 40 | | 8.55–15 | 1770 | 32 | 1890 | 36 | 2000 | 40 | | 8.85–15 | 1860 | 32 | 1980 | 36 | 2100 | 40 | | 9.00–15 | 1900 | 32 | 2030 | 36 | 2150 | 40 | | 9.15–15 | 1970 | 32 | 2100 | 36 | 2230 | 40 | | 8.90–15 | 2210 | 32 | 2360 | 36 | 2500 | 40 | | A70-13 | 1060 | 32 | 1130 | 36 | 1200 | 40 | | D70-13 | 1320 | 32 | 1410 | 36 | 1490 | 40 | | D70-14 | 1320 | 32 | 1410 | 36 | 1490 | 40 | | E70-14 | 1400 | 32 | 1490 | 36 | 1580 | 40 | | F70-14 | 1500 | 32 | 1610 | 36 | 1700 | 40 | | G70–14 | 1620 | 32 | 1730 | 36 | 1830 | 40 | | H70-14 | 1770 | 32 | 1890 | 36 | 2010 | 40 | | J70–14 | 1860 | 32 | 1980 | 36 | 2100 | 40 | | L70–14 | 1970 | 32 | 2100 | 36 | 2230 | 40 | | C70–15 | 1230 | 32 | 1320 | 36 | 1390 | 40 | | D70–15 | 1320 | 32 | 1410 | 36 | 1490 | 40 | | E70–15 | 1400 | 32 | 1490 | 36 | 1580 | 40 | | F70–15 | 1500 | 32 | 1610 | 36 | 1700 | 40 | | G70–15 | 1620
1770 | 32 | 1730
1890 | 36
36 | 1830
2010 | 40
40 | | H70–15 | 1860 | 32
32 | 1980 | 36 | 2100 | 40 | | K70–15 | 1900 | 32 | 2030 | 36 | 2150 | 40 | | L70–15 | 1970 | 32 | 2100 | 36 | 2230 | 40 | | 165–13 | 1050 | 32 | 1130 | 36 | 1200 | 40 | | 175–13 | 1150 | 32 | 1240 | 36 | 1350 | 40 | | 185–13 | 1270 | 32 | 1390 | 36 | 1510 | 40 | | 155R13 | 950 | 32 | 1015 | 36 | 1075 | 40 | | 155R14 | 1010 | 32 | 1080 | 36 | 1140 | 40 | | 155R15 | 1015 | 32 | 1085 | 36 | 1150 | 40 | | 165R13 | 1010 | 32 | 1080 | 36 | 1140 | 40 | | 165R14 | 1120 | 32 | 1200 | 36 | 1270 | 40 | | 165R15 | 1130 | 32 | 1200 | 36 | 1270 | 40 | | 175R14 | 1230 | 32 | 1310 | 36 | 1390 | 40 | | 185R14 | 1360 | 32 | 1450 | 36 | 1540 | 40 | | 185/70R13 | 1090 | 32 | 1140 | 36 | 1190 | 40 | | 145–141 | 865 | 32 | 905 | 36 | 935 | 40 | | 145–15 | 895 | 32 | 940 | 36 | 975 | 40 | TABLE I—PLIES—Continued | | 2 ply-4 ply (| 4 ply rating) | 4 ply (6 p | oly rating) | 4 ply (8 p | ly rating) | |-----------|-----------------|----------------------------|-----------------|----------------------------|-----------------|----------------------------| | Tire size | Maximum
load | Maximum inflation pressure | Maximum
load | Maximum inflation pressure | Maximum
load | Maximum inflation pressure | | 195–15 | 1550
1700 | 32
32 | 1680
1840 | 36
36 | 1820
2000 | 40
40 | ¹ Dash Radial—Not an "R" Radial. [37 FR 5952, Mar. 23, 1972, as amended at 37 FR 11775, June 14, 1972; 38 FR 2982, Jan. 31, 1973; 38 FR 6999, Mar. 15, 1973; 38 FR 9688, Apr. 19, 1973; 39 FR 1443, Jan. 9, 1974; 39 FR 3553, Jan. 28, 1974; 39 FR 36016, Oct. 7, 1974; 39 FR 39884, Nov. 12, 1974; 61 FR 29494, June 11, 1996] EDITORIAL NOTE: For an interpretation of §571.117, see 38 FR 10940, May 3, 1973. EFFECTIVE DATE NOTE: At 63 FR 28920, May 27, 1998, §571.117 was amended by revising S6.3, and Table 1, effective May 27, 2003. The revised text is set forth as follows: ### §571.117 Standard No. 117, Retreaded pneumatic tires. * * * * * * S6.3 Each retreaded tire shall bear permanent labeling through molding, branding, or other method that will produce a permanent label, or through the retention of the original casing labeling, in at least one location on the tire sidewall, in letters and numbers not less than 2 mm (0.078 inch) high, consisting of the following information: * * * * * | -PLIES | |--------| | ١. | | BLE | | ₹ | | | 21 | oly-4ply (4 | 2ply-4ply (4 ply rating) | _ | | 4 ply (6 ply rating) | ly rating) | | | 4 ply (8 ply rating) | y rating) | | |---------------------|--------|----------------|---------------------------------|--------------------|--------|----------------------|---------------------------------|--------------------|--------|----------------------|---------------------------------|-----------------| | Tire Size | Maximu | Maximum load | Maximum Infla-
tion Pressure | n Infla-
sssure | Maximu | Maximum load | Maximum Infla-
tion Pressure | m Infla-
essure | Maximu | Maximum load | Maximum Infla-
tion Pressure | Infla-
ssure | | | ಎ | kg | isd | кРа | q | kg | psi | кРа | q | kg | isd | кРа | | 6.00–13 | 1010 | 458 | 32 | 220 | 1080 | 499 | 98 | 250 | 1140 | 517 | 40 | 275 | | 6.50–13 | 1150 | 225 | 32 | 220 | 1230 | 258 | 8 | 250 | 1300 | 290 | 40 | 275 | | 7.00–13 | 1270 | 226 | 32 | 220 | 1360 | 617 | 38 | 250 | 1440 | 653 | 40 | 275 | | 6.45–14 | 1120 | 208 | 32 | 220 | 1200 | 544 | 98 | 250 | 1270 | 929 | 40 | 275 | | 6.95–14 | 1230 | 228 | 32 | 220 | 1310 | 294 | 36 | 250 | 1390 | 630 | 40 | 275 | | 7.35–14 | 1360 | 617 | 32 | 220 | 1450 | 658 | 38 | 250 | 1540 | 869 | 40 | 275 | | 7.75–14 | 1500 | 089 | 32 | 220 | 1600 | 726 | 98 | 250 | 1690 | 191 | 40 | 275 | | 8.25–14 | 1620 | 735 | 32 | 220 | 1730 | 785 | ဗ္တ | 220 | 1830 | 830 | 4 | 275 | | 8.55–14 | 1770 | 803 | 32 | 220 | 1890 | 857 | မ္တ ဗ | 250 | 2000 | 907 | 40 | 275 | | 8.85–14 | 1860 | 44. | 32 | 220 | 1990 | 903 | 8 8 | 250 | 2100 | 953 | 04 6 | 275 | | 5.80—15
F 00 4F | 1050 | 178 | 32 | 220 | 1130 | 714 | ၉ ဗ | 250 | 1200 | 200 | 9 6 | 275 | | 0.900-10
6.85-15 | 1230 | 0 4 4
0 4 4 | 32 | 220 | 1320 | 200 | 8 % | 250 | 1390 | 630 | 5 6 | 275
275 | | 7.35–15 | 1390 | 999 | 3 % | 220 | 1480 | 671 | 8 % | 250 | 1570 | 712 | 0 t 4 | 275 | | 7.75–15 | 1490 | 676 | 3.5 | 220 | 1590 | 727 | 8 % | 250 | 1690 | 767 | 5 4 | 275 | | 8.15–15 | 1610 | 730 | 32 | 220 | 1720 | 780 | 8 8 | 250 | 1820 | 826 | 9 | 275 | | 8.25–15 | 1620 | 735 | 32 | 220 | 1730 | 785 | 98 | 250 | 1830 | 830 | 40 | 275 | | 8.45–15 | 1740 | 789 | 32 | 220 | 1860 | 844 | 38 | 250 | 1970 | 894 | 40 | 275 | | 8.55–15 | 1770 | 803 | 32 | 220 | 1890 | 857 | 38 | 250 | 2000 | 206 | 40 | 275 | | 8.85–15 | 1860 | 844 | 32 | 220 | 1980 | 868 | 8 | 220 | 2100 | 953 | 40 | 275 | | 9.00–15 | 1900 | 862 | 32 | 220 | 2030 | 721 | 98 | 220 | 2150 | 975 | 40 | 275 | | 9.15–15 | 1970 | 894 | 32 | 220 | 2100 | 953 | ဗ္က | 220 | 2230 | 1012 | 9 | 275 | | 8.90–15 | 2210 | 1002 | 32 | 220 | 2360 | 1070 | မ္တ (| 250 | 2500 | 1134 | 40 | 275 | | A/0–13 | 1060 | 184 | 32 | 720 | 1130 | 513 | 8 8 | 720 | 1200 | 244 | 9 6 | 272 | | D/U=13
D70-44 | 1320 | 200 | 3 22 | 220 | 1410 | 040 | န္ ဗ | 720 | 1490 | 9/9 | 5 6 | 275 | | E70-14 | 1400 | 635 | 3 6 | 220 | 1490 | 929 | 3 % | 250 | 1580 | 717 | 4 | 275 | | F70–14 | 1500 | 089 | 32 | 220 | 1610 | 730 | 8 8 | 250 | 1700 | 771 | 9 | 275 | | G70–14 | 1620 | 735 | 32 | 220 | 1730 | 785 | 38 | 250 | 1830 | 830 | 40 | 275 | | H70–14 | 177 | 803 | 32 | 220 | 1890 | 857 | 8 | 220 | 2010 | 912 | 40 | 275 | | J70–14 | 1860 | 844 | 32 | 220 | 1980 | 868 | 98 | 220 | 2100 | 923 | 40 | 275 | | L70-14 | 1970 | 894 | 32 | 220 | 2180 | 686 | 98 | 250 | 2230 | 1012 | 40 | 275 | | C70–15 |
1230 | 228 | 32 | 220 | 1320 | 299 | 98 | 220 | 1390 | 630 | 40 | 275 | | D70–15 | 1320 | 299 | 32 | 220 | 1410 | 640 | 98 | 220 | 1490 | 929 | 40 | 275 | | E70–15 | 1400 | 635 | 32 | 220 | 1490 | 929 | 98 | 220 | 1580 | 717 | 40 | 275 | | F70–15 | 1500 | 089 | 32 | 220 | 1610 | 730 | 98 | 220 | 1700 | 771 | 40 | 275 | | G70–15 | 1620 | 735 | 32 | 220 | 1730 | 785 | ဗ္က | 220 | 1830 | 830 | 40 | 275 | | H70–15 | 1770 | 803 | 32 | 220 | 1890 | 857 | 98 | 250 | 2010 | 912 | 40 | 275 | | J70–15 | 1860 | 84 | 32 | 220 | 1980 | 868 | ဗ္တ ၂ | 250 | 2100 | 953 | 40 | 275 | | K/0-15 | 1900 | 862 | 32 | 720 | 2030 | 127 | 8 8 | 720 | 0012 | 975 | 9 6 | 275 | | 165–13 | 1050 | 476 | 3 2 | 220 | 1130 | 513 | 8 % | 250 | 1200 | 544 | 9 4 | 275 | | | | | | | | | | | | | | | | 185–13 1270 576 32 220 1390 155R13 481 32 220 1015 155R14 1016 48 32 220 1085 165R13 1016 48 32 220 1086 165R14 1120 48 32 220 1080 165R14 1120 513 32 220 1200 175R14 1130 513 32 220 130 185R14 1230 568 32 220 130 185R14 1230 543 32 220 130 185R14 130 48 32 220 1450 | 1390
1015
1015
1080
1080
1200
1200
1200
1200
1200
1200 | | 250
250
250
250
250
250 | 1510
64
1140
1150
54
1370
65
1370
65
1370 | 685 40
488 40
517 40 | 275 | |---|--|----|--|--|----------------------------|-----| | 950 431 32 220
1016 458 32 220
1010 458 32 220
1120 508 32 220
1130 513 32 220
1230 568 32 220
1230 647 32 220
1360 647 32 220
1090 494 32 220
865 322 220 | | | 250
250
250
250
250
250 | | | | | 1010 458 32 220
1015 460 32 220
1120 508 32 220
1130 513 32 220
1230 558 32 220
1360 617 32 220
1360 494 32 220
865 392 220 | | | 250
250
250
250
250 | | | | | 1015 460 32 220
1100 508 32 220
1130 513 32 220
1230 558 32 220
1360 617 32 220
1090 494 32 220
865 392 220 | | | 250
250
250
250 | | | | | 1010 458 32 220
1120 508 32 220
1230 513 32 220
1360 617 32 220
1090 494 32 220
865 392 220 | | | 250
250
250 | | 52 40 | | | 1120 508 32 220
1130 513 32 220
1230 558 32 220
1360 617 32 220
1090 494 32 220
865 392 32 | | | 250 | | | | | 1130 513 32 220 1230 558 32 220 1360 617 32 220 1090 494 32 220 865 392 32 220 | | | 250 | | | | | 1230 558 32 220
1360 617 32 220
1090 494 32 220
865 392 32 220 | | | | | | | | 1360 617 32 220 1090 494 32 220 865 392 32 220 | | | 250 | | 30 40 | | | 1090 494 32 220
865 392 32 220 | | 98 | 250 | | | | | 865 392 32 220 | | | 250 | | | | | | | | 250 | | | | | 895 406 32 220 | | | 250 | | 42 40 | | | 1550 703 32 220 | | 36 | 250 | | 26 40 | | | 1770 803 32 220 | | | 250 | | 07 40 | | ### §571.118 Standard No. 118; Power-operated window, partition, and roof panel systems. - S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death or injury from their accidental operation. - S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, and trucks with a gross vehicle weight rating of 4536 kilograms or less. The standard's requirements for power-operated roof panel systems need not be met for vehicles manufactured before September 1, 1993. - S3. *Definition.* "Power operated roof panel systems" mean moveable panels in the vehicle roof which close by vehicle supplied power either by a sliding or hinged motion, and do not include convertible top systems. - S4. *Operating requirements.* Except as provided in S5, power operated window, partition, or roof panel systems may be closed only in the following circumstances: - (a) When the key that controls activation of the vehicle's engine is in the "ON", "START", or "ACCESSORY" position; - (b) By muscular force unassisted by vehicle supplied power; - (c) Upon continuous activation by a locking system on the exterior of the vehicle: - (d) Upon continuous activation of a remote actuation device, provided that the remote actuation device shall be incapable of closing the power window, partition or roof panel from a distance of more than 6 meters from the vehicle; - (e) During the interval between the time the locking device which controls the activation of the vehicle's engine is turned off and the opening of either of a two-door vehicle's doors or, in the case of a vehicle with more than two doors, the opening of either of its front doors; - (f) If the window, partition, or roof panel is in a static position before starting to close and in that position creates an opening so small that a 4 mm diameter semi-rigid cylindrical rod cannot be placed through the opening at any location around its edge in the manner described in S5(b); or - (g) Upon continuous activation of a remote actuation device, provided that the remote actuation device shall be incapable of closing the power window, partition or roof panel if the device and the vehicle are separated by an opaque surface and provided that the remote actuation device shall be incapable of closing the power window, partition or roof panel from a distance of more than 11 meters from the vehicle. - S5. (a) Notwithstanding S4, a power operated window, partition or roof panel system may close if it meets the following requirements— - (1) While closing, the window, partition or roof panel system must reverse direction before contacting, or before exerting a squeezing force of 100 newtons or more on, a semi-rigid cylindrical rod from 4 mm to 200 mm in diameter that has the force-deflection ratio described in S5(c), and that is placed through the window, partition or roof panel system opening at any location, in the manner described in S5(b); and - (2) Upon such reversal, the window, partition or roof panel system must open to one of the following positions, at the manufacturer's option: - (i) A position that is at least as open as the position at the time closing was initiated; - (ii) A position that is not less than 125 millimeters more open than the position at the time the window reversed direction; or - (iii) A position that permits a semirigid cylindrical rod that is 200 mm in diameter to be placed through the opening at the same contact point(s) as the rod described in S5(a)(1). - (b) The test rod is placed through the window, partition or roof panel opening from the inside of the vehicle such that the cylindrical surface of the rod contacts any part of the structure with which the window, partition or roof panel mates. Typical placements of test rods are illustrated in Figure 1. - (c) The force-deflection ratio of the test rod is at least 65 N/mm for a rod 25 mm or smaller in diameter, and at least 20 N/mm for a rod larger than 25 mm in diameter. Figure 1 - Typical Cylindrical Test Rods Protruding through Sunroof and Window Daylight Openings $[56\ FR\ 15294,\ Apr.\ 16,\ 1991,\ as\ amended\ at\ 57\ FR\ 23963,\ June\ 5,\ 1992;\ 57\ FR\ 28012,\ June\ 23,\ 1992;\ 58\ FR\ 16785,\ Mar.\ 31,\ 1993;\ 60\ FR\ 13644,\ Mar.\ 14,\ 1995]$ # §571.119 Standard No. 119; New pneumatic tires for vehicles other than passenger cars. S1. *Scope.* This standard establishes performance and marking requirements for tires for use on multipurpose passenger vehicles, trucks, buses, trailers, and motorcycles. S2. Purpose. The purpose of this standard is to provide safe operational performance levels for tires used on motor vehicles other than passenger cars, and to place sufficient information on the tires to permit their proper selection and use. S3. Application. This standard applies to new pneumatic tires designed for highway use on multipurpose passenger vehicles, trucks, buses, trailers, and motorcycles manufactured after 1948. S4. *Definitions*. All terms defined in the Act and the rules and standards issued under its authority are used as defined therein. Light truck tire means a tire designated by its manuafacturer as primarily intended for use on lightweight trucks or multipurpose passenger vehicles. Model rim assembly means a test device that (a) includes a rim which conforms to the published dimensions of a commercially available rim, (b) includes an air valve assembly when used for testing tubeless tires or an innertube and flap (as required) when used for testing tubetype tires, and (c) undergoes no permanent rim deformation and allows no loss of air through the portion that it comprises of the tire-rim pressure chamber when a tire is properly mounted on the assembly and subjected to the requirements of this standard. S5. Tire and rim matching information. S5.1 Each manufacturer of tires shall ensure that a listing of the rims that may be used with each tire that he produces is provided to the public. For purposes of this section each rim listing shall include dimensional specifications and a diagram of the rim. However a listing compiled in accordance with paragraph (a) of this
section need not include dimensional specifications or a diagram of a rim if the rim's dimensional specifications and diagram are contained in each listing published in accordance with paragraph (b) of this standard. The listing shall be in one of the following forms: (a) Listed by manufacturer name or brand name in a document furnished to dealers of the manufacturer's tires, to any person upon request, and in duplicate to: Docket Section, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590; or (b) Contained in publications, current at the date of manufacture of the tire or any later date, of at least one of the following organizations: The Tire and Rim Association The European Tyre and Rim Technical Organisation Japan Automobile Tire Manufacturers' Association, Inc. Deutsche Industrie Norm British Standards Institution Scandinavian Tire and Rim Organization The Tyre and Rim Association of Australia S5.2 Information contained in a publication specified in S5.1(b) which lists general categories of tires and rims by size designation, type of construction, and/or intended use, shall be considered to be manufacturer's information pursuant to S5.1 for the listed tires, unless the publication itself or specific information provided according to S5.1(a) indicates otherwise. S6. Requirements. Each tire shall be capable of meeting any of the applicable requirements set forth below, when mounted on a model rim assembly corresponding to any rim designated by the tire manufacturer for use with the tire in accordance with S5. However, a particular tire need not meet further requirements after having been subjected to and met the endurance test (S6.1), strength test (S6.2), or high speed performance test (S6.3). S6.1 Endurance. S6.1.1 Prior to testing in accordance with the procedures of S7.2, a tire shall exhibit no visual evidence of tread, sidewall, ply, cord, innerliner, or bead separation, chunking, broken cords, cracking, or open splices. S6.1.2 When tested in accordance with the procedures of S7.2: (a) There shall be no visual evidence of tread, sidewall, ply, cord, innerliner, or bead separation, chunking, broken cords, cracking, or open splices. (b) The tire pressure at the end of the test shall be not less than the initial pressure specified in S7.2(a). S6.2 Strength. When tested in accordance with the procedures of S7.3 a tire's average breaking energy value shall be not less than the value specified in Table II for that tire's size and load range. S6.3 High speed performance. When tested in accordance with the procedures of S7.4, a tire shall meet the requirements set forth in S6.1.1 and S6.1.2 (a) and (b). However, this requirement applies only to motorcycle tires and to non-speed-restricted tires of 14.5-in nominal rim diameter or less marked load range A, B, C, or D. S6.4 Treadwear indicators. Except as specified below, each tire shall have at least six treadwear indicators spaced approximately equally around the circumference of the tire that enable a person inspecting the tire to determine visually whether the tire has worn to a tread depth of one-sixteenth of an inch. Tires with 12-inch or smaller rim diameter shall have at least three such treadwear indicators. Motorcycle tires shall have at least three such indicators which permit visual determination that the tire has worn to a tread depth of one-thirty-second of an inch. S6.5 Tire markings. Except as specified below, each tire shall be marked on each sidewall with the information specified in paragraphs (a) through (j) of this section. The markings shall be placed between the maximum section width (exclusive of sidewall decorations or curb ribs) and the bead on at least one sidewall, unless the maximum section width of the tire is located in an area which is not more than one-fourth of the distance from the bead to the shoulder of the tire. If the maximum section width falls within that area, the markings shall appear between the bead and a point one-half the distance from the bead to the shoulder of the tire, on at least one sidewall. The markings shall be in letters and numerals not less than 0.078 inch high and raised above or sunk below the tire surface not less than 0.015 inch, except that the marking depth shall be not less than 0.010 inch in the case of motorcycle tires. The tire identification and the DOT symbol labeling shall comply with part 574 of this chapter. Markings may appear on only one sidewall and the entire sidewall area may be used in the case of motorcycle tires and recreational, boat, baggage, and special trailer tires. - (a) The symbol DOT, which shall constitute a certification that the tire conforms to applicable Federal motor vehicle safety standards. This symbol may be marked on only one sidewall. - (b) The tire identification number required by part 574 of this chapter. This number may be marked on only one sidewall. - (c) The tire size designation as listed in the documents and publications designated in S5.1. - (d) The maximum load rating and corresponding inflation pressure of the tire, shown as follows: | (Mark on tires rated for single and dual | |---| | load): | | Max load single lbs at psi cold. | | Max load dual lbs at psi cold. | | (Mark on tires rated only for single load:) | | Max load lbs at psi cold. | | | (e) The speed restriction of the tire, if 55 mi/h or less, shown as follows: Max speed ____ mph. - (f) The actual number of plies and the composition of the ply cord material in the sidewall and, if different, in the tread area; - (g) The words "tubeless" or "tube type" as applicable. - (h) The word "regroovable" if the tire is designed for regrooving. - (i) The word "radial" if a radial tire. - (j) The letter designating the tire load range. S6.6 Maximum load rating. If the maximum load rating for a particular tire size is shown in one or more of the publications described in S5.1(b), each tire of that size designation shall have a maximum load rating that is not less than the published maximum load rating, or if there are differing published ratings for the same tire size designation, not less than the lowest published maximum load rating for the size designation. S7. Test procedures. S7.1 General conditions. S7.1.1 The tests are performed using an appropriate new tube, tube valve and flap assembly (as required) that allows no loss of air for testing of tubetype tires under S7.2, S7.3, and S7.4, and tubeless tires under S7.3. S7.1.2 The tire must be capable of meeting the requirements of S7.2 and S7.4 when conditioned to a temperature of 95° F for 3 hours before the test is conducted, and with an ambient temperature maintained at 95° F during all phases of testing. The tire must be capable of meeting the requirements of S7.3 when conditioned at a temperature of 70° F for 3 hours before the test is conducted. S7.2 Endurance. (a) Mount the tire on a model rim assembly and inflate it to the inflation pressure corresponding to the maximum load rating marked on the tire. Use a single maximum load value when the tire is marked with both single and dual maximum load. - (b) After conditioning the tire-rim assembly in accordance with S7.1.2, adjust the tire pressure to that specified in (a) immediately before mounting the tire rim assembly. - (c) Mount the tire-rim assembly on an axle and press it against a flat-faced steel test wheel that is 67.23 inches in diameter and at least as wide as the tread of the tire. - (d) Apply the test load and rotate the test wheel as indicated in Table III for the type of tire tested conducting each successive phase of the test without interruption. - (e) Immediately after running the tire the required time, measure the tire inflation pressure. Remove the tire from the model rim assembly, and inspect the tire. - S7.3 Strength. (a) Mount the tire on a model rim assembly and inflate it to the pressure corresponding to the maximum load, or maximum dual load where there is both a single and dual load marked on the tire. If the tire is tubeless, a tube may be inserted to prevent loss of air during the test in the event of puncture. - (b) After conditioning the tire-rim assembly in accordance with S7.1.2, adjust the tire pressure to that specified in (a). - (c) Force a cylindrical steel plunger, with a hemispherical end and of the diameter specified in Table I for the tire size, perpendicularly into a raised tread element as near as possible to the centerline of the tread, at a rate of 2 inches per minute, until the tire breaks or the plunger is stopped by the rim. - (d) Record the force and the distance of penetration just before the tire breaks, or if it fails to break, just before the plunger is stopped by the rim. - (e) Repeat the plunger application at 72° intervals around the circumference of the tire, until five measurements are made. However, in the case of tires of 12-in rim diameter or less, repeat the plunger application at 120° intervals around the circumference of the tire, until three measurements are made. - (f) Compute the breaking energy for each test point by the following formula: W=(FP/2) where: W=Breaking energy, F=Force in pounds, and P=Penetration in inches. - (g) Determine the average breaking energy value for the tire by computing the average of the values obtained in accordance with paragraph (f). - S7.4 *High speed performance.* (a) Perform steps (a) through (c) of S7.2. - (b) Apply a force of 88 percent of the maximum load rating marked on the tire (use single maximum load value when the tire is marked with both single and dual maximum loads), and rotate the test wheel at 250 rpm for 2 hours. - (c) Remove the load, allow the tire to cool to 95° F., and then adjust the pressure to that marked on the tire for single tire use. - (d) Reapply the same load, and without interruption or readjustment of inflation pressure, rotate the test wheel at 375 rpm for 30 minutes, then at 400
rpm for 30 minutes, and then at 425 rpm for 30 minutes. - (e) Immediately after running the tire the required time, measure the tire inflation pressure. Remove the tire from the model rim assembly, and inspect the tire. TABLE I—STRENGTH TEST PLUNGER DIAMETER | | Plunger di-
ameter
(inches) | |--|-----------------------------------| | Tire type: | | | Light truck | 3/4 | | Motorcycle | 5/16 | | Tires for 12-inch or smaller rims, except motorcycle | 3/4 | | Tires other than the above types: | | | Tubeless: | | | 17.5-inch or smaller rims | 3/4 | | Larger than 17.5-inch rims: | | | Load range F or less | 11/4 | | Load range over F | 11/2 | | Tube type: | | | Load range F or less Load range over F | 11/4 | | Load range over F | 11/2 | ### TABLE II—MINIMUM STATIC BREAKING ENERGY (INCH-POUNDS) | Load range | | | Light
truck, | | | | | |-------------------------|-----------------|--|--|--------------|---------------|--------------|---------------| | Tire characteristic | Motor-
cycle | All 12
inch or
smaller
rim size | 17.5
inch or
smaller
rim
tubless | Tube
type | Tube-
less | Tube
type | Tube-
less | | Plunger diameter (inch) | | 5/16 | 3/4 | 11/4 | | 11/2 | | | A | 150 | 600 | 2,000 | | | | | | В | 300 | 1,200 | 2,600 | | | | | | C | 400 | 1,800 | 3,200 | 6,800 | 5,100 | | | | D | | 2,400 | 4,550 | 7,900 | 6,500 | | | | E | | 3,000 | 5,100 | 12,500 | 8,600 | | | | F | | 3,600 | 5,700 | 15,800 | 12,500 | | | | G | | | 6,300 | | | 20,200 | 15,000 | | Ĥ | | | 6,800 | | | 23,000 | 18,500 | | J | | | | | | 25,000 | 19,500 | | L | | | | | | 27,000 | | | M | | | | | | 28,500 | | | N | | | | | | 30,000 | | Note: For rayon cord tires, applicable energy values are 60 percent of those in table. ### TABLE III—ENDURANCE TEST SCHEDULE | Description | Load range | Test wheel speed (r/ | Test load: F | Total best revolutions | | | |--|-------------|----------------------|------------------|------------------------|-----------------|------------------| | Description | Load range | m) | I—7 hours | II—16
hours | III—24
hours | (thou-
sands) | | Speed-restricted service (miles per hour): | | | | | | | | 55 | All | 125 | 66 | 84 | 101 | 352.0 | | 50 | C,D | 150 | 75 | 97 | 114 | 423.0 | | | E,F,G,H,J,L | 100 | 66 | 84 | 101 | 282.5 | | 35 | All | 75 | 66 | 84 | 101 | 211.0 | | Motorcycle | All | 250 | ¹ 100 | ² 108 | 117 | 510.0 | | All other | A,B,C,D | 250 | 175 | 297 | 114 | | | | E | 200 | 70 | 88 | 106 | 564.0 | | | F | 200 | 66 | 84 | 101 | 564.0 | | | G | 175 | 66 | 84 | 101 | 493.5 — | | | H,J,L,N | 150 | 66 | 84 | 101 | 423.5 | ¹⁴ hr. for tire sizes subject to high speed requirements (S6.3). 26 hr. for tire sizes subject to high speed requirements (S6.3). [38 FR 31301, Nov. 13, 1973, as amended at 39 FR 4087, Feb. 1, 1974; 39 FR 5192, Feb. 11, 1974; 39 FR 12105, Apr. 3, 1974; 39 FR 19481, June 3, 1974; 40 FR 5530, Feb. 6, 1975; 43 FR 30542, July 17, 1978; 43 FR 50441, Oct. 30, 1978; 48 FR 25209, June 6, 1983; 50 FR 10773, Mar. 18, 1985; 54 FR 38386, Sept. 18, 1989; 61 FR 29494, June 11, 1996] ### § 571.119, Nt. EFFECTIVE DATE NOTE: At 63 FR 28921, May 27, 1998, §571.119 was amended by revising S6.3 and S6.4; revising in S6.5, the introductory paragraph and paragraphs (d) and (e); revising S7.1.2; revising in S7.2, paragraph (c); revising in S7.3, paragraphs (c), (e), and (f); and revising in S7.4, paragraph (c), and by revising Table I—"Strength Test Plunger Diameter", Table II—"Minimum Static Breaking Energy (Inch-Pounds)", and Table III—"Endurance Test Schedule" that follow paragraph (e) of S7.4, effective May 27, 2003. For the convenience of the user, the revised text follows: ## § 571.119 Standard No. 119, New pneumatic tires for vehicles other than passenger cars. * * * * * S6.3 High speed performance. When tested in accordance with the procedures of S7.3, a tire shall meet the requirements set forth in S6.1.1 and S6.1.2(a) and (b). However, this requirement applies only to motorcycle tires and to non-speed-restricted tires of nominal rim diameter code 14.5 or less marked load range A, B, C, or D. Sõ.4 Treadwear indicators. Except as specified in this paragraph, each tire shall have at least six treadwear indicators spaced approximately equally around the circumference of the tire that enable a person inspecting the tire to determine visually whether the tire has worn to a tread depth of 1.6 mm (one-sixteenth of an inch). Tires with a rim diameter code of 12 or smaller shall have at least three such treadwear indicators. Motorcycle tires shall have at least three such indicators which permit visual determination that the tire has worn to a tread depth of 0.8 mm (one-thirty-second of an inch). S6.5 Tire markings. Except as specified in this paragraph, each tire shall be marked on each sidewall with the information specified in paragraphs (a) through (j) of this section. The markings shall be placed between the maximum section width (exclusive of sidewall decorations or curb ribs) and the bead on at least one sidewall, unless the maximum section width of the tire is located in an area which is not more than one-fourth of the distance from the bead to the shoulder of the tire. If the maximum section width falls within that area, the markings shall appear between the bead and a point one-half the distance from the bead to the shoulder of the tire, on at least one sidewall. The markings shall be in letters and numerals not less than 2 mm (0.078 inch) high and raised above or sunk below the tire surface not less that 0.4 mm (0.015 inch), except that the marking depth shall be not less than 0.25mm (0.010 inch) in the case of motorcycle tires. The tire identification and the DOT symbol labeling shall comply with part 574 of this chapter. Markings may appear on only one sidewall and the entire sidewall area may be used in the case of motorcycle tires and recreational, boat, baggage, and special trailer * * * * * (d) The maximum load rating and corresponding inflation pressure of the tire, shown as follows: (Mark on tires rated for single and dual load): Max load single __kg (__lb) at __kPa (__psi) cold. Max load dual __kg (__lb) at __kPa (__psi) cold. (_lb) at __kPa (__psi) cold. (Mark on tires rated only for single load): Max load __kg (__lb) at __kPa (__psi) (e) The speed restriction of the tire, if 88 km/h (55 mph) or less, shown as follows: Max speed ___km/h (___mph). * * * * * * S7.1.2 The tire must be capable of meeting the requirements of S7.2 and S7.4 when conditioned to a temperature of 35° C (95° F) for 3 hours before the test is conducted, and with an ambient temperature maintained at 35° C (95° F) during all phases of testing. The tire must be capable of meeting the requirements of S7.3 when conditioned at a temperature of 21° C (70° F) for 3 hours before the test is conducted. S7.2 Endurance. * * * * * (c) Mount the tire-rim assembly on an axle and press it against a flat-faced steel test wheel that is 1708 mm (67.23 inches) in diameter and at least as wide as the tread of the tire. * * * * * * * * * * S7.3 Strength. * * * * * * (c) Force a cylindrical steel plunger, with a hemispherical end and of the diameter specified in Table I for the tire size, perpendicularly into a raised tread element as near as possible to the centerline of the tread, at a rate of 50 mm (2 inches) per minute, until the tire breaks or the plunger is stopped by the rim. * * * * * (e) Repeat the plunger application at 72° intervals around the circumference of the tire, until five measurements are made. ### Nat'l Highway Traffic Safety Admin., DOT § 571.119, Nt. However, in the case of tires of 12 inch rim diameter code or smaller, repeat the plunger application at 120° intervals around the circumference of the tire, until three measurements are made. (f) Compute the breaking energy for each test point by one of the two following formulas: (1) $W = [(F \times P)/2] \times 10^{-3}$ (joules) Where: W = Breaking energy (in joules) (kJ) F = Force in newtons (N) and P = Penetration in millimeters (mm), or; (2) W = (FP/2) Where: to 35° C (95° F), and then adjust the pressure to that marked on the tire for single tire (c) Remove the load, allow the tire to cool W = Breaking energy in inch-pounds, S7.4 High speed performance. F = Force in pounds, P = Penetration in inches. TABLE I.—STRENGTH TEST PLUNGER DIAMETER | | Plunger d | liameter | |--|-----------|----------| | | (mm) | (inches) | | Tire type: | | | | Light truck | 19.05 | 3/4 | | Motorcycle | | 5/1€ | | Tires for 12 rim diameter code or smaller rims except motorcycle | 19.05 | 3/4 | | Tires other than the above types: | | | | Tubeless: | | | | 17.5 diameter code or smaller rims | 19.05 | 3/4 | | Larger than 17.5 rim diameter code rims: | | | | Load range F or less | 31.75 | 11/4 | | Load range over F | 38.10 | 11/2 | | Tube type: | | | | Load range F or less | 31.75 | 11/4 | | Load range over F | 38.10 | 11/2 | TABLE II.—MINIMUM STATIC BREAKING ENERGY (JOULES (J) AND INCH-POUNDS (INCH-LBS)) | Load range | e | | All 12 rim diame- | diame- | Light tru | Light truck 17.5 | Tube | Tube type | Tubeless | less | Tube type | type | Tubeless | ess | |---|------------|----------------------|-------------------|---------------------|-----------------|----------------------|---------|--------------|----------|--------|-----------|--------------|----------|------------| | Tire characteristic | Motor | Motorcycle | smaller rim size | im size | code or smaller | smaller | | | | | | | | | | | | | | | | IIIII tabaless | | 11/4" | | 9 | | 11/2″ | | d or i | | Plunger diameter (mm
and inches) |
7.94 J | 5/6"
inch-
lbs | 19.05 J | %4″
inch-
lbs | 19.05 J | 3/4"
inch-
lbs | 31.75 J | inch-
lbs | 7 | l sq | 38.10 J | -hori
Ibs | 7 | los
los | | | 16 | 150 | 29 | 009 | 225 | 2,000 | | | | | | | | | | | 33 | 300 | 135 | 1,200 | 293 | 2,600 | | | | | | | | | | | 45 | 400 | 203 | 1,800 | 361 | 3,200 | 292 | 6,800 | 929 | 5,100 | | | | | | | | | 271 | 2,400 | 514 | 4,550 | 892 | 2,900 | 734 | 6,500 | | | | | | | | | 338 | 3,000 | 216 | 5,100 | 1,412 | 12,500 | 971 | 8,600 | | | | | | | | | 406 | 3,600 | 644 | 2,700 | 1,785 | 15,800 | 1,412 | 12,500 | | | | | | | | | | | 711 | 6,300 | | | | | 2,282 | 20,200 | 1,694 | 15,000 | | | | | | | 292 | 6,800 | | | | | 2,598 | 23,000 | 2,090 | 18,500 | | | | | | | | | | | | | 2,824 | 25,000 | 2,203 | 19,500 | | | | | | | | | | | | | 3,050 | 27,000 | | | | | | | | | | | | | | | 3,220 | 28,500 | | | | | | | | | | | | | | | 3,389 | 30,000 | | | | NOTE: For rayon cord tires, applicable energy values are 60 percent of those in table | sollone se | phle energ | e seriley v | re 60 per | oppt of the | ldet ni aar | ٥ | | | | | | | | NOTE: For rayon cord tires, applicable energy values are 60 percent of those in table. *J measurements are rounded down to the nearest whole number. TABLE III.—ENDURANCE TEST SCHEDULE | Description | Load range | Test load: Percent of maximum load rating | | | | Total best revolutions | | |---|------------------|---|------------------|------------------|-----------------|------------------------|--| | 2.22 | Load range | speed (r/m) | I—7 hours | II—16 hours | III—24
hours | (thousands) | | | Speed restricted service:
88 km/h (55 mph) | | | | | | | | | 80 km/h (50 mph) | All | 125 | 66 | 84 | 101 | 352.0 | | | | C, D | 150 | 75 | 97 | 114 | 432.0 | | | 56 km/h (35 mph) | E, F, G, H, J, L | 100 | 66 | 84 | 101 | 282.5 | | | Motorcycle | All | 75 | 66 | 84 | 101 | 211.0 | | | All other | All | 250 | ¹ 100 | ² 108 | 117 | 510.0 | | | | A, B, C, D | 250 | 75 | 297 | 114 | | | | | E | 200 | 70 | 88 | 106 | 546.0 | | | | F | 200 | 66 | 84 | 101 | 564.0 | | | | G | 175 | 66 | 84 | 101 | 493.5 | | | | H, J, L, N | 150 | 66 | 84 | 101 | 423.5 | | ¹4 hr., for tire sizes subject to high speed requirements (S6.3) ²6 hr., for tire sizes subject to high speed requirements (S6.3) ### §571.120 Standard No. 120; Tire selection and rims for motor vehicles other than passenger cars. S1. Scope. This standard specifies tire and rim selection requirements and rim marking requirements. S2. Purpose. The purpose of this standard is to provide safe operational performance by ensuring that vehicles to which it applies are equipped with tires of adequate size and load rating and with rims of appropriate size and type designation. \$3. Application. This standard applies to multipurpose passenger vehicles, trucks, buses, trailers, and motorcycles, to rims for use on those vehicles, and to non-pneumatic spare tire assemblies for use on those vehicles. S4. Definitions. All terms defined in the Act and the rules and standards issued under its authority are used as defined therein. Rim base means the portion of a rim remaining after removal of all split or continuous rim flanges, side rings, and locking rings that can be detached from the rim. Rim size designation means rim diameter and width. Rim diameter means nominal diameter of the bead seat. Rim width means nominal distance between rim flanges. Rim type designation means the industry or manufacturer's designation for a rim by style or code. Weather side means the surface area of the rim not covered by the inflated tire. S5. Requirements. S5.1 *Tire and rim selection.* S5.1.1 Except as specified in S5.1.3, each vehicle equipped with pneumatic tires for highway service shall be equipped with tires that meet the requirements of §571.109, New pneumatic tires, or §571.119, New pneumatic tires for vehicles other than passenger cars, and rims that are listed by the manufacturer of the tires as suitable for use with those tires, in accordance with S4.4 of §571.109 or S5.1 of §571.119, as applicable, except that vehicles may be equipped with a non-pneumatic spare tire assembly that meets the requirements of §571.129, New non-pneumatic tires for passenger cars, and S8 of this standard. Vehicles equipped with such an assembly shall meet the requirements of \$5.3.3, \$7, and \$9 of this standard. S5.1.2 Except in the case of a vehicle which has a speed attainable in 3.2 kilometers of 80 kilometers per hour or less, the sum of the maximum load ratings of the tires fitted to an axle shall be not less than the gross axle weight rating (GAWR) of the axle system as specified on the vehicle's certification label required by 49 CFR part 567. Except in the case of a vehicle which has a speed attainable in 2 miles of 50 mph or less, the sum of the maximum load ratings of the tires fitted to an axle shall be not less than the gross axle weight rating (GAWR) of the axle system as specified on the vehicle's certification label required by 49 CFR part 567. If the certification label shows more than one GAWR for the axle system, the sum shall be not less than the GAWR corresponding to the size designation of the tires fitted to the axle. If the size designation of the tires fitted to the axle does not appear on the certification label, the sum shall be not less than the lowest GAWR appearing on the label. When a tire subject to FMVSS No. 109 is installed on a multipurpose passenger vehicle, truck, bus, or trailer, the tire's load rating shall be reduced by dividing by 1.10 before calculating the sum (i.e., the sum of the load ratings of the tires on each axle, when the tires' load carrying capacity at the recommended tire cold inflation pressure is reduced by dividing by 1.10, must be appropriate for the GAWR). S5.1.3 In place of tires that meet the requirements of Standard No. 119, a truck, bus, or trailer may at the request of a purchaser be equipped at the place of manufacture of the vehicle with retreaded or used tires owned or leased by the purchaser, if the sum of the maximum load ratings meets the requirements of S5.1.2. Used tires employed under this provision must have been originally manufactured to comply with Standard No. 119, as evidenced by the DOT symbol. S5.2 Rim marking. Each rim or, at the option of the manufacturer in the case of a single-piece wheel, wheel disc shall be marked with the information listed in paragraphs (a) through (e) of this paragraph, in lettering not less than 3 millimeters high, impressed to a depth or, at the option of the manufacturer, embossed to a height of not less than 0.125 millimeters. The information listed in paragraphs (a) through (c) of this paragraph shall appear on the weather side. In the case of rims of multi piece construction, the information listed in paragraphs (a) through (e) of this paragraph shall appear on the rim base and the information listed in paragraphs (b) and (d) of this paragraph shall also appear on each other part of the rim. - (a) A designation which indicates the source of the rim's published nominal dimensions, as follows: - (1) "T" indicates The Tire and Rim Association. - (2) "E" indicates The European Tyre and Rim Technical Organisation - (3) "J" indicates Japan Automobile Tire Manufacturers' Association, Inc. - (4) "D" indicates Deutsche Industrie Norm. - $\mbox{(5)}$ ''B'' indicates British Standards Institution. - (6) "S" indicates Scandinavian Tire and Rim Organization. - (7) "A" indicates The Tyre and Rim Association of Australia. - (8) "N" indicates an independent listing pursuant to S4.4.1(a) of Standard No. 109 or S5.1(a) of Standard No. 119. - (b) The rim size designation, and in case of multiplece rims, the rim type designation. For example: 20×5.50 , or 20×5.5 . - (c) The symbol DOT, constituting a certification by the manufacturer of the rim that the rim complies with all applicable motor vehicle safety standards. - (d) A designation that identifies the manufacturer of the rim by name, trademark, or symbol. - (e) The month, day and year or the month and year of manufacture, expressed either numerically or by use of a symbol, at the option of the manufacturer. For example: "September 4, 1976" may be expressed numerically as: 90476, 904, or 76 76 904 "September 1976" may be expressed as: 976, 9, or 76 76 9 (1) Any manufacturer that elects to express the date of manufacture by means of a symbol shall notify NHTSA in writing of the full names and addresses of all manufacturers and brand name owners utilizing that symbol and the name and address of the trademark owner of that symbol, if any. The notification shall describe in narrative form and in detail how the month, day, and year or the month and year are depicted by the symbol. Such description shall include an actual size graphic depiction of the symbol, showing and/or explaining the interrelationship of the component parts of the symbol as they will appear on the rim or single piece wheel disc, including dimensional specifications, and where the symbol will be located on the rim or single piece wheel disc. The notification shall be received by NHTSA at least 60 calendar days prior to first use of the symbol. The notification shall be mailed to the Office of Vehicle Safety Compliance, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590. All information provided to NHTSA under this paragraph will be placed in the public docket. (2) Each manufacturer of wheels shall provide an explanation of its date of manufacture symbol to any person upon request. S5.3 Label information. Each vehicle shall show the information specified in S5.3.1 and S5.3.2 and, in the case of a vehicle equipped with a non-pneumatic spare tire, the information specified in S5.3.3, in the English language, lettered in block capitals and numerals not less than 2.4
millimeters high and in the format set forth following this section. This information shall appear either— - (a) After each GAWR listed on the certification label required by \$567.4 or \$567.5 of this chapter; or, at the option of the manufacturer, - (b) On the tire information label affixed to the vehicle in the manner, location and form described in §567.4 (b) through (f) of this chapter, as appropriate for each GVWR-GAWR combination listed on the certification label. S5.3.1 *Tires*. The size designation (not necessarily for the tires on the vehicle) and the recommended cold inflation pressure for those tires such that the sum of the load ratings of the tires on each axle (when the tires' load carrying capacity at the specified pressure is reduced by dividing by 1.10, in the case of a tire subject to FMVSS No. 109) is appropriate for the GAWR as calculated in accordance with S5.1.2. S5.3.2. *Rims.* The size designation and, if applicable, the type designation of Rims (not necessarily those on the vehicle) appropriate for those tires. TRUCK EXAMPLE—SUITABLE TIRE-RIM CHOICE GVWR: 7,840 kilograms (17280 pounds) GAWR: Front—2,850 kilograms (6,280 pounds) with 7.50-20(D) tires, 20 x 6.00 rims at 520 kPa (75 psi) cold single GAWR: Rear—4990 kilograms (11,000 pounds) with 7.50–20(D) tires, 20 x 6.00 rims, at 450 kPa (65 psi) cold dual GAWR: 13,280 kilograms (29,279 pounds) GAWR: Front—4,826 kilograms (10,640 pounds) with 10.00-20(F) tires, 20 x 7.50 rims, at 620 kPa (90 psi) cold single GAWR: Rear—8,454 kilograms (18,639 pounds) with 10.00-20(F) tires, 20 x 7.50 rims, at 550 kPa (80 psi) cold dual. S5.3.3 The non-pneumatic tire identification code, with which that assembly is labeled pursuant to S4.3(a) of §571.129. S6. Load Limits for Non-Pneumatic Spare Tires. The highest vehicle maximum load on the tire for the vehicle shall not be greater than the load rating for the non-pneumatic spare tire. S7 Labeling Requirements for Non-Pneumatic Spare Tires or Tire Assemblies. Each non-pneumatic tire or, in the case of a non-pneumatic tire assembly in which the non-pneumatic tire is an integral part of the assembly, each nonpneumatic tire assembly shall include, in letters or numerals not less than 4 millimeters high, the information specified in paragraphs S7 (a) and (b). The information shall be permanently molded, stamped, or otherwise permanently marked into or onto the nonpneumatic tire or non-pneumatic tire assembly, or shall appear on a label that is permanently attached to the tire or tire assembly. If a label is used, it shall be subsurface printed, made of material that is resistant to fade, heat, moisture and abrasion, and attached in such a manner that it cannot be removed without destroying or defacing the label on the non-pneumatic tire or tire assembly. The information specified in paragraphs S7 (a) and (b) shall appear on both sides of the non-pneumatic tire or tire assembly, except, in the case of a non-pneumatic tire assembly which has a particular side that must always face outward when mounted on a vehicle, in which case the information specified in paragraphs S7 (a) and (b) shall only be required on the outward facing side. The information shall be positioned on the tire or tire assembly such that it is not placed on the tread or the outermost edge of the tire and is not obstructed by any portion of any non-pneumatic rim or wheel center member designated for use with that tire in this standard or in Standard No. 129. (a) FOR TEMPORARY USE ONLY; (b) MAXIMUM 80 KM/H (50 M.P.H.). S8. Requirements for Vehicles Equipped with Non-Pneumatic Spare Tire Assemblies S8.1 Vehicle Placarding Requirements. A placard, permanently affixed to the inside of the spare tire stowage area or equally accessible location adjacent to the non-pneumatic spare tire assembly, shall display the information set forth in S7 in block capitals and numerals not less than 6 millimeters high preceded by the words "IMPORTANT—USE OF SPARE TIRE" in letters not less than 9 millimeters high. S8.2 Supplementary Information. The owner's manual of the vehicle shall contain, in writing in the English language and in not less than 10 point type, the following information under the heading 'IMPORTANT—USE OF SPARE TIRE': (a) A statement indicating the information related to appropriate use for the non-pneumatic spare tire including at a minimum the information set forth in S8 (a) and (b) and either the information set forth in S5.3.6 or a statement that the information set forth in S5.3.6 is located on the vehicle placard and on the non-pneumatic tire; (b) An instruction to drive carefully when the non-pneumatic spare tire is in use, and to install the proper pneumatic tire and rim at the first reasonable opportunity; and (c) A statement that operation of the vehicle is not recommended with more than one non-pneumatic spare tire in use at the same time. S9 Non-Pneumatic Rims and Wheel Center Members S9.1 Non-Pneumatic Rim Requirements. Each non-pneumatic rim that is part of a separable non-pneumatic spare tire assembly shall be constructed to the dimensions of a non-pneumatic rim that is listed pursuant to S4.4 of §571.129 for use with the non-pneumatic tire, designated by its non-pneumatic tire identification code, with which the vehicle is equipped. S9.2 Wheel Center Member Requirements. Each wheel center member that is part of a separable non-pneumatic spare tire assembly shall be constructed to the dimensions of a wheel center member that is listed pursuant to S4.4 of §571.129 for use with the nonpneumatic tire, designated by its nonpneumatic tire identification code, with which the vehicle is equipped. (Secs. 102, 119, and 202, Pub. L. 89-563, 80 Stat. 718 (15 U.S.C. 1392, 1407, and 1422); delegation of authority at 49 CFR 1.50) [42 FR 7144, Feb. 7, 1977, as amended at 49 FR 20824, May 17, 1984; 54 FR 38386, Sept. 18, 1989; 55 FR 29589, July 20, 1990; 56 FR 19311, Apr. 26, 1991; 58 FR 13426, Mar. 11, 1993; 59 FR 25578, May 17, 1994; 60 FR 13644, Mar. 14, 1995; 61 FR 29495, June 11, 1996] EFFECTIVE DATE NOTE: At 63 FR 28922, May 27, 1998, §571.120 was amended by revising "TRUCK EXAMPLE—SUITABLE TIRE-RIM CHOICE" at the end of S5.3.2, and before \$55.3.3, effective May 27, 2003. For the convenience of the user, the revised text follows: # §571.120 Standard No. 120; Tire selection and rims for motor vehicles other than passenger cars. S5.3.2. Rims. TRUCK EXAMPLE—SUITABLE TIRE-RIM CHOICE GVWR: 7,840 KG (17,289 LB) GAWR: FRONT—2,850 KG (6,280 LB) WITH 7.50-20(D) TIRES, 20 X 6.00 RIMS AT 520 KPA (75 PSI) COLD SINGLE GAWR: REAR—4,990 KG (11,000 LB) WITH 7.50-20(D) TIRES, 20 X 6.00 RIMS, AT 450 KPA (65 PSI) COLD DUAL GVWR: 13,280 KG (29,279 LB) GAWR: FRONT—4,826 KG (10,640 LB) WITH 10.00-20(F) TIRES, 20 X 7.50 RIMS, AT 620 KPA (90 PSI) COLD SINGLE GAWR: REAR—8,454 KG (18,639 LB) WITH 10.00-20(F) TIRES, 20 X 2.70 RIMS, AT 550 KPA (80 PSI) COLD DUAL ## §571.121 Standard No. 121; Air brake systems. S1. *Scope.* This standard establishes performance and equipment requirements for braking systems on vehicles equipped with air brake systems. S2. *Purpose*. The purpose of this standard is to insure safe braking performance under normal and emergency conditions. - S3. *Application.* This standard applies to trucks, buses, and trailers equipped with air brake systems. However, it does not apply to: - (a) Any trailer that has a width of more than 102.36 inches with extendable equipment in the fully retracted position and is equipped with two short track axles in a line across the width of the trailer. - (b) Any vehicle equipped with an axle that has a gross axle weight rating (GAWR) of 29,000 pounds or more; - (c) Any truck or bus that has a speed attainable in 2 miles of not more than 33 mph; - (d) Any truck that has a speed attainable in 2 miles of not more than 45 mph, an unloaded vehicle weight that is not less than 95 percent of its gross vehicle weight rating (GVWR), and no capacity to carry occupants other than the driver and operating crew; - (e) Any trailer that has a GVWR of more than 120,000 pounds and whose body conforms to that described in the definition of heavy hauler trailer set forth in S4: - (f) Any trailer that has an unloaded vehicle weight which is not less than 95 percent of its GVWR; and - (g) Any load divider dolly. - S4. Definitions. Agricultural commodity trailer means a trailer that is designed to transport bulk agricultural commodities in off-road harvesting sites and to a processing plant or storage location, as evidenced by skeletal construction that accommodates harvest containers, a maximum length of 28 feet, and an arrangement of air control lines and reservoirs that minimizes damage in field operations. Air brake system means a system that uses air as a medium for transmitting pressure or force from the driver control to the service brake, including an air-over-hydraulic brake subsystem, but does not include a system that uses compressed air or vacuum only to assist the driver in applying muscular force to hydraulic or mechanical components. Air-over-hydraulic brake subsystem means a subsystem of the air brake system that uses compressed air to transmit a force from the driver con- trol to a hydraulic brake system to actuate the service brakes. Antilock brake system or ABS means a portion of a service brake system that automatically controls the degree of rotational wheel slip during braking by: - (1) Sensing the rate of angular rotation of the wheels; - (2) Transmitting signals regarding the rate of wheel angular rotation to one or more controlling devices which interpret those signals and generate responsive controlling output signals; and - (3) Transmitting those controlling signals to one or more modulators which adjust brake actuating forces in response to those signals. Auto transporter means a truck and a trailer designed for use in combination to transport motor vehicles, in that the towing vehicle is designed to
carry cargo at a location other than the fifth wheel and to load this cargo only by means of the towed vehicle. Common diaphragm means a single brake chamber diaphragm which is a component of the parking, emergency, and service brake systems. Container chassis trailer means a semitrailer of skeleton construction limited to a bottom frame, one or more axles, specially built and fitted with locking devices for the transport of intermodal shipping containers, so that when the chassis and container are assembled, the units serve the same function as an over the road trailer. Directly controlled wheel means a wheel for which the degree of rotational wheel slip is sensed, either at that wheel or on the axle shaft for that wheel and corresponding signals are transmitted to one or more modulators that adjust the brake actuating forces at that wheel. Each modulator may also adjust the brake actuating forces at other wheels that are on the same axle or in the same axle set in response to the same signal or signals. Effective projected luminous lens area means that area of the projection on a plane perpendicular to the lamp axis of that portion of the light-emitting surface that directs light to the photometric test pattern, and does not include mounting hole bosses, reflex reflector area, beads or rims that may glow or produce small areas of increased intensity as a result of uncontrolled light from small areas (½ degree radius around the test point). Full-treadle brake application means a brake application in which the treadle valve pressure in any of the valve's output circuits reaches 85 pounds per square inch (psi) within 0.2 seconds after the application is initiated, or in which maximum treadle travel is achieved within 0.2 seconds after the application is initiated. Heavy hauler trailer means a trailer which has one or more of the following characteristics, but which is not a container chassis trailer: - (1) Its brake lines are designed to adapt to separation or extension of the vehicle frame; or - (2) Its body consists only of a platform whose primary cargo-carrying surface is not more than 40 inches above the ground in an unloaded condition, except that it may include sides that are designed to be easily removable and a permanent "front end structure" as that term is used in §393.106 of this title. Independently controlled wheel means a directly controlled wheel for which the modulator does not adjust the brake actuating forces at any other wheel on the same axle. Indirectly controlled wheel means a wheel at which the degree of rotational wheel slip is not sensed, but at which the modulator of an antilock braking system adjusts its brake actuating forces in response to signals from one or more sensed wheel(s). Initial brake temperature means the average temperature of the service brakes on the hottest axle of the vehicle 0.2 mile before any brake application in the case of road tests, or 18 seconds before any brake application in the case of dynamometer testing. Intermodal shipping container means a reusable, transportable enclosure that is especially designed with integral locking devices for securing the container to the trailer to facilitate the efficient and bulk shipping and transfer of goods by, or between various modes of transport, such as highway, rail, sea and air. Load divider dolly means a trailer composed of a trailer chassis and one or more axles, with no solid bed, body, or container attached, and which is designed exclusively to support a portion of the load on a trailer or truck excluded from all the requirements of this standard. Maximum drive-through speed means the highest possible constant speed at which the vehicle can be driven through 200 feet of a 500-foot radius curve arc without leaving the 12-foot lane. Maximum treadle travel means the distance that the treadle moves from its position when no force is applied to its position when the treadle reaches a full stop. Peak friction coefficient or PFC means the ratio of the maximum value of braking test wheel longitudinal force to the simultaneous vertical force occurring prior to wheel lockup, as the braking torque is progressively increased. Pulpwood trailer means a trailer that is designed exclusively for harvesting logs or pulpwood and constructed with a skeletal frame with no means for attachment of a solid bed, body, or container, and with an arrangement of air control lines and reservoirs designed to minimize damage in off-road operations. Straddle trailer means a trailer that is designed to transport bulk agricultural commodities from the harvesting location as evidenced by a framework that is driven over the cargo and lifting arms that suspend the cargo for transit. Wheel lockup means 100 percent wheel slip. - S5. *Requirements*. Each vehicle shall meet the following requirements under the conditions specified in S6. - S5.1 Required equipment for trucks and buses. Each truck and bus shall have the following equipment: S5.1.1 *Air compressor*. An air compressor of sufficient capacity to increase air pressure in the supply and service reservoirs from 85 psi to 100 psi when the engine is operating at the vehicle manufacturer's maximum recommended r.p.m. within a time, in seconds, determined by the quotient (Actual reservoir capacity x 25) / Required reservoir capacity. S5.1.1.1 *Air compressor cut-in pressure.* The air compressor governor cut-in pressure for each bus shall be 85 p.s.i. or greater. The air compressor governor cut-in pressure for each truck shall be 100 p.s.i. or greater. S5.1.2 Reservoirs. One or more service reservoir systems, from which air is delivered to the brake chambers, and either an automatic condensate drain valve for each service reservoir or a supply reservoir between the service reservoir system and the source of air pressure. S5.1.2.1 The combined volume of all service reservoirs and supply reservoirs shall be at least 12 times the combined volume of all service brake chambers. For each brake chamber type having a full stroke at least as great as the first number in Column 1 of Table V, but no more than the second number in Column 1 of Table V, the volume of each brake chamber for purposes of calculating the required combined service and supply reservoir volume shall be either that specified in Column 2 of Table V or the actual volume of the brake chamber at maximum travel of the brake piston or pushrod, whichever is lower. The volume of a brake chamber not listed in Table V is the volume of the brake chamber at maximum travel of the brake piston or pushrod. The reservoirs of the truck portion of an auto transporter need not meet this requirement for reservoir volume. S5.1.2.2 Each reservoir shall be capable of withstanding an internal hydrostatic pressure of five times the compressor cutout pressure or 500 psi, whichever is greater, for 10 minutes. S5.1.2.3 Each service reservoir system shall be protected against loss of air pressure due to failure or leakage in the system between the service reservoir and the source of air pressure, by check valves or equivalent devices whose proper functioning can be checked without disconnecting any air line or fitting. S5.1.2.4 Each reservoir shall have a condensate drain valve that can be manually operated. S5.1.3 Towing vehicle protection system. If the vehicle is intended to tow another vehicle equipped with air brakes, a system to protect the air pressure in the towing vehicle from the effects of a loss of air pressure in the towed vehicle. S5.1.4 Pressure gauge. A pressure gauge in each service brake system, readily visible to a person seated in the normal driving position, that indicates the service reservoir system air pressure. The accuracy of the gauge shall be within plus or minus 7 percent of the compressor cut-out pressure. S5.1.5 Warning signal. A signal, other than a pressure gauge, that gives a continuous warning to a person in the normal driving position when the ignition is in the "on" ("run") position and the air pressure in the service reservoir system is below 60 psi. The signal shall be either visible within the driver's forward field of view, or both audible and visible. S5.1.6 Antilock brake system. S5.1.6.1(a) Each single-unit vehicle manufactured on or after March 1, 1998, shall be equipped with an antilock brake system that directly controls the wheels of at least one front axle and the wheels of at least one rear axle of the vehicle. Wheels on other axles of the vehicle may be indirectly controlled by the antilock brake system. (b) Each truck tractor manufactured on or after March 1, 1997, shall be equipped with an antilock brake system that directly controls the wheels of at least one front axle and the wheels of at least one rear axle of the vehicle, with the wheels of at least one axle being independently controlled. Wheels on other axles of the vehicle may be indirectly controlled by the antilock brake system. A truck tractor shall have no more than three wheels controlled by one modulator. S5.1.6.2 Antilock malfunction signal and circuit. (a) Each truck tractor manufactured on or after March 1, 1997, and each single unit vehicle manufactured on or after March 1, 1998, shall be equipped with an indicator lamp, mounted in front of and in clear view of the driver, which is activated whenever there is a malfunction that affects the generation or transmission of response or control signals in the vehicle's antilock brake system. The indicator lamp shall remain activated as long as such a malfunction exists, whenever the ignition (start) switch is in the "on" ("run") position, whether or not the engine is running. Each message about the existence of such a malfunction shall be stored in the antilock brake system after the ignition switch is turned to the "off" position and is turned to the "off" position and automatically reactivated when the ignition switch is again turned to the 'on' ("run") position. The indicator lamp shall also be
activated as a check of lamp function whenever the ignition is turned to the "on" ("run") position. The indicator lamp shall be deactivated at the end of the check of lamp function unless there is a malfunction or a message about a malfunction that existed when the key switch was last turned to the "off" position. (b) Each truck tractor manufactured on or after March 1, 2001, and each single unit vehicle manufactured on or after March 1, 2001, that is equipped to tow another air-braked vehicle, shall be equipped with an electrical circuit that is capable of transmitting a malfunction signal from the antilock brake system(s) on one or more towed vehicle(s) (e.g., trailer(s) and dolly(ies)) to the trailer ABS malfunction lamp in the cab of the towing vehicle, and shall have the means for connection of this electrical circuit to the towed vehicle. Each such truck tractor and single unit vehicle shall also be equipped with an indicator lamp, separate from the lamp required in \$5.1.6.2(a), mounted in front of and in clear view of the driver, which is activated whenever the malfunction signal circuit described above receives a signal indicating an ABS malfunction on one or more towed vehicle(s). The indicator lamp shall remain activated as long as an ABS malfunction signal from one or more towed vehicle(s) is present, whenever the ignition (start) switch is in the "on" ("run") position, whether or not the engine is running. The indicator lamp shall also be activated as a check of lamp function whenever the ignition is turned to the "on" ("run") position. The indicator lamp shall be deactivated at the end of the check of lamp function unless a trailer ABS malfunction signal is present. (c) [Reserved] S5.1.6.3 Antilock power circuit for towed vehicles. Each truck tractor manufactured on or after March 1, 1997, and each single unit vehicle manufactured on or after March 1, 1998, that is equipped to tow another air-braked vehicle shall be equipped with one or more electrical circuits that provide continuous power to the antilock system on the towed vehicle or vehicles whenever the ignition (start) switch is in the "on" ("run") position. Such a circuit shall be adequate to enable the antilock system on each towed vehicle to be fully operable. S5.1.7 Service brake stop lamp switch. A switch that lights the stop lamps when the service brake control is statically depressed to a point that produces a pressure of 6 psi or less in the service brake chambers. S5.1.8 Brake distribution and automatic adjustment. Each vehicle shall be equipped with a service brake system acting on all wheels. (a) Brake adjuster. Wear of the service brakes shall be compensated for by means of a system of automatic adjustment. When inspected pursuant to S5.9, the adjustment of the service brakes shall be within the limits recommended by the vehicle manufacturer. (b) Brake indicator. For each brake equipped with an external automatic adjustment mechanism and having an exposed pushrod, the condition of service brake under-adjustment shall be displayed by a brake adjustment indicator that is discernible when viewed with 20/40 vision from a location adjacent to or underneath the vehicle, when inspected pursuant to S5.9. S5.2 Required equipment for trailers. Each trailer shall have the following equipment: S5.2.1 *Reservoirs.* One or more reservoirs to which the air is delivered from the towing vehicle. S5.2.1.1 The total volume of each service reservoir shall be at least eight times the combined volume of all service brake chambers serviced by that reservoir. For each brake chamber type having a full stroke at least as great as the first number in Column 1 of Table V, but no more than the second number in column 1, the volume of each brake chamber for purposes of calculating the required total service reservoir volume shall be either the number specified in Column 2 of Table V or the actual volume of the brake chamber at maximum travel of the brake piston or pushrod, whichever is lower. The volume of a brake chamber not listed in Table V is the volume of the brake chamber at maximum travel of the brake piston or pushrod. The reservoirs on a heavy hauler trailer and the trailer portion of an auto transporter need not meet this requirement for reservoir volume. \$5.2.1.2 Each reservoir shall be capable of withstanding an internal hydrostatic pressure of 500 psi for 10 minutes. S5.2.1.3 Each reservoir shall have a condensate drain valve that can be manually operated. S5.2.1.4 Each service reservoir shall be protected against loss of air pressure due to failure or leakage in the system between the service reservoir and its source of air pressure by check valves or equivalent devices. S5.2.2 Brake distribution and automatic adjustment. Each vehicle shall be equipped with a service brake system acting on all wheels. - (a) Brake adjuster. Wear of the service brakes shall be compensated for by means of a system of automatic adjustment. When inspected pursuant to S5.9, the adjustment of the service brakes shall be within the limits recommended by the vehicle manufacturer. - (b) Brake indicator. For each brake equipped with an external automatic adjustment mechanism and having an exposed pushrod, the condition of service brake under-adjustment shall be displayed by a brake adjustment indicator in a manner that is discernible when viewed with 20/40 vision from a location adjacent to or underneath the vehicle, when inspected pursuant to S5.9. S5.2.3 Antilock brake system. S5.2.3.1(a) Each semitrailer (including a trailer converter dolly) manufactured on or after March 1, 1998, shall be equipped with an antilock brake system that directly controls the wheels of at least one axle of the vehicle. Wheels on other axles of the vehicle may be indirectly controlled by the antilock brake system. (b) Each full trailer manufactured on or after March 1, 1998, shall be equipped with an antilock brake system that directly controls the wheels of at least one front axle of the vehicle and at least one rear axle of the vehicle. Wheels on other axles of the vehicle may be indirectly controlled by the antilock brake system. S5.2.3.2 Antilock malfunction signal. Each trailer (including a trailer converter dolly) manufactured on or after March 1, 2001, that is equipped with an brake system shall antilock equipped with an electrical circuit that is capable of signaling a malfunction in the trailer's antilock brake system, and shall have the means for connection of this antilock brake system malfunction signal circuit to the towing vehicle. The electrical circuit need not be separate or dedicated exclusively to this malfunction signaling function. The signal shall be present whenever there is a malfunction that affects the generation or transmission of response or control signals in the trailer's antilock brake system. The signal shall remain present as long as the malfunction exists, whenever power is supplied to the antilock brake system. Each message about the existence of such a malfunction shall be stored in the antilock brake system whenever power is no longer supplied to the system, and the malfunction signal shall be automatically reactivated whenever power is again supplied to the trailer's antilock brake system. In addition, each trailer manufactured on or after March 1, 2001, that is designed to tow other air-brake equipped trailers shall be capable of transmitting a malfunction signal from the antilock brake systems of additional trailers it tows to the vehicle towing it. S5.2.3.3 Antilock malfunction indica- (a) In addition to the requirements of S5.2.3.2, each trailer and trailer converter dolly manufactured on or after March 1, 1998, and before March 1, 2009, shall be equipped with an external antilock malfunction indicator lamp that meets the requirements of S5.2.3.3 (b) through (d). (b)(1) The lamp shall be designed to conform to the performance requirements of Society of Automotive Engineers (SAE) Recommended Practice J592 JUN92, or J592e, July 1972, Clearance, Side Marker, and Identification Lamps, for combination, clearance, and side marker lamps, which are marked with a "PC" or "P2" on the lens or housing, in accordance with SAE J759 Jan 95, Lighting Identification Code. SAE J592 June 92, SAE J592e July 1972, and SAE J759 January 1995, are incorporated by reference and thereby are made part of this standard. The Director of the Federal Register approved the material incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the material may be inspected at NHTSA's Docket Section, 400 Seventh Street, SW., room 5109, Washington, DC, or at the Office of the Federal Register, 800 North Capitol Street, NW., Washington, DC. - (2) The color of the lamp shall be yellow. - (3) The letters "ABS" shall be permanently molded, stamped, or otherwise marked or labeled in letters not less than 10 mm (0.4 inches) high on the lamp lens or its housing to identify the function of the lamp. Alternatively, the letters "ABS" may be painted on the trailer body or dolly or a plaque with the letters "ABS" may be affixed to the trailer body or converter dolly; the letters "ABS" shall be not less than 25 mm (1 inch) high. A portion of one of the letters in the alternative identification shall be not more than 150 mm (5.9 inches) from the edge of the lamp lens. - (c) Location requirements. (1) Each trailer that is not a trailer converter dolly shall be equipped with a lamp mounted on a permanent structure on the left side of the trailer as viewed from the rear, no closer than 150 mm (5.9 inches), and no farther than 600 mm (23.6 inches) from the red rear side marker lamp, when measured between the closest edge of the effective projected luminous lens area of each lamp. - (2) Each trailer converter dolly shall be equipped with a lamp mounted on a permanent structure of the dolly so that the lamp is not less than 375 mm (14.8 inches) above the road surface when
measured from the center of the lamp with the dolly at curb weight. When a person, standing 3 meters (9.8 feet) from the lamp, views the lamp from a perspective perpendicular to the vehicle's centerline, no portion of the lamp shall be obscured by any structure on the dolly. (3) Each trailer that is not a trailer converter dolly and on which the malfunction indicator lamp cannot be placed within the location specified in S5.2.3.3(c)(1) shall be equipped with a lamp mounted on a permanent structure on the left side of the trailer as viewed from the rear, near the red rear side marker lamp or on the front face of the left rear fender of a trailer equipped with fenders. (d) The lamp shall be illuminated whenever power is supplied to the antilock brake system and there is a malfunction that affects the generation or transmission of response or control signals in the trailer's antilock brake system. The lamp shall remain illuminated as long as such a malfunction exists and power is supplied to the antilock brake system. Each message about the existence of such a malfunction shall be stored in the antilock brake system whenever power is no longer supplied to the system. The lamp shall be automatically reactivated when power is again supplied to the trailer's antilock brake system. The lamp shall also be activated as a check of lamp function whenever power is first supplied to the antilock brake system and the vehicle is stationary. The lamp shall be deactivated at the end of the check of lamp function, unless there is a malfunction or a message about a malfunction that existed when power was last supplied to the antilock brake system. S5.3 Service brakes—road tests. The service brake system on each truck tractor manufactured before March 1, 1997, shall, under the conditions of S6, meet the requirements of S5.3.3 and S5.3.4, when tested without adjustments other than those specified in this standard. The service brake system on each truck tractor manufactured on or after March 1, 1997, shall, under the conditions of S6, meet the requirements of S5.3.1, S5.3.3, S5.3.4, and \$5.3.6, when tested without adjustments other than those specified in this standard. The service brake system on each bus and truck (other than a truck tractor) manufactured before March 1, 1998, shall, under the conditions of S6, meet the requirements of S5.3.3, and S5.3.4, when tested without adjustments other than those specified in this standard. The service brake system on each bus and truck (other than a truck tractor) manufactured on or after March 1, 1998, shall, under the conditions of S6, meet the requirements of S5.3.1, S5.3.3, and S5.3.4 when tested without adjustments other than those specified in this standard. The service brake system on each trailer shall, under the conditions of S6, meet the requirements of S5.3.3, S5.3.4, and S5.3.5 when tested without adjustments other than those specified in this standard. However, a heavy hauler trailer and the truck and trailer portions of an auto transporter need not meet the requirements of S5.3. S5.3.1 Stopping distance—trucks and buses. When stopped six times for each combination of vehicle type, weight, and speed specified in S5.3.1.1, in the sequence specified in Table I, each truck tractor manufactured on or after March 1, 1997, and each single unit vehicle manufactured on or after March 1, 1998, shall stop at least once in not more than the distance specified in Table II, measured from the point at which movement of the service brake control begins, without any part of the vehicle leaving the roadway, and with wheel lockup permitted only as follows: - (a) At vehicle speeds above 20 mph, any wheel on a nonsteerable axle other than the two rearmost nonliftable, nonsteerable axles may lock up, for any duration. The wheels on the two rearmost nonliftable, nonsteerable axles may lock up according to S5.3.1(b). - (b) At vehicle speeds above 20 mph, one wheel on any axle or two wheels on any tandem may lock up for any duration. - (c) At vehicle speeds above 20 mph, any wheel not permitted to lock in S5.3.1 (a) or (b) may lock up repeatedly, with each lockup occurring for a duration of one second or less. - (d) At vehicle speeds of $20\ mph$ or less, any wheel may lock up for any duration. S5.3.1.1 Stop the vehicle from 60 mph on a surface with a peak friction coefficient of 0.9 with the vehicle loaded as follows: - (a) Loaded to its GVWR, - (b) In the truck tractor only configuration plus up to 500 lbs., and - (c) At its unloaded vehicle weight (except for truck tractors) plus up to 500 lbs. (including driver and instrumentation). If the speed attainable in two miles is less than 60 mph, vehicle shall stop from a speed in Table II that is 4 to 8 mph less than the speed attainable in 2 miles. S5.3.2 [Reserved] S5.3.3 *Brake actuation time.* Each service brake system shall meet the requirements of S5.3.3.1 (a) and (b). S5.3.3.1(a) With an initial service reservoir system air pressure of 100 psi, the air pressure in each brake chamber shall, when measured from the first movement of the service brake control, reach 60 psi in not more than 0.45 second in the case of trucks and buses, 0.50 second in the case of trailers, other than trailer converter dollies, designed to tow another vehicle equipped with air brakes, 0.55 second in the case of trailer converter dollies, and 0.60 second in the case of trailers other than trailers designed to tow another vehicle equipped with air brakes. A vehicle designed to tow another vehicle equipped with air brakes shall meet the above actuation time requirement with a 50-cubic-inch test reservoir connected to the control line output coupling. A trailer, including a trailer converter dolly, shall meet the above actuation time requirement with its control line input coupling connected to the test rig shown in Figure 1. (b) For a vehicle that is designed to tow another vehicle equipped with air brakes, the pressure in the 50-cubic-inch test reservoir referred to in S5.3.3.1(a) shall, when measured from the first movement of the service brake control, reach 60 psi not later than the time the fastest brake chamber on the vehicle reaches 60 psi or, at the option of the manufacturer, in not more than 0.35 second in the case of trucks and buses, 0.55 second in the case of trailer converter dollies, and 0.50 second in the case of trailers other than trailer converter dollies. S5.3.4 Brake release time. Each service brake system shall meet the requirements of S5.3.4.1 (a) and (b). S5.3.4.1(a) With an initial service brake chamber air pressure of 95 psi, the air pressure in each brake chamber shall, when measured from the first movement of the service brake control, fall to 5 psi in not more than 0.55 second in the case of trucks and buses; 1.00 second in the case of trailers, other than trailer converter dollies, designed to tow another vehicle equipped with air brakes; 1.10 seconds in the case of trailer converter dollies; and 1.20 seconds in the case of trailers other than trailers designed to tow another vehicle equipped with air brakes. A vehicle designated to tow another vehicle equipped with air brakes shall meet the above release time requirement with a 50-cubic-inch test reservoir connected to the control line output coupling. A trailer, including a trailer converter dolly, shall meet the above release time requirement with its control line input coupling connected to the test rig shown in Figure 1. (b) For vehicles designed to tow another vehicle equipped with air brakes, the pressure in the 50-cubic-inch test reservoir referred to in S5.3.4.1(a) shall, when measured from the first movement of the service brake control, fall to 5 psi in not more than 0.75 seconds in the case of trucks and buses, 1.10 seconds in the case of trailer converter dollies, and 1.00 seconds in the case of trailers other than trailer converter dollies. S5.3.5 Control signal pressure differential—converter dollies and trailers designed to tow another vehicle equipped with air brakes. - (a) For a trailer designed to tow another vehicle equipped with air brakes, the pressure differential between the control line input coupling and a 50-cubic-inch test reservoir attached to the control line output coupling shall not exceed the values specified in S5.3.5(a) (1), (2), and (3) under the conditions specified in S5.3.5(b) (1) through (4). - (1) 1 psi at all input pressures equal to or greater than 5 psi, but not greater than 20 psi; - (2) 2 psi at all input pressures equal to or greater than 20 psi but not greater than 40 psi; and - (3) Not more than a 5-percent differential at any input pressure equal to or greater than 40 psi. - (b) The requirements in S5.3.5(a) shall be met— - (1) When the pressure at the input coupling is steady, increasing or decreasing; - (2) When air is applied to or released from the control line input coupling using the trailer test rig shown in Figure 1: - (3) With a fixed orifice consisting of a 0.0180 inch diameter hole (no. 77 drill bit) in a 0.032 inch thick disc installed in the control line between the trailer test rig coupling and the vehicle's control line input coupling; and - (4) Operating the trailer test rig in the same manner and under the same conditions as it is operated during testing to measure brake actuation and release times, as specified in S5.3.3 and S5.3.4, except for the installation of the orifice in the control line to restrict airflow rate. S5.3.6 Stability and control during braking—truck tractors. When stopped four consecutive times for each combination of weight, speed, and road conditions specified in S5.3.6.1 and S5.3.6.2, each truck tractor manufactured on or after March 1, 1997, shall stop at least three times within the 12-foot lane, without any part of the vehicle leaving the roadway. S5.3.6.1 Using a full-treadle brake application for the duration of the stop, stop the vehicle from 30 mph or 75 percent of the maximum drive-through
speed, whichever is less, on a 500-foot radius curved roadway with a wet level surface having a peak friction coefficient of 0.5 when measured on a straight or curved section of the curved roadway using an American Society for Testing and Materials (ASTM) E1136 standard reference tire, in accordance with ASTM Method E1337–90, at a speed of 40 mph, with water delivery. S5.3.6.2 Stop the vehicle with the vehicle - (a) Loaded to its GVWR, and - (b) At its unloaded weight plus up to 500 pounds (including driver and instrumentation), or at the manufacturer's option, at its unloaded weight plus up to 500 pounds (including driver and instrumentation) and plus not more than an additional 1000 pounds for a roll bar structure on the vehicle. S5.4 Service brake system—dynamometer tests. When tested without prior road testing, under the conditions of S6.2, each brake assembly shall meet the requirements of S5.4.1, S5.4.2, and S5.4.3 when tested in sequence and without adjustments other than those specified in the standard. For purposes of the requirements of S5.4.2 and S5.4.3, an average deceleration rate is the change in velocity divided by the deceleration time measured from the onset of deceleration. S5.4.1 Brake retardation force. The sum of the retardation forces exerted by the brakes on each vehicle designed to be towed by another vehicle equipped with air brakes shall be such that the quotient sum of the brake retardation forces / sum of GAWR's relative to brake chamber air pressure, and shall have values not less than those shown in Column 1 of Table III. Retardation force shall be determined as follows: S5.4.1.1 After burnishing the brake pursuant to S6.2.6, retain the brake assembly on the inertia dynamometer. With an initial brake temperature between 125°F. and 200°F., conduct a stop from 50 m.p.h., maintaining brake chamber air pressure at a constant 20 psi. Measure the average torque exerted by the brake from the time the specified air pressure is reached until the brake stops and divide by the static loaded tire radius specified by the tire manufacturer to determine the retardation force. Repeat the procedure six times, increasing the brake chamber air pressure by $1\bar{0}$ psi each time. After each stop, rotate the brake drum or disc until the temperature of the brake falls to between 125°F. And 200°F. S5.4.2 Brake power. When mounted on an inertia dynamometer, each brake shall be capable of making 10 consecutive decelerations at an average rate of 9 f.p.s.p.s. from 50 m.p.h. to 15 m.p.h., at equal intervals of 72 seconds, and shall be capable of decelerating to a stop from 20 m.p.h. at an average deceleration rate of 14 f.p.s.p.s. 1 minute after the 10th deceleration. The series of decelerations shall be conducted as follows: S5.4.2.1 With an initial brake temperature between 150°F. and 200°F. for the first brake application, and the drum or disc rotating at a speed equivalent to 50 m.p.h., apply the brake and decelerate at an average deceleration rate of 9 f.p.s.p.s. to 15 m.p.h. Upon reaching 15 m.p.h., accelerate to 50 m.p.h. and apply the brake for a second time 72 seconds after the start of the first application. Repeat the cycle until 10 decelerations have been made. The service line air pressure shall not exceed 100 psi during any deceleration. S5.4.2.2 One minute after the end of the last deceleration required by S5.4.2.1 and with the drum or disc rotating at a speed of 20 m.p.h., decelerate to a stop at an average deceleration rate of 14 f.p.s.p.s. S5.4.3 Brake recovery. Except as provided in S5.4.3(a) and (b), starting two minutes after completing the tests reguired by S5.4.2, a vehicle's brake shall be capable of making 20 consecutive stops from 30 mph at an average deceleration rate of 12 f.p.s.p.s., at equal intervals of one minute measured from the start of each brake application. The service line air pressure needed to attain a rate of 12 f.p.s.p.s. shall be not more than 85 lb/in², and not less than 20lb/in2 for a brake not subject to the control of an antilock system, or 12 lb/ in2 for a brake subject to the control of an antilock system. (a) Notwithstanding S5.4.3, neither front axle brake of a truck-tractor is subject to the requirements set forth in S5.4.3. (b) Notwithstanding S5.4.3, neither front axle brake of a bus or a truck other than a truck-tractor is subject to the requirement set forth in S5.4.3 prohibiting the service line air pressure from being less than 20 lb/in² for a brake not subject to the control of an antilock system or 12 lb/in² for a brake subject to the control of an antilock system. S5.5 Antilock system. S5.5.1 Antilock system malfunction. On a truck tractor manufactured on or after March 1, 1997, that is equipped with an antilock brake system and a single unit vehicle manufactured on or after March 1, 1998, that is equipped with an antilock brake system, a malfunction that affects the generation or transmission of response or control signals of any part of the antilock system shall not increase the actuation and release times of the service brakes. S5.5.2 Antilock system power—trailers. On a trailer (including a trailer converter dolly) manufactured on or after March 1, 1998, that is equipped with an antilock system that requires electrical power for operation, the power shall be obtained from the towing vehicle through one or more electrical circuits which provide continuous power whenever the powered vehicle's ignition (start) switch is in the "on" ("run") position. The antilock system shall automatically receive power from the stoplamp circuit, if the primary circuit or circuits are not functioning. Each trailer (including a trailer converter dolly) manufactured on or after March 1, 1998, that is equipped to tow another air-braked vehicle shall be equipped with one or more circuits which provide continuous power to the antilock system on the vehicle(s) it tows. Such circuits shall be adequate to enable the antilock system on each towed vehicle to be fully operable. S5.6 Parking brakes. - (a) Except as provided in S5.6(b) and S5.6(c), each vehicle other than a trailer converter dolly shall have a parking brake system that under the conditions of S6.1 meets the requirements of: - (1) S5.6.1 or S5.6.2, at the manufacturer's option, and - (2) \$5.6.3, S5.6.4, S5.6.5, and S5.6.6. - (b) At the option of the manufacturer, for vehicles equipped with brake systems which incorporate a common diaphragm, the performance requirements specified in S5.6(a) which must be met with any single leakage-type failure in a common diaphragm may instead be met with the level of leakage-type failure determined in S5.6.7. The election of this option does not affect the performance requirements specified in S5.6(a) which apply with single leakage-type failures other than failures in a common diaphragm. - (c) At the option of the manufacturer, the trailer portion of any agricultural commodity trailer, heavy hauler trailer, or pulpwood trailer may meet the requirements of §393.43 of this title instead of the requirements of S5.6(a). S5.6.1 Static retardation force. With all other brakes made inoperative, during a static drawbar pull in a forward or rearward direction, the static retardation force produced by the application of the parking brakes shall be: - (a) In the case of a vehicle other than a truck-tractor that is equipped with more than two axles, such that the quotient static retardation force/GAWR is not less than 0.28 for any axle other than a steerable front axle; and - (b) In the case of a truck-tractor that is equipped with more than two axles, such that the quotient static retardation force/GVWR is not less than 0.14. - S5.6.2 *Grade holding.* With all parking brakes applied, the vehicle shall remain stationary facing uphill and facing downhill on a smooth, dry portland cement concrete roadway with a 20-percent grade, both - (a) When loaded to its GVWR, and - (b) At its unloaded vehicle weight plus 500 pounds (including driver and instrumentation). S5.6.3 Application and holding. Each parking brake system shall meet the requirements of S5.6.3.1 through S5.6.3.4. S5.6.3.1 The parking brake system shall be capable of achieving the minimum performance specified either in S5.6.1 or S5.6.2 with any single leakagetype failure, in any other brake system, of a part designed to contain compressed air or brake fluid (excluding failure of a component of a brake chamber housing but including failure of any brake chamber diaphragm that is part of any other brake system including a diaphragm which is common to the parking brake system and any other brake system), when the pressures in the vehicle's parking brake chambers are at the levels determined in S5.6.3.4. S5.6.3.2 A mechanical means shall be provided that, after a parking brake application is made with the pressures in the vehicle's parking brake chambers at the levels determined in S5.6.3.4, and all air and fluid pressures in the vehicle's braking systems are then bled down to zero, and without using electrical power, holds the parking brake application with sufficient parking retardation force to meet the minimum performance specified ir S5.6.3.1 and in either S5.6.1 or S5.6.2. S5.6.3.3 For trucks and buses, with an initial reservoir system pressure of 100 psi and, if designed to tow a vehicle equipped with air brakes, with a 50 cubic inch test reservoir connected to the supply line coupling, no later than three seconds from the time of actuation of the parking brake control, the mechanical means referred to in S5.6.3.2 shall be actuated. For trailers, with the supply line initially pressurized to 100 psi using the supply line portion of the trailer test rig (Figure 1) and, if designed to tow a vehicle equipped with air brakes, with a 50 cubic inch test reservoir connected to the rear supply line coupling, no later than three seconds from the time venting to the atmosphere of the front supply line coupling is initiated, the
mechanical means referred to in S5.6.3.2 shall be actuated. This requirement shall be met for trucks, buses and trailers both with and without any single leakage-type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in S5.6.3.1). S5.6.3.4 The parking brake chamber pressures for S5.6.3.1 and S5.6.3.2 are determined as follows. For trucks and buses, with an initial reservoir system pressure of 100 psi and, if designed to tow a vehicle equipped with air brakes, with a 50 cubic inch test reservoir connected to the supply line coupling, any single leakage type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in S5.6.3.1), is introduced in the brake system. The parking brake control is actuated and the pressures in the vehicle's parking brake chambers are measured three seconds after that actuation is initiated. For trailers, with the supply line initially pressurized to 100 psi using the supply line portion of the trailer test rig (Figure 1) and, if designed to tow a vehicle equipped with air brakes, with a 50 cubic inch test reservoir connected to the rear supply line coupling, any single leakage type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in S5.6.3.1), is introduced in the brake system. The front supply line coupling is vented to the atmosphere and the pressures in the vehicle's parking brake chambers are measured three seconds after that venting is initiated. S5.6.4 Parking brake control—trucks and buses. The parking brake control shall be separate from the service brake control. It shall be operable by a person seated in the normal driving position. The control shall be identified in a manner that specifies the method of control operation. The parking brake control shall control the parking brakes of the vehicle and of any air braked vehicle that it is designed to tow. S5.6.5 Release Performance. Each parking brake system shall meet the requirements specified in S5.6.5.1 through S5.6.5.4. S5.6.5.1 For trucks and buses, with initial conditions as specified in S5.6.5.2, at all times after an application actuation of the parking brake control, and with any subsequent level of pressure, or combination of levels of pressure, in the reservoirs of any of the vehicle's brake systems, no reduction in parking brake retardation force shall result from a release actuation of the parking brake control unless the parking brakes are capable, after such release, of being reapplied at a level meeting the minimum performance specified either in S5.6.1 or S5.6.2. This requirement shall be met both with and without the engine on, and with and without single leakage-type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the specified parenthetical phrase S5.6.3.1). S5.6.5.2 The initial conditions for S5.6.5.1 are as follows: The reservoir system pressure is 100 psi. If the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir is connected to the supply line coupling. \$5.6.5.3 For trailers, with initial conditions as specified in \$5.6.5.4, at all times after actuation of the parking brakes by venting the front supply line coupling to the atmosphere, and with any subsequent level of pressure, or combination of levels of pressure, in the reservoirs of any of the vehicle's brake systems, the parking brakes shall not be releasable by repressurizing the supply line using the supply line portion of the trailer test rig (Figure 1) to any pressure above 70 psi, unless the parking brakes are capable, after such release, of reapplication by subsequent venting of the front supply line coupling to the atmosphere, at a level meeting the minimum performance specified either in S5.6.1 or S5.6.2. This requirement shall be met both with and without any single leakagetype failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in S5.6.3.1). S5.6.5.4 The initial conditions for S5.6.5.3 are as follows: The reservoir system and supply line are pressurized to 100 psi, using the supply line portion of the trailer test rig (Figure 1). If the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir is connected to the rear supply line coupling. S5.6.6 Accumulation of actuation energy. Each parking brake system shall meet the requirements specified in S5.6.6.1 through S5.6.6.6. S5.6.6.1 For trucks and buses, with initial conditions as specified in S5.6.6.2, the parking brake system shall be capable of meeting the minimum performance specified either in S5.6.1 or S5.6.2, with any single leakage-type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in S5.6.3.1) at the conclusion of the test sequence specified in S5.6.6.3. S5.6.6.2 The initial conditions for S5.6.6.1 are as follows: The engine is on. The reservoir system pressure is 100 psi. If the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir is connected to the supply line coupling. S5.6.6.3 The test sequence for S5.6.6.1 is as follows: The engine is turned off. Any single leakage type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in S5.6.3.1), is then introduced in the brake system. An application actuation of the parking brake control is then made. Thirty seconds after such actuation, a release actuation of the parking brake control is made. Thirty seconds after the release actuation, a final application actuation of the parking brake control is made. S5.6.6.4 For trailers, with initial conditions as specified in S5.6.6.5, the parking brake system shall be capable of meeting the minimum performance specified either in S5.6.1 or S5.6.2, with any single leakage-type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in S5.6.3.1), at the conclusion of the test sequence specified in S5.6.6.6.6. S5.6.6.5 The initial conditions for S5.6.6.4 are as follows: The reservoir system and supply line are pressurized to 100 psi, using the supply line portion of the trailer test rig (Figure 1). If the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir is connected to the rear supply line coupling. S5.6.6.6 The test sequence S5.6.6.4 is as follows. Any single leakage type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in S5.6.3.1), is introduced in the brake system. The front supply line coupling is vented to the atmosphere. Thirty seconds after the initiation of such venting, the supply line is repressurized with the trailer test rig (Figure 1). Thirty seconds after the initiation of such repressurizing of the supply line, the front supply line is vented to the atmosphere. This procedure is conducted either by connection and disconnection of the supply line coupling or by use of a valve installed in the supply line portion of the trailer test rig near the supply line coupling. S5.6.7 Maximum level of common diaphragm leakage-type failure/ Equivalent level of leakage from the air chamber containing that diaphragm. In the case of vehicles for which the option in S5.6(b) has been elected, determine the maximum level of common diaphragm leakage-type failure (or equivalent level of leakage from the air chamber containing that diaphragm) according to the procedures set forth in S5.6.7.1 through S5.6.7.2.3. ## S5.6.7.1 Trucks and buses. S5.6.7.1.1 According to the following procedure, determine the threshold level of common diaphragm leakagetype failure (or equivalent level of leakage from the air chamber containing that diaphragm) at which the vehiparking brakes unreleasable. With an initial reservoir system pressure of 100 psi, the engine turned off, no application of any of the vehicle's brakes, and, if the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir connected to the supply line coupling, introduce a leakage-type failure of the common diaphragm (or equivalent leakage from the air chamber containing that diaphragm). Apply the parking brakes by making an application actuation of the parking brake control. Reduce the pressures in all of the vehicle's reservoirs to zero, turn on the engine and allow it to idle, and allow the pressures in the vehicle's reservoirs to rise until they stabilize or until the compressor shut-off point is reached. At that time, make a release actuation of the parking brake control, and determine whether all of the mechanical means referred to in S5.6.3.2 continue to be actuated and hold the parking brake applications with sufficient parking retardation force to meet the minimum performance specified in either S5.6.1 or S5.6.2. Repeat this procedure with progressively decreasing or increasing levels (whichever is applicable) of leakage-type diaphragm failures or equivalent leakages, to determine the minimum level of common diaphragm leakage-type failure (or equivalent level of leakage from the air chamber containing that diaphragm) at which all of the mechanical means referred to in S5.6.3.2 continue to be actuated and hold the parking brake applications with sufficient parking retardation forces to meet the minimum performance specified in either S5.6.1 or S5.6.2. S5.6.7.1.2 At the level of common diaphragm leakage-type failure equivalent
level of leakage from the air chamber containing that diaphragm) determined in S5.6.7.1.1, and using the following procedure, determine the threshold maximum reservoir rate (in psi per minute). With an initial reservoir system pressure of 100 psi, the engine turned off, no application of any of the vehicle's brakes and, if the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir connected to the supply line coupling, make an application actuation of the parking brake control. Determine the maximum reservoir leakage rate (in psi per minute), which is the maximum rate of decrease in air pressure of any of the vehicle's reservoirs that results after that parking brake application. S5.6.7.1.3 Using the following procedure, introduce a leakage-type failure of the common diaphragm (or equivalent leakage from the air chamber containing that diaphragm) that results in a maximum reservoir leakage rate that is three times the threshold maximum reservoir leakage rate determined in S5.6.7.1.2. With an initial reservoir system pressure of 100 psi, the engine turned off, no application of any of the vehicle's brakes and, if the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir connected to the supply line coupling, make an application actuation of the parking brake control. Determine the maximum reservoir leakage rate (in psi per minute), which is the maximum rate of decrease in air pressure of any of the vehicle's reservoirs that results after that parking brake application. The level of common diaphragm leakage-type failure (or equivalent level of leakage from the air chamber containing that diaphragm) associated with this reservoir leakage rate is the level that is to be used under the option set forth in S5.6(b). ## S5.6.7.2 Trailers. S5.6.7.2.1 According to the following procedure, determine the threshold level of common diaphragm leakage-type failure (or equivalent level of leakage from the air chamber containing that diaphragm) at which the vehiparking brakes become unreleasable. With an initial reservoir system and supply line pressure of 100 psi, no application of any of the vehicle's brakes, and, if the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir connected to the supply line coupling, introduce a leakage-type failure of the common diaphragm (or equivalent leakage from the air chamber containing that diaphragm). Make a parking brake application by venting the front supply line coupling to the atmosphere, and reduce the pressures in all of the vehicle's reservoirs to zero. Pressurize the supply line by connecting the trailer's front supply line coupling to the supply line portion of the trailer test rig (Figure 1) with the regulator of the trailer test rig set at 100 psi, and determine whether all of the mechanical means referred to in S5.6.3.2 continue to be actuated and hold the parking brake applications with sufficient parking retardation forces to meet the minimum performance specified in either S5.6.1 or S5.6.2. Repeat this procedure with progressively decreasing or increasing levels (whichever is applicable) of leakagetype diaphragm failures or equivalent leakages, to determine the minimum level of common diaphragm leakagetype failure (or equivalent level of leakage from the air chamber containing that diaphragm) at which all of the mechanical means referred to in S5.6.3.2 continue to be actuated and hold the parking brake applications with sufficient parking retardation forces to meet the minimum performance specified in either S5.6.1 or S5.6.2. S5.6.7.2.2 At the level of common diaphragm leakage-type failure equivalent level of leakage from the air chamber containing that diaphragm) determined in S5.6.7.2.1, and using the following procedure, determine the threshold maximum reservoir leakage rate (in psi per minute). With an initial reservoir system and supply line pressure of 100 psi, no application of any of the vehicle's brakes and, if the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir connected to the rear supply line coupling, make a parking brake application by venting the front supply line coupling to the atmosphere. Determine the maximum reservoir leakage rate (in psi per minute), which is the maximum rate of decrease in air pressure of any of the vehicle's reservoirs that results after that parking brake application. \$5.6.7.2.3 Using the following procedure, a leakage-type failure of the common diaphragm (or equivalent leakage from the air chamber containing that diaphragm) that results in a maximum reservoir leakage rate that is three times the threshold maximum reservoir leakage rate determined in S5.6.7.2.2. With an initial reservoir system and supply line pressure of 100 psi, no application of any of the vehicle's brakes and, if the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir connected to the rear supply line coupling, make a parking brake application by venting the front supply line coupling to the atmosphere. Determine the maximum reservoir leakage rate (in psi per minute), which is the maximum rate of decrease in air pressure of any of the vehicle's reservoirs that results after that parking brake application. The level of common diaphragm leakagetype failure (or equivalent level of leakage from the air chamber containing that diaphragm) associated with this reservoir leakage rate is the level that is to be used under the option set forth in S5.6(b). S5.7 Emergency brake system for trucks and buses. Each vehicle shall be equipped with an emergency brake system which, under the conditions of S6.1, conforms to the requirements of S5.7.1 through S5.7.3. However, the truck portion of an auto transporter need not meet the road test requirements of S5.7.1 and S5.7.3. S5.7.1 Emergency brake system performance. When stopped six times for each combination of weight and speed specified in S5.3.1.1, except for a loaded truck tractor with an unbraked control trailer, on a road surface having a PFC of 0.9, with a single failure in the service brake system of a part designed to contain compressed air or brake fluid (except failure of a common valve, manifold, brake fluid housing, or brake chamber housing), the vehicle shall stop at least once in not more than the distance specified in Column 5 of Table II, measured from the point at which movement of the service brake control begins, except that a truck-tractor tested at its unloaded vehicle weight plus up to 500 pounds shall stop at least once in not more than the distance specified in Column 6 of Table II. The stop shall be made without any part of the vehicle leaving the roadway, and with unlimited wheel lockup permitted at any speed. S5.7.2 Emergency brake system operation. The emergency brake system shall be applied and released, and be capable of modulation, by means of the service brake control. S5.7.3 Towing vehicle emergency brake requirements. In addition to meeting the other requirements of S5.7, a vehicle designed to tow another vehicle equipped with air brakes shall— (a) In the case of a truck-tractor in the unloaded condition and a single unit truck which is capable of towing an airbrake equipped vehicle and is loaded to GVWR, be capable of meeting the requirements of S5.7.1 by operation of the service brake control only, with the trailer air supply line and air control line from the towing vehicle vented to the atmosphere in accordance with S6.1.14; (b) In the case of a truck-tractor loaded to GVWR, be capable of meeting S5.7.1 by operation of the service brake control only, with the air control line from the towing vehicle vented to the atmosphere in accordance with S6.1.14; and (c) Be capable of modulating the air in the supply or control line to the trailer by means of the service brake control with a single failure in the towing vehicle service brake system as specified in S5.7.1. S5.8 Emergency brakes for trailers. Each trailer shall meet the requirements of S5.8.1 through S5.8.3. S5.8.1 Emergency braking capability. Each trailer other than a trailer converter dolly shall have a parking brake system that conforms to S5.6 and that applies with the force specified in S5.6.1 or S5.6.2 when the air pressure in the supply line is at atmospheric pressure. A trailer converter dolly shall have, at the manufacturer's option— (a) A parking brake system that conforms to S5.6 and that applies with the force specified in S5.6.1 or S5.6.2 when the air pressure in the supply line is at atmospheric pressure, or (b) An emergency system that automatically applies the service brakes when the service reservoir is at any pressure above 20 lb/in² and the supply line is at atmospheric pressure. However, any agricultural commodity trailer, heavy hauler trailer, or pulpwood trailer shall meet the requirements of \$5.8.1 or, at the option of the manufacturer, the requirements of \$393.43 of this title. S5.8.2 Supply line pressure retention. Any single leakage type failure in the service brake system (except for a failure of the supply line, a valve directly connected to the supply line or a component of a brake chamber housing) shall not result in the pressure in the supply line falling below 70 psi, measured at the forward trailer supply coupling. A trailer shall meet the above supply line pressure retention requirement with its brake system connected to the trailer test rig shown in Figure 1, with the reservoirs of the trailer and test rig initially pressurized to 100 psi and the regulator of the trailer test rig set at 100 psi; except that a trailer equipped with an air-applied, mechanically-held parking brake system and not designed to tow a vehicle equipped with air brakes, at the manufacturer's option, may meet the requirements of S5.8.4 rather than those of S5.8.2 and S5.8.3. S5.8.3 Automatic application of parking brakes.
With an initial reservoir system pressure of 100 psi and initial supply line pressure of 100 psi, and if designed to tow a vehicle equipped with air brakes, with a 50 cubic inch test reservoir connected to the rear supply line coupling, and with any subsequent single leakage type failure in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in S5.6.3.1), whenever the air pressure in the supply line is 70 psi or higher, the parking brakes shall not provide any brake retardation as a result of complete or partial automatic application of the parking brakes. S5.8.4 Automatic application of air-applied, mechanically held parking brakes. With its brake system connected to the supply line portion of the trailer test rig (Figure 1) and the regulator of the trailer test rig set at 100 psi, and with any single leakage type failure in the service brake system (except for a failure of the supply line, a valve directly connected to the supply line or a component of a brake chamber, but including failure of any common diaphragm), the parking brakes shall not provide any brake retardation as a result of complete or partial automatic application of the parking brakes. S5.9 *Final inspection*. Inspect the service brake system for the condition of adjustment and for the brake indicator display in accordance with S5.1.8 and S5.2.2. S6. Conditions. The requirements of S5 shall be met by a vehicle when it is tested according to the conditions set in this S6, without replacing any brake system part or making any adjustments to the brake system except as specified. Unless otherwise specified, where a range of conditions is specified, the vehicle must be capable of meeting the requirements at all points within the range. On vehicles equipped with automatic brake adjusters, the automatic brake adjusters must remain activated at all times. Compliance of vehicles manufactured in two or more stages may, at the option of the final-stage manufacturer, be demonstrated to comply with this standard by adherence to the instructions of the incomplete vehicle manufacturer provided with the vehicle in accordance with §568.4(a)(7)(ii) and §568.5 of title 49 of the Code of Federal Regulations. S6.1 Road test conditions. S6.1.1 Except as otherwise specified, the vehicle is loaded to its GVWR, distributed proportionally to its GAWRs. During the burnish procedure specified in S6.1.8, truck tractors shall be loaded to their GVWR, by coupling them to an unbraked flatbed semitrailer, which semitrailer shall be loaded so that the weight of the tractor-trailer combination equals the GVWR of the truck tractor. The load on the unbraked flatbed semitrailer shall be located so that the truck tractor's wheels do not lock during burnish. S6.1.2 The inflation pressure is as specified by the vehicle manufacturer for the GVWR. S6.1.3 Unless otherwise specified, the transmission selector control is in neutral or the clutch is disengaged during all decelerations and during static parking brake tests. S6.1.4 All vehicle openings (doors, windows, hood, trunk, cargo doors, etc.) are in a closed position except as required for instrumentation purposes. S6.1.5 The ambient temperature is between 32° F. and 100° F. S6.1.6 The wind velocity is zero. S6.1.7 Unless otherwise specified, stopping tests are conducted on a 12-foot wide level, straight roadway having a peak friction coefficient of 0.9. For road tests in S5.3, the vehicle is aligned in the center of the roadway at the beginning of a stop. Peak friction coefficient is measured using an ASTM E1136 standard reference test tire in accordance with ASTM method E1337-90, at a speed of 40 mph, without water delivery for the surface with PFC of 0.9, and with water delivery for the surface with PFC of 0.5. S6.1.8 For vehicles with parking brake systems not utilizing the service brake friction elements, burnish the friction elements of such systems prior to the parking brake test according to the manufacturer's recommendations. For vehicles with parking brake systems utilizing the service brake friction elements, burnish the brakes as follows: With the transmission in the highest gear appropriate for a speed of 40 mph, make 500 snubs between 40 mph and 20 mph at a deceleration rate of 10 f.p.s.p.s., or at the vehicle's maximum deceleration rate if less than 10 f.p.s.p.s. Except where an adjustment is specified, after each brake application accelerate to 40 mph and maintain that speed until making the next brake application at a point 1 mile from the initial point of the previous brake application. If the vehicle cannot attain a speed of 40 mph in 1 mph, continue to accelerate until the vehicle reaches 40 mph or until the vehicle has traveled 1.5 miles from the initial point of the previous brake application, whichever occurs first. Any automatic pressure limiting valve is in use to limit pressure as designed. The brakes may be adjusted up to three times during the burnish procedure, at intervals specified by the vehicle manufacturer, and may be adjusted at the conclusion of the burnishing, in accordance with the vehicle manufacturer's recommendation. S6.1.9 Static parking brake tests for a semitrailer are conducted with the front-end supported by an unbraked dolly. The weight of the dolly is included as part of the trailer load. S6.1.10 In a test other than a static parking test, a truck tractor is tested at its GVWR by coupling it to an unbraked flatbed semi-trailer (hereafter, control trailer) as specified in S6.1.10.2 to S6.1.10.4. S6.1.10.1 [Reserved] S6.1.10.2 The center of gravity height of the ballast on the loaded control trailer shall be less than 24 inches above the top of the tractor's fifth wheel. S6.1.10.3 The control trailer has a single axle with a GAWR of 18,000 pounds and a length, measured from the transverse centerline of the axle to the centerline of the kingpin, of 258 \pm 6 inches. S6.1.10.4 The control trailer is loaded so that its axle is loaded at 4,500 pounds and the tractor is loaded to its GVWR, loaded above the kingpin only, with the tractor's fifth wheel adjusted so that the load on each axle measured at the tire-ground interface is most nearly proportional to the axles' respective GAWRs, without exceeding the GAWR of the tractor's axle or axles or control trailer's axle. S6.1.11 Special drive conditions. A vehicle equipped with an interlocking axle system or a front wheel drive system that is engaged and disengaged by the driver is tested with the system disengaged. S6.1.12 *Liftable axles.* A vehicle with a liftable axle is tested at GVWR with the liftable axle down and at unloaded vehicle weight with the liftable axle up. S6.1.13 Trailer test rig. (a) The trailer test rig shown in Figure 1 is calibrated in accordance with the calibration curves shown in Figure 3. For the requirements of S5.3.3.1 and S5.3.4.1, the pressure in the trailer test rig reservoir is initially set at 100 psi for actuation tests and 95 psi for release tests. (b) The trailer test rig shown in Figure 1(a) is capable of increasing the pressure in a 50 cubic inch reservoir from atmospheric to 60 lb/in² in 0.06 second, measured from the first movement of the service brake control to apply service brake pressure and of releasing pressure in such a reservoir from 95 to 5 lb/in² in 0.22 second measured from the first movement of the service brake control to release service brake pressure. S6.1.14 In testing the emergency braking system of towing vehicles under \$5.7.3(a) and \$5.7.3(b), the hose(s) is vented to the atmosphere at any time not less than 1 second and not more than 1 minute before the emergency stop begins, while the vehicle is moving at the speed from which the stop is to be made and any manual control for the towing vehicle protection system is in the position to supply air and brake control signals to the vehicle being towed. No brake application is made from the time the line(s) is vented until the emergency stop begins and no manual operation of the parking brake system or towing vehicle protection system occurs from the time the line(s) is vented until the stop is completed. S6.1.15 *Initial brake temperature.* Unless otherwise specified, the initial brake temperature is not less than 150°F and not more than 200°F. S6.2 Dynamometer test conditions. S6.2.1 The dynamometer inertia for each wheel is equivalent to the load on the wheel with the axle loaded to its GAWR. For a vehicle having additional GAWRs specified for operation at reduced speeds, the GAWR used is that specified for a speed of 50 mph, or, at the option of the manufacturer, any speed greater than 50 mph. S6.2.2 The ambient temperature is between 75° F. and 100° F. S6.2.3 Air at ambient temperature is directed uniformly and continuously over the brake drum or disc at a velocity of 2,200 feet per minute. S6.2.4 The temperature of each brake is measured by a single plug-type thermocouple installed in the center of the lining surface of the most heavily loaded shoe or pad as shown in Figure 2. The thermocouple is outside any center groove. S6.2.5 The rate of brake drum or disc rotation on a dynamometer or responding to the rate of rotation on a vehicle at a given speed is calculated by assuming a tire radius equal to the static loaded radius specified by the tire manufacturer. S6.2.6 Brakes are burnished before testing as follows: place the brake assembly on an inertia dynamometer and adjust the brake as recommended by the vehicle manufacturer. Make 200 stops from 40 mph at a deceleration of 10 f.p.s.p.s., with an initial brake temperature on each stop of not less than 315°F and not more than 385°F. Make 200 additional stops from 40 mph at a deceleration of 10 f.p.s.p.s. with an initial brake temperature on each stop of not less than 450°F and not more than 550°F. The brakes may be adjusted up to three times during the burnish procedure, at intervals specified by
the vehicle manufacturer, and may be adjusted at the conclusion of the burnishing, in accordance with the vehicle manufacturer's recommendation. S6.2.7 The brake temperature is increased to a specified level by conducting one or more stops from 40 m.p.h. at a deceleration of 10 f.p.s.p.s. The brake temperature is decreased to a specified level by rotating the drum or disc at a constant 30 m.p.h. - Shut-off Valve S - Regulator (set at 100 psi for service brake actuation tests; Œ 95 psi for service brake release tests; 100 psi for parking brake tests in S5.6.3.3, S5.6.3.4, S5.6.5.4, and S5.6.5.5, and for the supply line pressure retention test in S5.8.2; and any pressure above 70 psi for parking brake test in S5.6.5.3.) Check Valve Metering Valve (Variable or Fixed) MV - Metering Valve (Varia QRV - Quick Release Valve Figure 1. Trailer Test Rig. FIGURE 2 THERMOCOUPLE INSTALLATION Figure 3. Pressure vs. Time for 50 in³ Test Reservoir. TABLE I—STOPPING SEQUENCE - 1. Burnish. - 2. Stops on a peak friction coefficient surface of 0.5: - (a) With the vehicle at gross vehicle weight rating (GVWR), stop the vehicle from 30 mph using the service brake, for a truck tractor with a loaded unbraked control trailer. - (b) With the vehicle at unloaded weight plus up to 500 lbs., stop the vehicle from 30 mph using the service brake, for a truck tractor. - 3. Manual adjustment of the service brakes allowed for truck tractors, within the limits recommended by the vehicle manufacturer. - 4. Other stops with vehicle at GVWR: - (a) 60 mph service brake stops on a peak friction coefficient surface of 0.9, for a truck tractor with a loaded unbraked control trailer, or for a single-unit vehicle. - (b) 60 mph emergency brake stops on a peak friction coefficient of 0.9, for - a single-unit vehicle. Truck tractors are not required to be tested in the loaded condition. - 5. Parking brake test with the vehicle loaded to GVWR. - Manual adjustment of the service brakes allowed for truck tractors and single-unit vehicles, within the limits recommended by the vehicle manufacturer. - 7. Other stops with the vehicle at unloaded weight plus up to 500 lbs.: - (a) 60 mph service brake stops on a peak friction coefficient surface of 0.9, for a truck tractor or for a single-unit vehicle. - (b) 60 mph emergency brake stops on a peak friction coefficient of 0.9, for a truck tractor or for a single-unit vehicle. - 8. Parking brake test with the vehicle at unloaded weight plus up to 500 lbs. - 9. Final inspection of service brake system for condition of adjustment. TABLE II—STOPPING DISTANCE IN FEET | | | Service brake | | | | Emergency
brake | | |---------------------------------|-----|---------------|-----|-----|-----|--------------------|--| | Vehicle speed in miles per hour | PFC | PFC | PFC | PFC | PFC | PFC | | | | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | | | | (1) | (2) | (3) | (4) | (5) | (6) | | | 20 | 32 | 35 | 38 | 40 | 83 | 85 | | | | 49 | 54 | 59 | 62 | 123 | 131 | | | | 70 | 78 | 84 | 89 | 170 | 186 | | | 35 | 96 | 106 | 114 | 121 | 225 | 250 | | | 40 | 125 | 138 | 149 | 158 | 288 | 325 | | | 45 | 158 | 175 | 189 | 200 | 358 | 409 | | | 50 | 195 | 216 | 233 | 247 | 435 | 504 | | | | 236 | 261 | 281 | 299 | 520 | 608 | | | | 280 | 310 | 335 | 355 | 613 | 720 | | Note: (1) Loaded and unloaded buses; (2) Loaded single unit trucks; (3) Unloaded truck tractors and single unit trucks; (4) Loaded truck tractors tested with an unbraked control trailer; (5) All vehicles except truck tractors; (6) Unloaded truck tractors. TABLE III—BRAKE RETARDATION FORCE | Column 1
Brake Retardation Force, GAWR | Column 2
Brake
Chamber
Pressure,
PSI | |---|--| | 0.05 | 20 | | 0.12 | 30 | | 0.18 | 40 | | 0.25 | 50 | | 0.31 | 60 | | 0.37 | 70 | | 0.41 | 80 | TABLE IV—[RESERVED] TABLE V—BRAKE CHAMBER RATED VOLUMES | Brake chamber type (nominal area of piston or diaphragm in square inches) | Column 1
full stroke
(inches) | Column 2
rated vol-
ume
(cubic
inches) | |---|-------------------------------------|--| | Type 9 | 1.75/2.10 | 25 | | Type 12 | 1.75/2.10 | 30 | | Type 14 | 2.25/2.70 | 40 | | Type 16 | 2.25/2.70 | 50 | | Type 18 | 2.25/2.70 | 55 | | Type 20 | 2.25/2.70 | 60 | | Type 24 | 2.50/3.20 | 70 | | Type 30 | 2.50/3.20 | 95 | | Type 36 | 3.00/3.60 | 135 | [61 FR 27290, May 31, 1996, as amended at 61 FR 49695, Sept. 23, 1996; 61 FR 60636, Nov. 29, 1996; 63 FR 7727, Feb. 17, 1998] # §571.122 Standard No. 122; Motorcycle brake systems. S1. *Scope.* This standard specifies performance requirements for motorcycle brake systems. S2. *Purpose*. The purpose of the standard is to insure safe motorcycle braking performance under normal and emergency conditions. S3. *Application*. This standard applies to motorcycles. S4. Definitions. *Braking interval* means the distance measured from the start of one brake application to the start of the next brake application. *Initial brake temperature* means the temperature of the hottest service brake of the vehicle 0.2 mile before any brake application. Skid number means the frictional resistance of a pavement measured in accordance with American Society for Testing and Materials (ASTM) Method E-274-70 (as revised July, 1974) at 40 mph, omitting water delivery as specified in paragraphs 7.1 and 7.2 of that method. Stopping distance means the distance traveled by a vehicle from the start of the brake application to the point where the vehicle stops. Split service brake system means a brake system consisting of two or more subsystems actuated by a single control designed so that a leakage-type failure of a pressure component in a single subsystem (except structural failure of a housing that is common to all subsystems) shall not impair the operation of the other subsystem(s). S5. Requirements. Each motorcycle shall meet the following requirements under the conditions specified in S6, when tested according to the procedures and in the sequence specified in S7. Corresponding test procedures of S7 are indicated in parentheses. If a motorcycle is incapable of attaining a specified speed, its service brakes shall be capable of stopping the vehicle from the multiple of 5 m.p.h. that is 4 m.p.h. to 8 m.p.h. less than the speed attainable in 1 mile, within stopping distances that do not exceed the stopping distances specified in Table 1. S5.1 Required equipment—split service brake system. Each motorcycle shall have either a split service brake system or two independently actuated service brake systems. S5.1.1 Mechanical service brake system. Failure of any component in a mechanical service brake system shall not result in a loss of braking ability in the other service brake system on the vehicle S5.1.2 Hydraulic service brake system. A leakage failure in a hydraulic service brake system shall not result in a loss of braking ability in the other service brake system on the vehicle. Each motorcycle equipped with a hydraulic brake system shall have the equipment specified in S5.1.2.1 and S5.1.2.2. S5.1.2.1 Master cylinder reservoirs. Each master cylinder shall have a separate reservoir for each brake circuit, with each reservoir filler opening having its own cover, seal, and cover retention device. Each reservoir shall have a minimum capacity equivalent to one and one-half times the total fluid displacement resulting when all the wheel cylinders or caliper pistons serviced by the reservoir move from a new lining, fully retracted position to a fully worn, fully applied position. Where adjustment is a factor, the worst condition of adjustment shall be used for this measurement. S5.1.2.2 Reservoir labeling. Each motorcycle shall have a brake fluid warning statement that reads as follows, in letters at least three thirty-seconds of an inch high: Warning: Clean filler cap before removing. Use only ____ fluid from a sealed container. (Inserting the recommended type of brake fluid as specified in 49 CFR 571.116, e.g., DOT 3.) The lettering shall be: (a) Permanently affixed, engraved, or embossed; (b) Located so as to be visible by direct view, either on or within 4 inches of the brake-fluid reservoir filler plug or cap; and (c) Of a color that contrasts with its background, if it is not engraved or embossed. S5.1.3 *Split service brake system.* In addition to the equipment required by S5.1.2 each motorcycle equipped with a split service brake system shall have a failure indicator lamp as specified in S5.1.3.1. S5.1.3.1 Failure indicator lamp. - (a) One or more electrically operated service brake system failure indicator lamps that is mounted in front of and in clear view of the driver, and that is activated— - (1) In the event of pressure failure in any part of the service brake system, other than a structural failure of either a brake master cylinder body in a split integral body type master cylinder system or a service brake system failure indicator body, before or upon application of not more than 20 pounds of pedal force upon the service brake. - (2) Without the application of pedal force, when the level of brake fluid in a master cylinder reservoir drops to less than the recommended safe level specified by the manufacturer or to less than one-half the fluid reservoir capacity, whichever is the greater. - (b) All failure indicator lamps shall be activated when the ignition switch is turned from the "off" to the "on" or to the "start" position. - (c) Except for the momentary activation required by S5.1.3.1(b), each indicator lamp, once activated, shall remain activated as long as the condition exists, whenever the ignition switch is in the "on" position. An indicator lamp activated when the ignition is turned to the "start" position shall be deactivated upon return of the switch to the "on" position unless a
failure exists in the service brake system. - (d) Each indicator lamp shall have a red lens with the legend "Brake Failure" on or adjacent to it in letters not less than three thirty-seconds of an inch high that shall be legible to the driver in daylight when lighted. - S5.1.4 Parking brake. Each three-wheeled motorcycle shall be equipped with a parking brake of a friction type with a solely mechanical means to retain engagement. - S5.1.5 Other requirements. The brake system shall be installed so that the lining thickness of drum brake shoes may be visually inspected, either directly or by use of a mirror without removing the drums, and so that disc brake friction lining thickness may be visually inspected without removing the pads. - S5.2 Service brake system—first (preburnish) effectiveness. - S5.2.1 Service brake system. The service brakes shall be capable of stopping the motorcycle from 30 m.p.h. and 60 m.p.h. within stopping distances which do not exceed the stopping distances specified in Column I of Table I (S7.3.1). - S5.2.2 Partial service brake system. Each independently actuated service brake system on each motorcycle shall be capable of stopping the motorcycle from 30 m.p.h. and 60 m.p.h. within stopping distances which do not exceed the stopping distances specified in Column II of Table I (S7.3.2). - S5.3 Service brake system—second effectiveness. The service brakes shall be capable of stopping the motorcycle from 30 m.p.h., 60 m.p.h., 80 m.p.h., and the multiple of 5 m.p.h. that is 4 m.p.h. to 8 m.p.h. less than the speed attainable in 1 mile if this speed is 95 m.p.h. or greater, within stopping distances that do not exceed the stopping distances specified in Column III of Table I (S7.5). - S5.4 Service brake system—fade and recovery. These requirements do not apply to a motor-driven cycle whose speed attainable in 1 mile is 30 m.p.h. or less. - S5.4.1 Baseline check—minimum and maximum pedal forces. The pedal and lever forces used in establishing the fade baseline check average shall be within the limits specified in S6.10 (S7.6.1). - S5.4.2 *Fade.* Each motorcycle shall be capable of making 10 fade stops from 60 m.p.h. at not less than 15 f.p.s.p.s. for each stop (S7.6.2). - S5.4.3 Fade recovery. Each motorcycle shall be capable of making five recovery stops with a pedal force that does not exceed 90 pounds, and a hand lever force that does not exceed 55 pounds for any of the first four recovery stops and that for the fifth recovery stop is within plus 20 pounds and minus 10 pounds of the fade test baseline check average force (S7.6.3). - S5.5 Service brake system—final effectiveness. These requirements do not apply to a motor-driven cycle whose speed attainable in 1 mile is 30 mph or less. - S5.5.1 *Service brake system.* The service brakes shall be capable of stopping the motorcycle in a manner that complies with S5.3 (S7.8.1). S5.5.2 Hydraulic service brake system—partial failure. In the event of a pressure component leakage failure, other than a structural failure of either a brake master cylinder body in asplit integral body type master cylinder system or a service brake system failure indicator body, the remaining portion of the service brake system shall continue to operate and shall be capable of stopping the motorcycle from 30 m.p.h. and 60 m.p.h. within stopping distances that do not exceed the stopping distances specified in Column IV of Table I (S7.8.2). S5.6 Parking brake system. The parking brake system shall be capable of holding the motorcycle stationary (to the limits of traction of the braked wheels), for 5 minutes, in both forward and reverse directions, on a 30 percent grade, with an applied force of not more than 90 pounds for a foot-operated system and 55 pounds for a hand-operated system (S7.9). S5.7 Service brake system—water recovery. S5.7.1 Baseline check. The pedal and lever forces used in establishing the water recovery baseline check average shall be within the limits specified in S6.10 (S7.10.1). S5.7.2 Water recovery test. Each motorcycle shall be capable of making five recovery stops with a pedal force that does not exceed 90 pounds, and a hand lever force that does not exceed 55 pounds, for any of the first four recovery stops, and that for the fifth recovery stop, is within plus 20 pounds and minus 10 pounds of the baseline check average force (S7.10.2). S5.8 Service brake system design durability. Each motorcycle shall be capable of completing all braking requirements of S5 without detachment of brake linings from the shoes or pad, detachment or fracture of any brake system components, or leakage of fluid or lubricant at the wheel cylinder, and master cylinder reservoir cover, seal, or retention device (S7.11). S6.1 *Vehicle weight*. Motorcycle weight is unloaded vehicle weight plus 200 pounds (including driver and instrumentation), with the added weight dis- tributed in the saddle or carrier if so equipped. $\,$ S6.2 Tire inflation pressure. Tire inflation pressure is the pressure recommended by the manufacturer for the vehicle weight specified in paragraph S6.1. S6.3 *Transmission.* Unless otherwise specified, all stops are made with the clutch disengaged. S6.4 Engine. Engine idle speed and ignition timing settings are according to the manufacturer's recommendations. If the vehicle is equipped with an adjustable engine speed governor, it is adjusted according to the manufacturer's recommendation. S6.5 Ambient temperature. The ambient temperature is between 32° F. and 100° F. S6.6 Wind velocity. The wind velocity is zero. S6.7 Road surface. Road tests are conducted on level roadway having a skid number of 81. The roadway is 8 feet wide for two-wheeled motorcycles, and overall vehicle width plus 5 feet for three-wheeled motorcycles. The parking brake test surface is clean, dry, smooth portland cement concrete. S6.8 Vehicle position. The motorcycle is aligned in the center of the roadway at the start of each brake application. Stops are made without any part of the motorcycle leaving the roadway and without lockup of any wheel. S6.9 Thermocouples. The brake temperature is measured by plug-type thermocouples installed in the approximate center of the facing length and width of the most heavily loaded shoe or disc pad, one per brake, as shown in Figure 1. \$6.10 Brake actuation forces. Except for the requirements of the fifth recovery stop in S5.4.3 and S5.7.2 (S7.6.3 and S7.10.2) the hand lever force is not less than five and not more than 55 pounds and the foot pedal force is not less than 10 and not more than 90 pounds. The point of initial application of the lever forces is 1.2 inches from the end of the brake lever grip. The direction of the force is perpendicular to the handle grip on the plane along which the brake lever rotates, and the point of application of the pedal force is the center of the foot contact pad of the brake pedal. The direction of the force is perpendicular to the foot contact pad on the plane along which the brake pedal rotates, as shown in Figure 2. S7. Test procedures and sequence. Each motorcycle shall be capable of meeting all the requirements of this standard when tested according to the procedures and in the sequence set forth below without replacing any brake system part, or making any adjustments to the brake system other than as permitted in S7.4. A motorcycle shall be deemed to comply with S5.2, S5.3 and S5.5 if at least one of the stops specified in S7.3, S7.5 and S7.8 is made within the stopping distances specified in Table I. S7.1 Braking warming. If the initial brake temperature for the first stop in a test procedure (other than S7.10) has not been reached, heat the brakes to the initial brake temperature by making up to 10 stops from 30 m.p.h. at a deceleration of not more than 10 f.p.s.p.s. On independently operated brake systems, the coldest brake shall be within 10° F. of the hottest brake. S7.2 Pretest instrumentation check. Conduct a general check of test instrumentation by making not more than 10 stops from a speed of not more than 30 m.p.h. at a deceleration of not more than 10 f.p.s.p.s. If test instrument repair, replacement, or adjustment is necessary, make not more than 10 additional stops after such repair, replacement or adjustment. S7.3 Service brake system—first (preburnished) effectiveness test. S7.3.1 Service brake system. Make six stops from 30 m.p.h. and then six stops from 60 m.p.h. with an initial brake temperature between 130° F. and 150° F. S7.3.2 Partial service brake system. For a motorcycle with two independently actuated service brake systems, repeat S7.3.1 using each service brake system individually. S7.4 Service brake system—burnish procedure. Burnish the brakes by making 200 stops from 30 m.p.h. at 12 f.p.s.p.s. The braking interval shall be either the distance necessary to reduce the initial brake temperature to between 130° F. and 150° F. or 1 mile, whichever occurs first. Accelerate at maximum rate to 30 m.p.h. immediately after each stop and maintain that speed until making the next stop. After burnishing adjust the brakes in accordance with the manufacturer's recommendation. S7.5 Service brake system—second effectiveness test. Repeat S7.3.1. Then, make four stops from 80 m.p.h. and four stops from the multiple of 5 m.p.h. that is 4 m.p.h. to 8 m.p.h. less than the speed attainable in 1 mile if that speed is 95 m.p.h. or greater. S7.6 Service brake system—fade and recovery test. These requirements do not apply to a motor-driven cycle whose speed attainable in 1 mile is 30 m.p.h. or less. S7.6.1 Baseline check stops. Make three stops from 30 m.p.h. at 10 to 11 f.p.s.p.s. for each stop. Compute the average of the maximum brake pedal forces and the maximum brake lever forces required for the three stops. S7.6.2 Fade stops. Make 10 stops from 60 m.p.h. at not less than 15 f.p.s.p.s. for each stop. The initial brake temperature before the first brake application shall be
between 130° F. and 150° F. brake temperatures before Initial brake applications for subsequent stops shall be those occurring at the distance intervals. Attain the required deceleration as quickly as possible and maintain at least this rate for not less than three-fourths of the total stopping distance for each stop. The interval between the starts of service brake applications shall be 0.4 mile. Drive 1 mile at 30 m.p.h. after the last fade stop and immediately conduct the recovery test specified in S7.6.3. S7.6.3 Recovery test. Make five stops from 30 m.p.h. at 10 to 11 f.p.s.p.s. for each stop. The braking interval shall not be more than 1 mile. Immediately after each stop accelerate at maximum rate to 30 m.p.h. and maintain that speed until making the next stop. S7.7 Service brake system—reburnish. Repeat S7.4 except make 35 burnish stops instead of 200 stops. Brakes may be adjusted after reburnish if no tools are used. These requirements do not apply to a motor-driven cycle whose speed attainable in 1 mile is 30 m.p.h. or less. S7.8 Service brake system—final effectiveness test. These requirements do not apply to a motor-driven cycle whose speed attainable in 1 mile is 30 m.p.h. or less. S7.8.1 *Service brake system.* Repeat S7.5 including S7.3.1. S7.8.2 Partial service brake system test. Alter the service brake system on three-wheeled motorcycles to induce a complete loss of braking in any one subsystem. Determine the line pressure or pedal force necessary to cause the brake system failure indicator to operate. Make six stops from 30 m.p.h. and then six stops from 60 m.p.h. with an initial brake temperature between 130° F. and 150° F. Repeat for each subsystem. Determine that the brake failure indicator is operating when the master cylinder fluid level is less than the level specified in S5.1.3.1(a)(2), and that it complies with S5.1.3.1(c). Check for proper operation with each reservoir in turn at a low level. Restore the service brake system to normal at completion of this test. S7.9 Parking brake test. Starting with an initial brake temperature of not more than 150° F., drive the motorcycle downhill on the 30 percent grade with the longitudinal axis of the motorcycle in the direction of the grade. Apply the service brakes with a force not exceeding 90 pounds to stop the motorcycle and place the transmission in neutral. Apply the parking brake by exerting a force not exceeding those specified in S5.6. Release the service brake and allow the motorcycle to remain at rest (to the limit of traction of the braked wheels) for 5 minutes. Repeat the test with the motorcycle parked in the reversed (uphill) position on the grade. S7.10 Service brake system—water recovery test. S7.10.1 Baseline check stops. Make three stops from 30 m.p.h. at 10 to 11 f.p.s.p.s. for each stop. Compute the average of the maximum brake pedal forces and of the maximum brake lever forces required for the three stops. S7.10.2 Wet brake recovery stops. Completely immerse the rear brake assembly of the motorcycle in water for 2 minutes with the brake fully released. Next completely immerse the front brake assembly of the motorcycle in water for 2 minutes with the brake fully released. Perform the entire wetting procedure in not more than 7 minutes. Immediately after removal of the front brake from water, accelerate at a maximum rate to 30 mi/h without a brake application. Immediately upon reaching that speed make five stops, each from 30 mi/h at 10 to 11 ft/s2 for each stop. After each stop (except the last) accelerate the motorcycle immediately at a maximum rate to 30 mi/h and begin the next stop. S7.11 Final inspection. Upon completion of all the tests inspect the brake system in an assembled condition, for compliance with the brake lining inspection requirements. Disassemble all brakes and inspect: - (a) The entire brake system for detachment or fracture of any component. - (b) Brake linings for detachment from the shoe or pad. - (c) Wheel cylinder, master cylinder, and axle seals for fluid or lubricant leakage. - (d) Master cylinder for reservoir capacity and retention device. - (e) Master cylinder label for compliance with S5.1.2.2. TABLE I—STOPPING DISTANCES FOR EFFECTIVENESS, FADE AND PARTIAL SYSTEM TESTS | | Stopping distance, feet—Effectiveness tests | | | | |----------------------------|--|---|---|---| | Vehicle test speed, m.p.h. | Preburnish effectiveness total system (S5.2.1)—I | Preburnish effectiveness partial mechanical systems (S5.2.2)—II | Effectiveness total
system (S5.4)
(SS5.7.1)—III | Effectiveness partial hydraulic systems (S5.7.2)—IV | | 15 | 13 | 30 | 11 | 25 | | 20 | 24 | 54 | 19 | 44 | | 25 | 37 | 84 | 30 | 68 | | 30 | 54 | 121 | 43 | 97 | | 35 | 74 | 165 | 58 | 132 | | 40 | 96 | 216 | 75 | 173 | | 45 | 121 | 273 | 95 | 218 | | 50 | 150 | 337 | 128 | 264 | | 55 | 181 | 407 | 155 | 326 | | 60 | 216 | 484 | 185 | 388 | | 65 | | l | 217 | 455 | # Nat'l Highway Traffic Safety Admin., DOT § 571.122 Table I—Stopping Distances for Effectiveness, Fade and Partial System Tests— Continued | | Stopping distance, feet—Effectiveness tests | | | | |----------------------------|--|---|---|---| | Vehicle test speed, m.p.h. | Preburnish effectiveness total system (S5.2.1)—I | Preburnish effectiveness partial mechanical systems (S5.2.2)—II | Effectiveness total
system (S5.4)
(SS5.7.1)—III | Effectiveness partial hydraulic systems (S5.7.2)—IV | | 70 | | | 264 | 527 | | 75 | | | 303 | 606 | | 80 | | | 345 | 689 | | 85 | | | 389 | 778 | | 90 | | | 484 | 872 | | 95 | | | 540 | 971 | | 100 | | | 598 | 1076 | | 105 | | | 659 | 1188 | | 110 | | | 723 | 1302 | | 115 | | | 791 | 1423 | | 120 | | | 861 | 1549 | # TABLE II—BRAKE TEST SEQUENCE AND REQUIREMENTS | Sequence L.C. | Test procedure | Requirements | |--|----------------|--------------| | 1. Instrumentation check | \$7.2 | | | 2. First (Preburnish) effectiveness test: | | | | (a) Service brake system | S7.3.1 | S5.2.1 | | (b) Partial service brake system | \$7.3.2 | S5.2.2 | | 3. Burnish procedure | S7.4 | | | 4. Second effectiveness test | S7.5 | S5.3 | | 5. First fade and recovery test | S7.6 | S5.4 | | 6. Reburnish | S7.7 | | | 7. Final effectiveness test: | | | | (a) Service brake system | S7.8.1 | S5.5.1 | | (b) Partial service brake system | S7.8.2 | S5.5.2 | | 8. Parking brake test (three-wheeled motorcycles only) | S7.9 | S5.6 | | 9. Water recovery test | S7.10 | S5.7 | | 10. Design durability | S7.11 | S5.8 | FIGURE 1 - TYPICAL PLUG TYPE THERMOCOUPLE INSTALLATIONS # FIG. 2 DIRECTION OF FORCE (Delegation of authority at 38 FR 12147; secs. 102, 103, 119, Pub. L. 89-563, 80 Stat. 718 (15 U.S.C. 1391, 1392, 1407); delegations of authority at 49 CFR 1.50 and 49 CFR 501.8) [37 FR 5034, Mar. 9, 1972, as amended at 37 FR 11974, June 16, 1972; 38 FR 14753, June 5, 1973; 39 FR 32914, Sept. 12, 1974; 39 FR 43075, Dec. 10, 1974; 41 FR 24593, June 17, 1976; 43 FR 9606, Mar. 9, 1978; 43 FR 46548, Oct. 10, 1978] # §571.123 Standard No. 123; Motorcycle controls and displays. S1. Scope. This standard specifies requirements for the location, operation, identification, and illumination of motorcycle controls and displays, and requirements for motorcycle stands and footrests. S2. *Purpose.* The purpose of this standard is to minimize accidents caused by operator error in responding to the motoring environment, by standardizing certain motorcycle controls and displays. S3. Application. This standard applies to motorcycles equipped with handlebars, except for motorcycles that are designed, and sold exclusively for use by law enforcement agencies. S4. *Definitions. Clockwise* and *counter-clockwise* mean opposing directions of rotation around the following axes, as applicable. (a) The operational axis of the ignition control, viewed from in front of the ignition lock opening; (b) The axis of the right handlebar on which the twist-grip throttle is located, viewed from the end of that handlebar; (c) The axis perpendicular to the center of the speedometer, viewed from the operator's normal eye position. S5. Requirements. S5.1. Each motorcycle shall be equipped with a supplemental engine stop control, located and operable as specified in Table 1. S5.2 Each motorcycle to which this standard applies shall meet the following requirements: S5.2.1 Control location and operation. If any item of equipment listed in Table 1, Column 1, is provided, the control for such item shall be located as specified in Column 2, and operable as specified in Column 3. Each control located on a right handlebar shall be operable by the operator's right hand throughout its full range without re- moval of the operator's right hand from the throttle. Each control located on a left handlebar shall be operable by the operator's left hand throughout its full range without removal of the operator's left hand from the handgrip. If a motorcycle with an automatic clutch is equipped with a supplemental rear brake control, the control shall be located on the left handlebar. If a motorcycle is equipped with self-proportioning or antilock braking devices utilizing a single control for front and rear brakes, the control shall be located and operable in the same manner as a rear brake control. S5.2.2 Display illumination and operation. If an item of equipment listed in Table 2, Column 1, is provided, the display for such item shall be visible to a seated operator under daylight conditions, shall illuminate as specified in Column 2, and shall operate as
specified in Column 3. S5.2.3 Control and display identification. If an item of equipment in Table 3, Column 1, is provided, the item and its operational function shall be identified by: (a) A symbol substantially in the form shown in Column 3; or (b) Wording shown in both Column 2 and Column 4: or (c) A symbol substantially in the form shown in Column 3 and wording shown in both Column 2 and Column 4. (d) The abbreviations "M.P.H.", "km/h", "r/min", "Hi", "Lo", "L", "R", and "Res" appearing in Column 2 and Column 4 may be spelled in full. Symbols and words may be provided for equipment items where none are shown in Column 2, Column 3, and Column 4. Any identification provided shall be placed on or adjacent to the control or display position, and shall appear upright to the operator. S5.2.4 Stands. A stand shall fold rearward and upward if it contacts the ground when the motorcycle is moving forward. S5.2.5 *Footrests.* Footrests shall be provided for each designated seating position. Each footrests for a passenger other than an operator shall fold rearward and upward when not in use. TABLE 1—MOTORCYCLE CONTROL LOCATION AND OPERATION REQUIREMENTS | Equipment control—Column 1 | Location—Column 2 | Operation—Column 3 | |---|---|--| | Manual clutch or integrated clutch and gear change. | Left handlebar | Squeeze to disengage clutch. | | 2. Foot operated gear change | Left foot control | An upward motion of the operator's toe shifts transmission toward lower numerical gear ratios (commonly referred to as "higher gears"), and a downward motion toward higher numerical gear ratios (commonly referred to as "lower gears"). If three or more gears are provided it shall not be possible to shift from the highest gear directly to the lowest gear, or vice versa. | | Headlamp upper-lower beam control | Left handlebar | Up for upper beam, down for lower beam. If combined with the headlight on-off switch, means shall be provided to prevent inadvertent actuation of the "off" function. | | 4. Horn | do | Push to activate. | | 5. Turn signal lamps | | | | 6. Ignition | | "Off"—counterclockwise from other positions. | | 7. Manual fuel shutoff control | | Rotate to operate. "On" and "Off" are separated by 90 degrees of rotation. "Off" and "Reserve" (if provided) are separated by 90 degrees of rotation. Sequence order: "On"—"Off"—"Reserve". | | 8. Twist-grip throttle | Right handlebar | Self-closing to idle in a clockwise direction after release of hand. | | 9. Supplemental engine stop | do. | | | 10. Front wheel brake | do | Squeeze to engage. | | 11. Rear wheel brakes | Right foot control 1
Left handlebar permissible for motor-driven cycles. | Depress to engage. | ¹ See S5.2.1 for requirements for vehicles with a single control for front and rear brakes, and with a supplemental rear brake control. TABLE 2—MOTORCYCLE DISPLAY ILLUMINATION AND OPERATION REQUIREMENTS | Display—Column 1 | Illumination—Column 2 | Operation—Column 3 | |-----------------------|-----------------------|---| | 1. Speedometer | Yes | The display is illuminated whenever the headlamp is activated. | | 2. Neutral indication | Green display lamp | The display lamp illuminates when the gear selector is in neutral position. | Table 3 Motorcycle Control and Display Identification Requirements | П | Column 1 | Column 2 | Column 3 | Column 4 | |-----|--|--|---|---| | No. | Equipment | Control and Display
Identification Word | Control and Display
Identification Symbol | Identification at
Appropriate Position of
Control and Display | | 1 | Ignition | Ignition | | Off | | 2 | Supplemental Engine
Stop (Off, Run) | Engine Stop | \boxtimes \bigcirc | Off, Run | | 3 | Manual Choke
or Mixture
Enrichment | Choke or Enrichener | × | | | 4 | Electric Starter | | (3) | Start ¹ | | 5 | Headlamp Upper-Lower
Beam Control | Lights | | Hi, Ho | | 6 | Horn | Horn | đ | | | 7 | Turn Signal | Turn | ⇔ \$\dagger^2 \\ | L, R | | 8 | Speedometer | km/h 5
M.P.H. | | km/h 5
M.P.H. 4 | | 9 | Neutral Indicator | Neutral | Ν | | | 10 | Upper Beam Indicator | High Beam | ■ ○ ² | | | 11 | Tachometer | R.P.M. or r/min. | | | | 12 | Fuel Tank Shutoff Valve
(Off, On, Res.) | Fuel | • | Off, On, Res. | - 1 Required only if electric starter is separate from ignition switch. - 2 Framed areas may be filled. [37 FR 7207, Apr. 12, 1972, as amended at 37 FR 17475, Aug. 29, 1972; 39 FR 32915, Sept. 12, 1974; 48 FR 42819, Sept. 20, 1983; 49 FR 35381, Sept. 7, 1984; 49 FR 35504, Sept. 10, 1984; 56 FR 61387, Dec. 3, 1991; 63 FR 28933, May 27, 1998; 63 FR 51001, Sept. 24, 1998] ³ The pair of arrows is a single symbol. When the indicators for left and right turn operate independently, however, the two arrows will be considered separate symbols and may be spaced acdordingly. ⁴ M.P.H. increase in a clockwise direction. Major graduations and numerals appear at 10 mph intervals, minor graduations at the 5 mph intervals. (37 F.R. 17474–August 29, 1972. Effective: 9/1/74) ⁵ If the speedometer is graduated in miles per hour (MPH) and in kilometers per hour (km/h), the identifying words or abbreviation shall be MPH and km/h in any combination of upper or lower case letters. ## § 571.123, Nt. EFFECTIVE DATE NOTE: At 63 FR 28933, May 27, 1998, §571.123 was amended by revising S5.2.3 and Table 3. At 63 FR 51001, Sept. 24, 1998, §571.123 was amended by revising Table 3. All of the above amendments are effective May 27, 1999. For the convenience of the user, the superseded text follows: # §571.123 Standard No. 123, Motorcycle controls and displays. * * * * * S5.2.3 *Control and display identification.* If an item of equipment in Table 3, Column 1, is provided, the item and its operational function shall be identified by: (a) A symbol substantially in the form shown in Column 3; or # 49 CFR Ch. V (10-1-98 Edition) - (b) Wording shown in both Column 2 and Column 4; or - (c) A symbol substantially in the form shown in Column 3 and wording shown in both Column 2 and Column 4. The abbreviations "M.P.H.", "r/min", "Hi", "Lo", "L", "R", and "Res" appearing in Column 2 and Column 4 may be spelled in full. Symbols and words may be provided for equipment items where none are shown in Column 2, Column 3, and Column 4. Any identification provided shall be placed on or adjacent to the control or display position, and shall appear upright to the operator. * * * * * Table 3 Motorcycle Control and Display Identification Requirements | | Column 1 | Column 2 | Column 3 | Column 4 | |-----|--|---|---|--| | No. | Equipment | Control and Display
Identification
Word | Control and Display
Identification
Symbol | Identification at
Appropriate Position
of Control or Display | | 1 | Ignition | Ignition | | Off | | 2 | Supplemental Engine
Stop (Off, Run) | Engine Stop | Ø ∩ | Off, Run | | 3 | Manual Choke Or
Mixture
Enrichment | Choke Or
Enrichener | | | | 4 | Electric Starter | | (3) | Start ¹ | | 5 | Headlamp Upper-Lower
Beam Control | Lights | | Hi, Lo | | 6 | Horn | Horn | đ | | | 7 | Turn Signat | Turn | ⇔ \$²₃ | L, R | | 8 | Speedometer | M.P.H. | | M.P.H. ⁴ | | 9 | Neutral Indicator | Neutral | 7 | | | 10 | Upper Beam Indicator | High Beam | ≣D² | | | 11 | Tachometer | R.P.M. or
r/min. | | | | 12 | Fuel Tank Shutoff Valve
(Off, On, Res.) | Fuel | • T T | Off, On, Res. | ¹ Required only if electric starter is separate from ignition switch. ² Framed areas may be filled. ^{Framed areas may be fined. The pair of arrows is a single symbol. When the indicators for left and right turn operate independently however, the two arrows will be considered separate symbols and may be spaced accordingly. M.P.H. increase in a clockwise direction. Major graduations and numerals appear at 10 mph intervals, minor graduations at the 5 mph intervals. (37 F.R. 17474—August 29, 1972. Effective: 9/1/74)} # §571.124 Standard No. 124; Accelerator control systems. S1. Scope. This standard establishes requirements for the return of a vehicle's throttle to the idle position when the driver removes the actuating force from the accelerator control, or in the event of a severance or disconnection in the accelerator control system. S2. *Purpose*. The purpose of this standard is to reduce deaths and injuries resulting from engine overspeed caused by malfunctions in the accelerator control system. S3. *Application*. This standard applies to passenger cars, multi-purpose passenger vehicles, trucks, and buses. S4. Definitions. S4.1 Driver-operated accelerator control system means all vehicle components, except the fuel metering device, that regulate engine speed in direct response to movement of the driver-operated control and that return the throttle to the idle position upon release of the actuating force. Fuel metering device means the carburetor, or in the case of certain engines the fuel injector, fuel distributor or fuel injection pump. Throttle means the component of the fuel metering device that connects to the driver-operated accelerator control system and that by input from the driver-operated accelerator control system controls the engine speed. Idle position means the position of the throttle at which it first comes in contact with an engine idle speed control appropriate for existing conditions according to the manufacturers' recommendations. These conditions include, but are not limited to, engine speed adjustments for cold engine, air conditioning, and emission control, and the use of throttle setting devices. Ambient temperature means the surrounding air temperature, at a distance such that it is not significantly affected by heat from the vehicle under test. S4.2 In the case of vehicles powered by electric motors, the words *throttle* and *idle* refer to the motor speed controller and motor shutdown, respectively. S5. Requirements. The vehicle shall meet the following requirements when the engine is running under any load condition, and at any ambient temperature between -40 degrees Celsius and +52 degrees Celsius after 12 hours of conditioning at any temperature within that range. S5.1 There shall be at least two sources of energy capable of returning the throttle to the idle position within the time limit specified by S5.3 from any accelerator position or speed whenever the driver removes the opposing actuating force. In the event of failure of one source of energy by a single severance or disconnection, the throttle shall return to the idle position within the time limits specified by S5.3, from any accelerator position or speed whenever the driver removes the opposing actuating force. S5.2 The throttle shall return to the idle position from any accelerator position or any speed of which the engine is capable whenever any one component of the accelerator control system is disconnected or severed at a single point. The return to idle shall occur within the time limit specified by S5.3, measured either from the time of severance or disconnection or from the first removal of the opposing actuating force by the driver. S5.3 Except as provided below, maximum time to return to idle position shall be 1 second for vehicles of 4536 kilograms or less GVWR, and 2 seconds for vehicles of more than 4536 kilograms GVWR. Maximum time to return to idle position shall be 3 seconds for any vehicle that is exposed to ambient air at -18 degrees Celsius to -40 degrees Celsius during the test or for any portion of the 12-hour conditioning period. [38 FR 2980, Jan. 31, 1973; as amended at 60 FR 13645, Mar. 14, 1995] # § 571.125 Standard No. 125; Warning devices. S1. Scope. This standard establishes requirements for devices, without self-contained energy sources, that are designed to be carried in motor vehicles and used to warn approaching traffic of the presence of a stopped vehicle, except for devices designed to be permanently affixed to the vehicle. ## 418 S2. *Purpose.* The purpose of this standard is to reduce deaths and injuries due to rear end collisions between moving traffic and disabled vehicles. S3. Application. This standard applies to devices, without self-contained energy sources, that are designed to be carried in buses and trucks that have a gross vehicle weight rating (GVWR) greater than 10,000 pounds. These devices are used to warn approaching traffic of the presence of a stopped vehicle, except for devices designed to be permanently affixed to the vehicle. S4. Definitions. Entrance angle means the angle having as its sides the line through the center, and normal to the face, of the object to be tested, and the line from the center of the object to the center of the source of illumination (Figure 2). Fluorescent means the property of emitting visible light due to the absorption of radiation of a shorter wavelength which may be outside the visible spectrum. Observation angle means the angle having as its sides the line from the observation point to the center of the object to be tested and the line from the center of that object to the center of the source of illumination (Figure 2). Reflex reflective means reflective of light in directions close to the direction of incident light, over a wide range of variations in the direction of incident light. S5. Requirements. S5.1 *Équipment*. S5.1.1 Reflex reflective material and fluorescent material that meet the requirements of this standard shall be affixed to both faces of the warning device. Alternatively, a dual purpose orange fluorescent and red reflective material that meets the requirements of this standard (hereafter referred to as "dual purpose material") may be affixed to both faces in places of the reflective and fluorescent materials. S5.1.2 Each warning device shall be protected from damage and deterioration— (a) By enclosure in an opaque protective reusable container, except that two or three warning devices intended to be sold for use as a set with a single vehicle may be enclosed in a single container; or (b) By secure attachment to any light-tight, enclosed, and easily accessible compartment of a new motor vehicle with which it is supplied by the vehicle manufacturer. S5.1.3 The warning device shall be designed to be erected, and replaced in its container, without the use of tools. S5.1.4 The warning device shall be permanently and legibly marked with: (a) Name of manufacturer; (b) Month and year of manufacture, which may be expressed numerically, as "6/72"; and (c) The symbol DOT, or the statement that the warning device complies with all applicable Federal motor vehicle safety standards. S5.1.5 Each warning device shall have instructions for its erection and display. (a) The instructions shall be either indelibly printed on the warning device or attached in such a manner that they cannot be easily removed. (b) Instructions for each warning device shall include a recommendation that the driver activate the vehicular hazard warning signal lamps before leaving the vehicle to erect the warning device. (c) Instructions shall include the illustration depicted in Figure 3 indicating recommended positioning. S5.2 Configuration. S5.2.1 When the warning device is erected on level ground: (a) Part of the warning device shall form an equilateral triangle that stands in a plane not more than 10° from the vertical, with the lower edge of the base of the triangle horizontal and not less than 1 inch above the ground. (b) None of the required portion of the reflective material and fluorescent material shall be obscured by any other part of the warning device except for any portion of the material over which it is necessary to provide fasteners, pivoting beads or other means to allow collapsibility or support of the device. In any event, sufficient reflective and fluorescent material shall be used on the triangle to meet the requirements of S5.4 and S5.5. S5.2.2 Each of the three sides of the triangular portion of the warning device shall not be less than 17 and not more than 22 inches long, and not less than 2 and not more than 3 inches wide (Figure 1). S5.2.3 Each face of the triangular portion of the warning device shall have an outer border of red reflex reflective material of uniform width and not less than 0.75 and not more than 1.75 inches wide, and an inner border of orange fluorescent material of uniform width and not less than 1.25 and not more than 1.30 inches wide (Figure 1). However, this requirement shall not apply if the dual purpose material is used. S5.2.4 Each vertex of the triangular portion of the warning device shall have a radius of not less than 0.25 inch and not more than 0.50 inch. S5.2.5 All edges shall be rounded or chamfered, as necessary, to reduce the possibility of cutting or harm to the user. S5.2.6 The device shall consist entirely of the triangular portion and attachments necessary for its support and enclosure, without additional
visible shapes or attachments. S5.3 Color. S5.3.1 The color of the red reflex reflective material on the warning device shall have the following characteristics, both before and after the warning device has been conditioned in accordance with S6.1, when the source of illumination is a lamp with a tungsten filament operating at 2856° Kelvin color temperature. Expressed in terms of the International Commission on Illumination (CIE) 1931 standard colorimetric observer system (CIE chromaticity diagram, Figure 4), the chromaticity coordinates of the red reflex reflective material shall lie within the region bounded by the spectrum locus and the lines on the diagram defined by the following equations: | Boundary | Equations | |----------|--------------------| | Yellow | y=0.33
x+y=0.98 | S5.3.2 The color of the orange fluorescent material on the warning device shall have the following characteristics, both before and after the warning device has been conditioned in accordance with S6.1, when the source of illumination is a 150-watt high pressure xenon compact arc lamp. Expressed in terms of the International Commission on Illumination (CIE) 1931 standard colorimetric observer system, the chromaticity coordinates of the orange fluorescent material shall lie within the region bounded by the spectrum locus and the lines on the diagram defined by the following equations: | Boundary | Equations | |----------|--------------| | Yellow | y=0.49x+0.17 | | White | x+y=0.93 | | Red | y=0.35 | The 150-watt high pressure xenon compact arc lamp shall illuminate the sample using the unmodified spectrum at an angle of incidence of 45° and an angle of observation of 90°. If dual purpose material is being tested, it shall be illuminated by a 150-watt high pressure xenon compact arc lamp, whose light is diffused by an integrating sphere. S5.4 Reflectivity. When the red reflex reflective material on the warning device is tested in accordance with S6.2, both before and after the warning device has been conditioned in accordance with S6.1, its total candlepower per incident foot candle shall be not less than the values specified in Table I for each of the listed entrance angles. S5.5 Luminance. When the orange fluorescent material on the warning device is tested in accordance with S6.3, both before and after the warning device has been conditioned in accordance with S6.1, it shall have a minimum relative luminance of 25 percent of a flat magnesium oxide surface and a minimum product of that relative luminance and width in inches of 44. S5.6 Stability. When the warning device is erected on a horizontal brushed concrete surface both with and against the brush marks and subjected to a horizontal wind of 40 miles per hour in any direction for 3 minutes— - (a) No part of it shall slide more than 3 inches from its initial position; - (b) Its triangular portion shall not tilt to a position that is more than 10° from the vertical; and - (c) Its triangular position shall not turn through a horizontal angle of more than 10° in either direction from the initial position. - S5.7 *Durability.* When the warning device is conditioned in accordance with S6.1, no part of the warning device shall become warped or separated from the rest of the warning device. - S6. Test Procedures. - S6.1 Conditions. - S6.1.1 Submit the warning device to the following conditioning sequence, returning the device after each step in the sequence to ambient air at 68° F. for at least 2 hours. - (a) Minus 40° F. for 16 hours in a circulating air chamber using ambient air which would have not less than 30 percent and not more than 70 percent relative humidity at 70° F.; - (b) 150° F. for 16 hours in a circulating air oven using ambient air which would have not less than 30 percent and not more than 70 percent relative humidity at 70° F.; - (c) 100° F. and 90 percent relative humidity for 16 hours; - (d) Salt spray (fog) test in accordance with American Society of Testing and Materials Standard B-117, Standard Method of Salt Spray (fog) testing, August 1964, except that the test shall be for 4 hours rather than 40 hours; and - (e) Immersion for 2 hours in water at a temperature of $100^{\circ}\,\text{F}.$ - S6.2 *Reflectivity Test.* Test the red reflex reflective materials as follows: - (a) Unless dual purpose material is used, prevent the orange fluorescent material from affecting the photometric measurement of the reflectivity of the red reflex reflective material, either by separation or masking. - (b) Use a lamp with a tungsten filament operating at 2856° Kelvin color temperature as the source of illumination. - (c) Place the source of illumination 100 feet from the red reflex reflective material (Figure 2). - (d) Place the observation point directly above the source of illumination (Figure 2). - (e) Calculate the total candlepower per incident foot candle of the red reflex reflective material at each of the entrance and observation angles specified in Table 1. - S6.3 *Luminance Test.* Test the orange fluorescent material as follows: - (a) Unless dual purpose material is used, prevent the red reflex reflective material from affecting the photometric measurement of the luminance of the orange fluorescent material. - (b) Using a 150-watt high pressure xenon compact arc lamp as the light source, illuminate the test sample at an angle of incidence of 45° and an angle of observation of 90°. If dual purpose material is being tested, illuminate the sample diffusely through an integrating sphere. - (c) Measure the luminance of the material at a perpendicular viewing angle, with no ray of the viewing beam more than 5° from the perpendicular to the specimen. - (d) Repeat the procedure for a flat magnesium oxide surface, and compute the quotient (percentage) of the luminance of the material relative to that of the magnesium oxide surface. #### WARNING DEVICE FIG. 1. DIMENSIONS OF WARNING DEVICE (INCHES) REFLECTIVITY TEST DIAGRAM Figure 2 RECOMMENDED WARNING DEVICE POSITIONING Figure 3 # TOTAL MINIMUM CANDLEPOWER PER INCIDENT FOOT CANDLE Entrance Angles - Degrees | Observation
Angles - Degrees | 0 | 10
up | 10
down | 20
left | 20
right | 30
left | 30
right | |---------------------------------|-----|----------|------------|------------|-------------|------------|-------------| | 0.2 | 80 | 80 | 80 | 40 | 40 | 8.0 | 8.0 | | 1.5 | 0.8 | 0.8 | 0.8 | 0.4 | 0.4 | 0.08 | 0.08 | TABLE 1 Figure 4. CIE Chromaticity Diagram. [39 FR 28636, Aug. 9, 1974, as amended at 40 FR 4, Jan. 2, 1975; 59 FR 49591, Sept. 29, 1994] ## §§ 571.126—128 ## §§ 571.126—128 [Reserved] #### §571.129 Standard No. 129; New nonpneumatic tires for passenger cars. S1 Scope. This standard specifies tire dimensions and laboratory test requirements for lateral strength, strength, endurance, and high speed performance; defines the tire load rating; and specifies labeling requirements for non-pneumatic spare tires. S2 Application. This standard applies to new temporary spare non-pneumatic tires for use on passenger cars. S3 Definitions. Carcass means the tire structure except for the tread which provides the major portion of the tire's capability to deflect in response to the vertical loads and tractive forces that the tire transmits from the roadway to the non-pneumatic rim, the wheel center member, or the vehicle and which attaches to the vehicle or attaches, either integrally or separably, to the wheel center member or non-pneumatic rim. Carcass separation means the pulling away of the carcass from the non-pneumatic rim or wheel center member. *Chunking* means the breaking away of pieces of the carcass or tread. Cracking means any parting within the carcass, tread, or any components that connect the tire to the non-pneumatic rim or wheel center member and, if the non-pneumatic rim or wheel center member, any parting within the non-pneumatic rim, or wheel center member. Load rating means the maximum load a tire is rated to carry. Maximum tire width means the greater of either the linear distance between the exterior edges of the carcass or the linear distance between the exterior edges of the tread, both being measured parallel to the rolling axis of the tire. Non-pneumatic rim means a mechanical device which, when a non-pneumatic tire assembly incorporates a wheel, supports the tire, and attaches, either integrally or separably, to the wheel center member and upon which the tire is attached. Non-pneumatic test rim means with reference to a tire to be tested, any non-pneumatic rim that is listed as ap- propriate for use with that tire in accordance with S4.4. Non-pneumatic tire means a mechanical device which transmits, either directly or through a wheel or wheel center member, the vertical load and tractive forces from the roadway to the vehicle, generates the tractive forces that provide the directional control of the vehicle and does not rely on the containment of any gas or fluid for providing those functions. Non-pneumatic tire assembly means a non-pneumatic tire, alone or in combination with a wheel or wheel center member, which can be mounted on a vehicle. Non-pneumatic tire identification code means an alphanumeric code that is assigned by the manufacturer to identify the tire with regard to its size, application to a specific non-pneumatic rim or wheel center member or application to a specific vehicle. Test wheel center member means with reference to a tire to be tested, any wheel center member that is listed as appropriate for use with that tire in accordance with S4.4. *Tread* means that portion of the tire that comes in contact with the road. Tread separation means pulling away of the tread from the carcass. Wheel means a mechanical device which consists of a non-pneumatic rim and wheel center member and which, in the case of a non-pneumatic tire assembly incorporating a wheel, provides the connection between the tire and the
vehicle. Wheel center member means, in the case of a non-pneumatic tire assembly incorporating a wheel, a mechanical device which attaches, either integrally or separably, to the non-pneumatic rim and provides the connection between the non-pneumatic rim and the vehicle; or in the case of a non-pneumatic tire assembly not incorporating a wheel, a mechanical device which attaches, either integrally or separably, to the non-pneumatic tire and provides the connection between the tire and the vehicle. S4 Requirements. S4.1 *Size and Construction.* Each tire shall be designed to fit each non-pneumatic rim or wheel center member specified for its non-pneumatic tire identification code designation in a listing in accordance with section S4.4. S4.2 Performance Requirements S4.2.1 *General.* Each tire shall conform to the following: (a) Its load rating shall be that specified in a submission made by a manufacturer, pursuant to S4.4(a), or in one of the publications described in S4.4(b) for its non-pneumatic tire identification code designation. (b) It shall incorporate a tread wear indicator that will provide a visual indication that the tire has worn to a tread depth of 1/16 inch. - (c) It shall, before being subjected to either the endurance test procedure specified in S5.4 or the high speed performance procedure specified in S5.5, exhibit no visual evidence of tread or carcass separation, chunking or cracking. - (d) It shall meet the requirements of S4.2.2.5 and S4.2.2.6 when tested on a test wheel described in S5.4.2.1 either alone or simultaneously with up to 5 tires S4.2.2 Test Requirements. S.4.2.2.1 *Test Sample.* For each test sample use: - (a) One tire for physical dimensions, lateral strength, and strength in sequence; - (b) A second tire for tire endurance; and - (c) A third tire for high speed performance. S4.2.2.2 Physical Dimensions. For a non-pneumatic tire assembly in which the tire is separable from the non-pneumatic rim or wheel center member, the dimensions, measured in accordance with S5.1, for that portion of the tire that attaches to that non-pneumatic rim or wheel center member shall satisfy the dimensional specifications contained in the submission made by an individual manufacturer, pursuant to S4.4(a), or in one of the publications described in S4.4(b) for that tire's non-pneumatic tire identification code designation. S4.2.2.3 Lateral Strength. There shall be no visual evidence of tread or carcass separation, cracking or chunking, when a tire is tested in accordance with S5.2 to a load of: (a) 1,500 pounds for tires with a load rating less than 880 pounds; - (b) 2,000 pounds for tires with a load rating of 880 pounds or more but less than 1,400 pounds. - (c) 2,500 pounds for tires with a load rating of 1,400 pounds or more, using the load rating marked on the tire or tire assembly. S4.2.2.4 *Tire Strength.* There shall be no visual evidence of tread carcass separation, cracking or chunking, when a tire is tested in accordance with S5.3 to a minimum energy level of: | Load rating | Minimum energy level | |--------------------------------------|----------------------| | Below 880 pounds880 pounds and above | | S4.2.2.5 *Tire Endurance.* When the tire has been subjected to the laboratory endurance test specified in S5.4, using, if applicable, a non-pneumatic test rim or test wheel center member that undergoes no permanent deformation, there shall be no visual evidence of tread or carcass separation, cracking or chunking. In the case of a non-pneumatic tire assembly in which the non-pneumatic tire is an integral part of the assembly, the assembly shall undergo no permanent deformation with the exception of wear of the tread. Speed S4.2.2.6 High Performance. When the tire has been subjected to the laboratory high speed performance test specified in S5.5, using if applicable, a non-pneumatic test rim or test wheel center member that undergoes no permanent deformation, there shall be no visual evidence of tread or carcass separation, cracking or chunking. In the case of a non-pneumatic tire assembly in which the non-pneumatic tire is an integral part of the assembly, the assembly shall undergo no permanent deformation with the exception of wear of the tread. S4.3 Labeling Requirements. Each non-pneumatic tire or, in the case of a non-pneumatic tire assembly in which the non-pneumatic tire is an integral part of the assembly, each non-pneumatic tire assembly shall include, in letters or numerals not less than 0.078 inches high, the information specified in paragraphs S4.3 (a) through (f). The information shall be permanently molded, stamped or otherwise permanently marked into or onto the non-pneumatic tire or non-pneumatic tire assembly, except that the information specified in S4.3(d) and S4.3(g) may appear on a label that is permanently attached to the tire or tire assembly. If a label is used, it shall be subsurface printed, made of a material that is resistant to fade, heat, moisture, and abrasion, and attached in such a manner that it cannot be removed without destroying or defacing the label on the non-pneumatic tire or tire assembly. The information shall appear on both sides of the non-pneumatic tire or nonpneumatic tire assembly, except, in the case of a non-pneumatic tire assembly which has a particular side that must always face outward when mounted on a vehicle, in which case the information shown in paragraphs S4.3 (a) through (g) shall only be required on the outward facing side. The information shall be positioned on the tire or tire assembly such that it is not placed on the tread or the outermost edge of the tire and is not obstructed by any portion of any non-pneumatic rim or wheel center member designated for use with that tire in S4.4 of this standard or in 49 CFR 571.110 or 49 CFR 571.120. - (a) The non-pneumatic tire identification code ("NPTIC"); - (b) Load rating, which, if expressed in kilograms, shall be followed in parenthesis by the equivalent load rating in pounds, rounded to the nearest whole pound: - (c) For a non-pneumatic tire that is not an integral part of a non-pneumatic tire assembly, the size and type designation of the non-pneumatic rim or wheel center member that is contained in the submission made by a manufacturer, pursuant to S4.4(a), or in one of the publications described in S4.4(b) for that tire's non-pneumatic tire identification code designation; - (d) The name of the manufacturer or brand name; - (e) The symbol DOT in the manner specified in part 574 of this chapter, which shall constitute a certification that the tire conforms to applicable Federal motor vehicle safety standards: - (f) The tire identification number required by §574.5 of this chapter; - (g) The labeling requirements set forth in S6 of Standard No. 110 (§571.110), or S8 of Standard No. 120 (§571.120). S4.4 Non-Pneumatic Tire Identification Code and Non-Pneumatic Rim/Wheel Center Member Matching Information. For purposes of this standard, S8 of 49 CFR 571.110 and S10 of 49 CFR 571.120, each manufacturer of a non-pneumatic tire that is not an integral part of a non-pneumatic tire assembly shall ensure that it provides a listing to the public for each non-pneumatic tire that it produces. The listing shall include the non-pneumatic tire identification code, tire load rating, dimensional specifications and a diagram of the portion of the tire that attaches to the non-pneumatic rim or wheel center member, and a list of the non-pneumatic rims or wheel center members that may be used with that tire. For each non-pneumatic rim or wheel center member included in such a listing, the information provided shall include a size and type designation for the nonpneumatic rim or wheel center member, and dimensional specifications and a diagram of the non-pneumatic rim or portion of the wheel center member that attaches to the tire. A listing compiled in accordance with paragraph (a) of this section need not include dimensional specifications or a diagram of the non-pneumatic rim or portion of the wheel center member that attaches to the tire if the non-pneumatic rim's or portion of the wheel center member's dimensional specifications and diagram are contained in each listing published in accordance with paragraph (b) of this section. The listing shall be in one of the following forms: - (a) Listed by manufacturer name or brand name in a document furnished to dealers of the manufacturer's tires or, in the case of non-pneumatic tires supplied only as a temporary spare tire on a vehicle, in a document furnished to dealers of vehicles equipped with the tires, to any person upon request, and in duplicate to the Office of Vehicle Safety Standards, Crash Avoidance Division, National Highway Traffic Safety Administration, U.S. Department of Transportation, Washington, DC 20590; or - (b) Contained in publications, current at the date of manufacture of the tire or any later date, of at least one of the following organizations: The Tire and Rim Association The European Tyre and Rim Technical Organization Japan Automobile Tire Manufacturers' Association, Inc. Deutche Industrie Norm British Standards Institute Scandinavian Tire and Rim Organization Tyre and Rim Association of Australia #### S5. Test Procedures. S5.1 Physical Dimensions. After conditioning the tire at room temperature for at least 24 hours, using equipment with minimum measurement capabilities of one-half the smallest tolerance specified in the listing contained in the submission made by a manufacturer pursuant to S4.4(a), or in one of the publications described in S4.4(b) for that tire's non-pneumatic tire identification code designation, measure the portion of the tire that attaches to the non-pneumatic rim or the wheel center member. For any inner diameter dimensional specifications, or other dimensional specifications that are uniform or uniformly spaced around some circumference of the tire, these measurements shall be taken at least six
points around the tire, or, if specified, at the points specified in the listing contained in the submission made by an individual manufacturer, pursuant to S4.4(a), or in one of the publications described in S4.4(b) for that tire's nonpneumatic tire identification code designation. S5.2 Lateral Strength. S5.2.1 Preparation of the tire. S5.2.1.1 If applicable, mount a new tire on a non-pneumatic test rim or test wheel center member. S5.2.1.2 Mount the tire assembly in a fixture as shown in Figure 1 with the surface of the tire assembly that would face outward when mounted on a vehicle facing toward the lateral strength test block shown in Figure 2 and force the lateral strength test block against the tire. S5.2.2 *Test Procedure.* S5.2.2.1 Apply a load through the block to the tire at a rate of 2 inches per minute, with the load arm parallel to the tire assembly at the time of engagement and the first point of contact with the test block being the test block centerline shown in Figure 2, at the following distances, B, in sequence, as shown in Figure 1: B=A-1 inch B=A-2 inches B=A-3 inches B=A-4 inches B=A-5 inches, and B=A-6 inches. However, if at any time during the conduct of the test, the test block comes in contact with the non-pneumatic test rim or test wheel center member, the test shall be suspended and no further testing at smaller values of the distance B shall be conducted. When tested to the above procedure, satisfying the requirements of S4.2.2.3 for all values of B greater than that for which contact between the non-pneumatic test rim or test wheel center member and the test block is made, shall constitute compliance to the requirements set forth in S4.2.2.3. S5.3 *Tire Strength.* S5.3.1 Preparation of the Tire. S5.3.1.1 If applicable, mount the tire on a non-pneumatic test rim or test wheel center member. S5.3.1.2 Condition the tire assembly at room temperature for at least three hours. S5.3.2Test Procedures. S5.3.2.1 Force the test cleat, as defined in S5.3.2.2, with its length axis (see S5.3.2.2(a)) parallel to the rolling axis of the non-pneumatic tire assembly, and its height axis (see S5.3.2.2(c)), coinciding with a radius of the nonpneumatic tire assembly, into the tread of the tire at five test points equally spaced around the circumference of the tire. At each test point, the test cleat is forced into the tire at a rate of two inches per minute until the applicable minimum energy level, as shown in S4.2.2.4, calculated using the formula contained in S5.3.2.3, is reached. S5.3.2.2 The test cleat is made of steel and has the following dimensions; (a) Minimum length of one inch greater than the maximum tire width of the tire, (b) Width of one-half inch with the surface which contacts the tire's tread having one-quarter inch radius, and (c) Minimum height of one inch greater than the difference between the unloaded radius of the non-pneumatic tire assembly and the maximum radius of the non-pneumatic rim or wheel center member, if used with the non-pneumatic tire assembly being tested. S5.3.2.3 The energy level is calculated by the following formula: $$E = \frac{F \times P}{2}$$ where E=Energy level, inch-pounds; F=Force, pounds; and P=Penetration, inches S5.4 Tire Endurance. S5.4.1 Preparation of the tire. S5.4.1.1 If applicable, mount a new tire on a non-pneumatic test rim or test wheel center member. S5.4.1.2 Condition the tire assembly to $100\pm5~^{\circ}F$. for at least three hours. S5.4.2 Test Procedure. S5.4.2.1 Mount the tire assembly on a test axle and press it against a flat-faced steel test wheel 67.23 inches in diameter and at least as wide as the maximum tire width of the tire to be tested or an approved equivalent test wheel, with the applicable test load specified in the table in S5.4.2.3 for the tire's non-pneumatic tire identification code designation. S5.4.2.2 During the test, the air surrounding the test area shall be 100 ± 5 °F. S5.4.2.3 Conduct the test at 50 miles per hour (m.p.h.) in accordance with the following schedule without interruption: The loads for the following pe- riods are the specified percentage of the load rating marked on the tire or tire assembly: | | Percent | |----------|---------| | 4 hours | 85 | | 86 hours | 90 | | 24 hours | 100 | S5.4.2.4 Immediately after running the tire the required time, allow the tire to cool for one hour, then, if applicable, detach it from the non-pneumatic test rim or test wheel center member, and inspect it for the conditions specified in S4.2.2.5. S5.5 High Speed Endurance. S5.5.1 After preparing the tire in accordance with S5.4.1, if applicable, mount the tire assembly in accordance with S5.4.2.1, and press it against the test wheel with a load of 88 percent of the tire's load rating as marked on the tire or tire assembly. S5.5.2 Break in the tire by running it for 2 hours at 50 m.p.h. S5.5.3 Allow to cool to 100±5 °F. S5.5.4 Test at 75 m.p.h. for 30 minutes, 80 m.p.h. for 30 minutes and 85 m.p.h. for 30 minutes. \$5.5.5 Immediately after running the tire for the required time, allow the tire to cool for one hour, then, if applicable, detach it from the non-pneumatic test rim or test wheel center member, and inspect it for the conditions specified in \$4.2.2.6. S6. Nonconforming tires. Any non-pneumatic tire that is designed for use on passenger cars that does not conform to all the requirements of this standard, shall not be sold, offered for sale, introduced or delivered for introduction into interstate commerce, or imported into the United States, for any purpose. [55 FR 29590, July 20, 1990, as amended at 56 FR 19312, Apr. 26, 1991] # §571.131 Standard No. 131; School bus pedestrian safety devices. S1. *Scope.* This standard establishes requirements for devices that can be installed on school buses to improve the safety of pedestrians in the vicinity of stopped school buses. S2. *Purpose*. The purpose of this standard is to reduce deaths and injuries by minimizing the likelihood of vehicles passing a stopped school bus and striking pedestrians in the vicinity of the bus. S3. *Application*. This standard applies to school buses. S4. Definitions. Stop signal arm means a device that can be extended outward from the side of a school bus to provide a signal to other motorists not to pass the bus because it has stopped to load or discharge passengers. S5. Requirements. Each school bus shall be equipped with a stop signal arm meeting the requirements of S5.1 through S5.5 as depicted in Figure 1. Figure 1. Characteristics of Stop Signal Device S5.1 The stop signal arm shall be a regular octagon which is at least 450 mm×450 mm (17.72 inches×17.72 inches) in diameter. S5.2 The stop signal arm shall be red on both sides, except as provided in S5.2.1 and S5.2.2, and S5.2.3. S5.2.1 The stop signal arm shall have a white border at least 12 mm (0.47 inches) wide on both sides, except as provided in S5.2.3. Mounting brackets, clips, bolts, or other components necessary to the mechanical or electrical operation of the stop signal arm may not obscure more than 15 percent of the border on each side of the stop arm. The portion of the border that may be obscured is in addition to that portion which may be obscured by the two red lamps specified in S5.3.2. S.5.2.2 The stop signal arm shall have the word "STOP" displayed in white upper-case letters on both sides, except as provided in S5.2.3. The letters shall be at least 150 mm (5.9 inches) in height. The letters shall have a stroke width of at least 20 mm (0.79 inches), except as provided in S.5.3.1.1. S5.2.3 When two stop signal arms are installed on a school bus, the rearmost stop signal arm shall not contain any lettering, symbols, or markings on the forward side. S5.3 *Conspicuity.* The stop signal arm shall comply with either S5.3.1 or S5.3.2, or both. S5.3.1 Except as provided in S5.3.1.1, S5.3.1.2, or S5.3.1.3, the entire surface of both sides of each stop signal arm shall be reflectorized with Type III retroreflectorized material that meets the minimum specific intensity requirements of S6.1 and Table I. S.5.3.1.1 The legend retroreflective stop arm may be illuminated in a manner such that light is emitted from the surface of each letter or from the area immediately surrounding each letter. Only red lamps may be used. They shall form the complete shape of each letter of the legend, and shall be affixed to all letters (or to the areas immediately surrounding all letters) in the legend. The shape of each letter shall remain constant and, if the lamps are contained within each letter, the net stroke width (stroke width minus the width of the lamp(s)) of each letter of the legend, specified in S5.2.2, shall not be less than 15 mm (0.59 inch). When the stop arm is extended, the lamps shall flash at the rate specified in S6.2.2, with a current 'on' time specified in S6.2.2.1. All lamps shall be positioned in one of the two following ways: (1) centered within the stroke of each letter of the legend, or (2) outlining each letter of the legend. S5.3.1.2 Nonreflectorized mounting brackets, clips, bolts, or other components necessary to the mechanical or electrical operation of the stop signal arm shall not obscure more than 7.5 percent of the total surface area of either side of the stop signal arm. S5.3.1.3 When two stop signal arms are installed on a school bus, the forward side of the rearmost stop signal arm shall not be reflectorized. S5.3.2 Each side of the stop signal arm shall have at least two red lamps that meet the requirements of S6.2. The lamps shall be centered on the vertical centerline of the stop arm. One of the lamps shall be located at the extreme top of the stop arm and the other at its extreme bottom. S5.4 The stop signal arm shall be installed on the left side of the bus. S5.4.1 The stop signal arm shall be located such that, when in the extended position: (a) The stop signal arm is perpendicular to the side of the bus, plus or minus five degrees; (b) The top
edge of the stop signal arm is parallel to and not more than 6 inches from a horizontal plane tangent to the lower edge of the frame of the passenger window immediately behind the driver's window; and (c) The vertical centerline of the stop signal arm is not less than 9 inches away from the side of the school bus. S5.4.2 A second stop signal arm may be installed on a school bus. That stop signal arm shall comply with S5.4 and S5.4.1. S5.5 The stop signal arm shall be automatically extended in such a manner that it complies with S5.4.1, at a minimum whenever the red signal lamps required by S5.1.4 of Standard No. 108 are activated; except that a device may be installed that prevents the automatic extension of a stop signal arm. The mechanism for activating the device shall be within the reach of the driver. While the device is activated, a continuous or intermittent signal audible to the driver shall sound. The audible signal may be equipped with a timing device requiring the signal to sound for at least 60 seconds. If a timing device is used, it shall automatically recycle every time the service entry door is opened while the engine is running and the manual override is engaged. S6 Test Procedures. S6.1 Reflectivity Test. When tested under the conditions specified in S6.2 (b), (c), and (d) of Federal motor vehicle safety standard 125, Warning Devices, (49 CFR 571.125), the retroreflective materials shall meet the criteria specified in table 1. TABLE 1—MINIMUM SPECIFIC INTENSITY PER UNIT AREA (SIA) (Candelas per Footcandle Per Square Foot) | Observation Angle (°) | Entrance
Angle (°) | White | Red | |------------------------|-----------------------|------------|------| | Type III Retroreflecti | ve Element | Material | | | A—Glass Bead Retroref | lective Elem | ent Materi | al | | 0.2 | -4 | 250 | 45 | | 0.2 | +30 | 150 | 25 | | 0.5 | -4 | 95 | 15 | | 0.5 | +30 | 65 | 10 | | B—Prismatic Retrorefle | ctive Eleme | nt Materia | I | | 0.2 | -4 | 250 | 45 | | 0.2 | +30 | 95 | 13.3 | | 0.5 | -4 | 200 | 28 | | 0.5 | +30 | 65 | 10 | S6.2 Lighting Tests. S6.2.1 Color. The procedure shall be done in accordance with the Society of Automotive Engineers (SAE) J578, Color Specification (May 1988), 1990 SAE Handbook, Society of Automotive Engineers, Inc. Along with the incorporation by reference in S6.2.3, this incorporation by reference was approved by the Director of the FEDERAL REGISTER in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the Society of Automotive Engi-400 Commonwealth Warrendale, PA 15096-0001. Copies may be inspected at Docket Room, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 20590 or at the Office of the FEDERAL REGISTER, 800 North Capitol Street, NW., suite 700, Washington, DC. When visually compared to the light emitted from a filter/source with a combination of chromaticity coordinates as explained in SAE J578. Color Specification (May 1988), within specific boundaries [y=0.33 (yellow boundary) and $y=0.98 - \times (purple boundary)$] the color of light emitted from the test object shall not be less saturated (paler), yellower, or purpler. The test object shall be placed perpendicular to the light source to simulate lamps on stop signal arms. In making visual comparisons, the light from the test object shall light one portion of a comparison field and the light from the filter/source standard shall light an adjacent area. To make a valid visual comparison, the two fields to be viewed shall be of near equal luminance. S6.2.2. Flash rate. The lamps on each side of the stop signal arm, when operated at the manufacturer's design load, shall flash alternately at a rate of 60 to 120 flashes per minute. S6.2.2.1 Lamps, except those subject to S6.2.2.2, shall have a current "on" time of 30 to 75 percent of the total flash cycle. The total current "on" time for the two terminals shall be between 90 and 110 percent of the total flash cycle. S6.2.2.2 Xenon short-arc gaseous discharge lamps shall have an "off" time before each flash of at least 50 percent of the total flash cycle. S6.2.3 Vibration, Moisture, Dust, Corrosion, Photometry, and Warpage Tests. The procedure shall be done in accordance with the Society of Automotive Engineers (SAE) J575, Tests for Motor Vehicle Lighting Devices and Components, (July 1983) and Society of Automotive Engineers (SAE) J1133, School Bus Stop Arm, (April 1984), 1990 SAE Handbook, Society of Automotive Engineers, Inc. Lamps and lighting components shall meet the criteria for vibration, moisture, dust, corrosion, photometry, and warpage in SAE J575, Tests for Motor Vehicle Lighting Devices and Components, (July 1983) and SAE J1133, School Bus Stop Arm, (April 1984) under the test conditions specified herein. [56 FR 20370, May 3, 1991, as amended at 57 FR 40134, Sept. 2, 1992; 59 FR 26761, May 24, 1994; 63 FR 29143, May 28, 1998] ## §571.135 Standard No. 135; Passenger car brake systems. S1. *Scope.* This standard specifies requirements for service brake and associated parking brake systems. S2. *Purpose*. The purpose of this standard is to ensure safe braking performance under normal and emergency driving conditions. S3. Application. This standard applies to passenger cars manufactured on or after September 1, 2000 and to passenger multi-purpose vehicles. trucks and buses with a gross vehicle weight rating (GVWR) of 3,500 kilograms (7,716 pounds) or less, manufactured on or after September 1, 2002. In addition, at the option of the manufacturer, passenger cars manufactured before September 1, 2000, and multi-purpose passenger vehicles, trucks and buses with a GVWR of 3,500 kilograms (7,716 pounds) or less, manufactured before September 1, 2002, may meet the requirements of this standard instead of Federal Motor Vehicle No. 105, Hydraulic Brake Systems. S4. Definitions. Adhesion utilization curves means curves showing, for specified load conditions, the adhesion utilized by each axle of a vehicle plotted against the braking ratio of the vehicle. Antilock brake system or ABS means a portion of a service brake system that automatically controls the degree of rotational wheel slip during braking by: (1) Sensing the rate of angular rotation of the wheels; (2) Transmitting signals regarding the rate of wheel angular rotation to one or more controlling devices which interpret those signals and generate responsive controlling output signals; and (3) Transmitting those controlling signals to one or more modulator devices which adjust brake actuating forces in response to those signals. Backup system means a portion of a service brake system, such as a pump, that automatically supplies energy in the event of a primary brake power source failure. *Brake factor* means the slope of the linear least squares regression equation best representing the measured torque output of a brake as a function of the measured applied line pressure during a given brake application for which no wheel lockup occurs. Brake hold-off pressure means the maximum applied line pressure for which no brake torque is developed, as predicted by the pressure axis intercept of the linear least squares regression equation best representing the measured torque output of a brake as a function of the measured applied line pressure during a given brake application. Brake power assist unit means a device installed in a hydraulic brake system that reduces the amount of muscular force that a driver must apply to actuate the system, and that, if inoperative, does not prevent the driver from braking the vehicle by a continued application of muscular force on the service brake control. Brake power unit means a device installed in a brake system that provides the energy required to actuate the brakes, either directly or indirectly through an auxiliary device, with driver action consisting only of modulating the energy application level. Braking ratio means the deceleration of the vehicle divided by the gravitational acceleration constant. Electric vehicle or EV means a motor vehicle that is powered by an electric motor drawing current from rechargeable storage batteries, fuel cells, or other portable sources of electrical current, and which may include a non-electrical source of power designed to charge batteries and components thereof Electrically-actuated service brakes means service brakes that utilize electrical energy to actuate the foundation brakes. Functional failure means a failure of a component (either electrical or mechanical in nature) which renders the system totally or partially inoperative yet the structural integrity of the system is maintained. Hydraulic brake system means a system that uses hydraulic fluid as a medium for transmitting force from a service brake control to the service brake and that may incorporate a brake power assist unit, or a brake power unit. Initial brake temperature or IBT means the average temperature of the service brakes on the hottest axle of the vehicle 0.32 km (0.2 miles) before any brake application. Lightly loaded vehicle weight or LLVW means unloaded vehicle weight plus the weight of a mass of 180 kg (396 pounds), including driver and instrumentation. Maximum speed of a vehicle or VMax means the highest speed attainable by accelerating at a maximum rate from a standing start for a distance of 3.2 km (2 miles) on a level surface, with the vehicle at its lightly loaded vehicle weight, and, if an EV, with the propulsion batteries at a state of charge of not less than 95 percent at the beginning of the run. Objective brake factor means the arithmetic average of all the brake factors measured over the twenty brake applications defined in S7.4, for all wheel positions having a given brake configuration. Peak friction coefficient or PFC means the ratio of the maximum value of braking test wheel longitudinal force to the simultaneous vertical force occurring prior to wheel lockup, as the braking torque is
progressively increased. *Pressure component* means a brake system component that contains the brake system fluid and controls or senses the fluid pressure. Regenerative braking system or RBS means an electrical energy system that is installed in an EV for recovering or dissipating kinetic energy, and which uses the propulsion motor(s) as a retarder for partial braking of the EV while returning electrical energy to the propulsion battery(s) or dissipating electrical energy. *Snub* means the braking deceleration of a vehicle from a higher reference speed to a lower reference speed that is greater than zero. Split service brake system means a brake system consisting of two or more subsystems actuated by a single control, designed so that a single failure in any subsystem (such as a leakage-type failure of a pressure component of a hydraulic subsystem except structural failure of a housing that is common to two or more subsystems, or an electrical failure in an electric subsystem) does not impair the operation of any other subsystem. Stopping distance means the distance traveled by a vehicle from the point of application of force to the brake control to the point at which the vehicle reaches a full stop. Variable brake proportioning system means a system that has one or more proportioning devices which automatically change the brake pressure ratio between any two or more wheels to compensate for changes in wheel loading due to static load changes and/or dynamic weight transfer, or due to deceleration. Wheel lockup means 100 percent wheel slip. S5. Equipment requirements. S5.1. Service brake system. Each vehicle shall be equipped with a service brake system acting on all wheels. S5.1.1. Wear adjustment. Wear of the service brakes shall be compensated for by means of a system of automatic adjustment. S5.1.2. *Wear status.* The wear condition of all service brakes shall be indicated by either: (a) Acoustic or optical devices warning the driver at his or her driving position when lining replacement is necessary, or (b) A means of visually checking the degree of brake lining wear, from the outside or underside of the vehicle, utilizing only the tools or equipment normally supplied with the vehicle. The removal of wheels is permitted for this purpose. S5.1.3 Regenerative braking system. (a) For an EV equipped with RBS, the RBS is considered to be part of the service brake system if it is automatically activated by an application of the service brake control, if there is no means provided for the driver to disconnect or otherwise deactivate it, and if it is activated in all transmission positions, including neutral. (b) For an EV that is equipped with both ABS and RBS that is part of the service brake system, the ABS must control the RBS. S5.2. Parking brake system. Each vehicle shall be equipped with a parking brake system of a friction type with solely mechanical means to retain engagement. S5.3. Controls. S5.3.1. The service brakes shall be activated by means of a foot control. The control of the parking brake shall be independent of the service brake control, and may be either a hand or foot control. S5.3.2. For vehicles equipped with ABS, a control to manually disable the ABS, either fully or partially, is prohibited. S5.4. Reservoirs. S5.4.1. Master cylinder reservoirs. A master cylinder shall have a reservoir compartment for each service brake subsystem serviced by the master cylinder. Loss of fluid from one compartment shall not result in a complete loss of brake fluid from another compartment. S5.4.2. Reservoir capacity. Reservoirs, whether for master cylinders or other type systems, shall have a total minimum capacity equivalent to the fluid displacement resulting when all the wheel cylinders or caliper pistons serviced by the reservoirs move from a new lining, fully retracted position (as adjusted initially to the manufacturer's recommended setting) to a fully worn, fully applied position, as determined in accordance with S7.17(c) of this standard. Reservoirs shall have completely separate compartments for each subsystem except that in reservoir systems utilizing a portion of the reservoir for a common supply to two or more subsystems, individual partial compartments shall each have a minimum volume of fluid equal to at least the volume displaced by the master cylinder piston servicing the subsystem, during a full stroke of the piston. Each brake power unit reservoir servicing only the brake system shall have a minimum capacity equivalent to the fluid displacement required to charge the system piston(s) or accumulator(s) to normal operating pressure plus the displacement resulting when all the wheel cylinders or caliper pistons serviced by the reservoir or accumulator(s) move from a new lining, fully retracted position (as adjusted initially to the manufacturer's recommended setting) to a fully worn, fully applied position. S5.4.3. Reservoir labeling. Each vehicle equipped with hydraulic brakes shall have a brake fluid warning statement that reads as follows, in letters at least 3.2 mm (1/8 inch) high: "WARNING: Clean filler cap before removing. Use only _____ fluid from a sealed container." (Inserting the recommended type of brake fluid as specified in 49 CFR 571.116, e.g., "DOT 3.") The lettering shall be: - (a) Permanently affixed, engraved or embossed: - (b) Located so as to be visible by direct view, either on or within 100 mm (3.94 inches) of the brake fluid reservoir filler plug or cap; and - (c) Of a color that contrasts with its background, if it is not engraved or embossed. S5.4.4. Fluid level indication. Brake fluid reservoirs shall be so constructed that the level of fluid can be checked without need for the reservoir to be opened. This requirement is deemed to have been met if the vehicle is equipped with a transparent brake fluid reservoir or a brake fluid level indicator meeting the requirements of S5.5.1(a)(1). S5.5. Brake system warning indicator. Each vehicle shall have one or more visual brake system warning indicators, mounted in front of and in clear view of the driver, which meet the requirements of S5.5.1 through S5.5.5. In addition, a vehicle manufactured without a split service brake system shall be equipped with an audible warning signal that activates under the conditions specified in S5.5.1(a). S5.5.1. *Activation*. An indicator shall be activated when the ignition (start) switch is in the ''on'' (''run'') position and whenever any of conditions (a) through (g) occur: - (a) A gross loss of fluid or fluid pressure (such as caused by rupture of a brake line but not by a structural failure of a housing that is common to two or more subsystems) as indicated by one of the following conditions (chosen at the option of the manufacturer): - (1) A drop in the level of the brake fluid in any master cylinder reservoir compartment to less than the recommended safe level specified by the manufacturer or to one-fourth of the fluid capacity of that reservoir compartment, whichever is greater. - (2) For vehicles equipped with a split service brake system, a differential pressure of 1.5 MPa (218 psi) between the intact and failed brake subsystems measured at a master cylinder outlet or a slave cylinder outlet. - (3) A drop in the supply pressure in a brake power unit to one-half of the normal system pressure. - (b) Any electrical functional failure in an antilock or variable brake proportioning system. - (c) Application of the parking brake. - (d) Brake lining wear-out, if the manufacturer has elected to use an electrical device to provide an optical warning to meet the requirements of S5.1.2(a). - (e) For a vehicle with electrically-actuated service brakes, failure of the source of electric power to those brakes, or diminution of state of charge of the batteries to less than a level specified by the manufacturer for the purpose of warning a driver of degraded brake performance. - (f) For a vehicle with electric transmission of the service brake control signal, failure of a brake control circuit. - (g) For an EV with a regenerative braking system that is part of the service brake system, failure of the RBS. An amber lamp may be used displaying the symbol "RBS." RBS failure in a system that is part of the service brake system may also be indicated by an amber lamp that also indicates ABS failure and displays the symbol "ABS/RBS". - S5.5.2. *Function check.* (a) All indicators shall be activated as a check function by either: - (1) Automatic activation when the ignition (start) switch is turned to the "on" ("run") position when the engine is not running, or when the ignition ("start") switch is in a position between "on" ("run") and "start" that is designated by the manufacturer as a check position, or - (2) A single manual action by the driver, such as momentary activation of a test button or switch mounted on the instrument panel in front of and in clear view of the driver, or, in the case of an indicator for application of the parking brake, by applying the parking brake when the ignition is in the "on" ("run") position. - (b) In the case of a vehicle that has an interlock device that prevents the engine from being started under one or more conditions, check functions meeting the requirements of S5.5.2(a) need not be operational under any condition in which the engine cannot be started. - (c) The manufacturer shall explain the brake check function test procedure in the owner's manual. - S5.5.3. *Duration.* Each indicator activated due to a condition specified in S5.5.1 shall remain activated as long as the condition exists, whenever the ignition ("start") switch is in the "on" ("run") position, whether or not the engine is running. - S5.5.4. Function. When a visual warning indicator is activated, it may be continuous or flashing, except that the visual warning indicator on a vehicle not equipped with a split service brake system shall be flashing. The audible warning required for a vehicle
manufactured without a split service brake system may be continuous or intermittent. - S5.5.5. Labeling. (a) Each visual indicator shall display a word or words in accordance with the requirements of Standard No. 101 (49 CFR 571.101) and this section, which shall be legible to the driver under all daytime and night-time conditions when activated. Unless otherwise specified, the words shall have letters not less than 3.2 mm (1/8 inch) high and the letters and background shall be of contrasting colors, one of which is red. Words or symbols in addition to those required by Standard No. 101 and this section may be provided for purposes of clarity. - (b) Vehicles manufactured with a split service brake system may use a common brake warning indicator to indicate two or more of the functions described in S5.5.1(a) through S5.5.1(d). If a common indicator is used, it shall display the word "Brake." - (c) Å vehicle manufactured without a split service brake system shall use a separate indicator to indicate the failure condition in S5.5.1(a). This indicator shall display the words "STOP—BRAKE FAILURE" in block capital letters not less than 6.4 mm (¼ inch) in height. (d) If separate indicators are used for one or more of the conditions described in S5.5.1(a) through S5.5.1(g), the indicators shall display the following wording: (1) If a separate indicator is provided for the low brake fluid condition in S5.5.1(a)(1), the words "Brake Fluid" shall be used except for vehicles using hydraulic system mineral oil. (2) If a separate indicator is provided for the gross loss of pressure condition in S5.5.1(a)(2), the words "Brake Pressure" shall be used. - (3) If a separate indicator is provided for the condition specified in S5.5.1(b), the letters and background shall be of contrasting colors, one of which is yellow. The indicator shall be labeled with the words "Antilock" or "Anti-lock" or "ABS"; or "Brake Proportioning," in accordance with Table 2 of Standard No. 101. - (4) If a separate indicator is provided for application of the parking brake as specified for S5.5.1(c), the single word "Park" or the words "Parking Brake" may be used. - (5) If a separate indicator is provided to indicate brake lining wear-out as specified in S5.5.1(d), the words "Brake Wear" shall be used. - (6) If a separate indicator is provided for any other function, the display shall include the word "Brake" and appropriate additional labeling. S5.6. Brake system integrity. Each vehicle shall meet the complete performance requirements of this standard without: (a) Detachment or fracture of any component of the braking system, such as brake springs and brake shoes or disc pad facings other than minor cracks that do not impair attachment of the friction facings. All mechanical components of the braking system shall be intact and functional. Friction facing tearout (complete detachment of lining) shall not exceed 10 percent of the lining on any single frictional element. (b) Any visible brake fluid or lubricant on the friction surface of the brake, or leakage at the master cylinder or brake power unit reservoir cover, seal, and filler openings. S6. General test conditions. Each vehicle must meet the performance re- quirements specified in S7 under the following test conditions and in accordance with the test procedures and test sequence specified. Where a range of conditions is specified, the vehicle must meet the requirements at all points within the range. S6.1. Ambient conditions. S6.1.1. Ambient temperature. The ambient temperature is any temperature between $0 \, ^{\circ}\text{C} \, (32 \, ^{\circ}\text{F})$ and $40 \, ^{\circ}\text{C} \, (104 \, ^{\circ}\text{F})$. S6.1.2. *Wind speed.* The wind speed is not greater than 5 m/s (11.2 mph). S6.2. Road test surface. S6.2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction coefficient (PFC) of 0.9 when measured using an American Society for Testing and Materials (ASTM) E1136 standard reference test tire, in accordance with ASTM Method E 1337–90, at a speed of 64.4 km/h (40 mph), without water delivery. S6.2.2. *Gradient*. Except for the parking brake gradient holding test, the test surface has no more than a 1% gradient in the direction of testing and no more than a 2% gradient perpendicular to the direction of testing. S6.2.3. *Lane width.* Road tests are conducted on a test lane 3.5 m (11.5 ft) S6.3. Vehicle conditions. S6.3.1. Vehicle weight. S6.3.1.1. For the tests at GVWR, the vehicle is loaded to its GVWR such that the weight on each axle as measured at the tire-ground interface is in proportion to its GAWR, with the fuel tank filled to 100% of capacity. However, if the weight on any axle of a vehicle at LLVW exceeds the axle's proportional share of the GVWR, the load required to reach GVWR is placed so that the weight on that axle remains the same as at LLVW. S6.3.1.2. For the test at LLVW, the vehicle is loaded to its LLVW such that the added weight is distributed in the front passenger seat area. S6.3.2. Fuel tank loading. The fuel tank is filled to 100% of capacity at the beginning of testing and may not be less than 75% of capacity during any part of the testing. S6.3.3. *Lining preparation.* At the beginning of preparation for the road tests, the brakes of the vehicle are in the same condition as when the vehicle was manufactured. No burnishing or other special preparation is allowed, unless all vehicles sold to the public are similarly prepared as a part of the manufacturing process. S6.3.4. Adjustments and repairs. These requirements must be met without replacing any brake system parts or making any adjustments to the brake system except as specified in this standard. Where brake adjustments are specified (S7.1.3), adjust the brakes, including the parking brakes, in accordance with the manufacturer's recommendation. No brake adjustments are allowed during or between subsequent tests in the test sequence. S6.3.5. Automatic brake adjusters. Automatic adjusters are operational throughout the entire test sequence. They may be adjusted either manually or by other means, as recommended by the manufacturer, only prior to the beginning of the road test sequence. S6.3.6. Antilock brake system (ABS). If a car is equipped with an ABS, the ABS is fully operational for all tests, except where specified in the following sections. S6.3.7. Variable brake proportioning valve. If a car is equipped with a variable brake proportioning system, the proportioning valve is fully operational for all tests except the test for failed variable brake proportioning system. S6.3.8. *Tire inflation pressure.* Tires are inflated to the pressure recommended by the vehicle manufacturer for the GVWR of the vehicle. S6.3.9. *Engine*. Engine idle speed and ignition timing are set according to the manufacturer's recommendations. If the vehicle is equipped with an adjustable engine speed governor, it is adjusted according to the manufacturer's recommendations. S6.3.10. Vehicle openings. All vehicle openings (doors, windows, hood, trunk, convertible top, cargo doors, etc.) are closed except as required for instrumentation purposes. S6.3.11 State of charge of batteries for EVs. S6.3.11.1 The state of charge of the propulsion batteries is determined in accordance with SAE Recommended Practice J227a, *Electric Vehicle Test Procedure*, February 1976. The applicable sections of J227a are 3.2.1 through 3.2.4, 3.3.1 through 3.3.2.2, 3.4.1 and 3.4.2, 4.2.1, 5.2, 5.2.1 and 5.3. S6.3.11.2 At the beginning of the burnish procedure (S7.1 of this standard) in the test sequence, each propulsion battery is at the maximum state of charge recommended by the manufacturer, as stated in the vehicle operator's manual or on a label that is permanently attached to the vehicle, of, if the manufacturer has made no recommendation, not less than 95 percent. During the 200-stop burnish procedure, the propulsion batteries are restored to the maximum state of charge determined as above, after each increment of 40 burnish stops until the burnish procedure is complete. The batteries may be charged at a more frequent interval during a particular 40-stop increment only if the EV is incapable of achieving the initial burnish test speed during that increment. During the burnish procedure, the propulsion batteries may be charged by external means or replaced by batteries that are at a state of charge of not less than 95 percent. For an EV having a manual control for setting the level of regenerative braking, the manual control, at the beginning of the burnish procedure, is set to provide maximum regenerative braking throughout the burnish. S6.3.11.3 At the beginning of each performance test in the test sequence (S7.2 through S7.17 of this standard), unless otherwise specified, an EV's propulsion batteries are at the state of charge recommended by the manufacturer, as stated in the vehicle operator's manual or on a label that is permanently attached to the vehicle, or, if the manufacturer has made no recommendation, at a state of charge of not less than 95 percent. No further charging of any propulsion battery occurs during any of the performance tests in the test sequence of this standard. If the propulsion batteries are depleted during a test sequence such that the vehicle reaches automatic shut-down, will not accelerate, or the low state of charge brake warning lamp is illuminated, the vehicle is to be accelerated to brake test speed by auxiliary means. If a battery is replaced rather than recharged, the replacement battery shall be charged and measured for state of charge in accordance with these procedures. S6.3.12 State of charge of batteries for electrically-actuated service brakes. A vehicle equipped with electrically-actuated service brakes also performs the following test series. Conduct 10 stopping tests from a speed of 100 kph or the maximum vehicle speed, whichever is less. At least two of the 10 stopping
distances must be less than or equal to 70 meters. The vehicle is loaded to GVWR and the transmission is in the neutral position when the service brake control is actuated and throughout the remainder of the test. Each battery providing power to the electrically-actuated service brakes, shall be in a depleted state of charge for conditions (a), (b), or (c) of this paragraph as appropriate. An auxiliary means may be used to accelerate an EV to test speed. (a) For an EV equipped with electrically-actuated service brakes deriving power from the propulsion batteries and with automatic shut-down capability of the propulsion motor(s), the propulsion batteries are at not more than five percent above the EV actual automatic shut-down critical value. The critical value is determined by measuring the state-of-charge of each propulsion battery at the instant that automatic shut-down occurs. (b) For an EV equipped with electrically-actuated service brakes deriving power from the propulsion batteries and with no automatic shutdown capability of the propulsion motor(s), the propulsion batteries are at an average of not more than five percent above the actual state of charge at which the brake failure warning signal, required by S5.5.1(e) of this standard, is illuminated. (c) For a vehicle which has one or more auxiliary batteries that provides electrical energy to operate the electrically-actuated service brakes, each auxiliary battery is at not more than five percent above the actual state of charge at which the brake failure warning signal, required by S5.5.1(e) of this standard, is illuminated. S6.3.13 Electric vehicles. S6.3.13.1 (a) For an EV equipped with an RBS that is part of the service brake system, the RBS is operational during the burnish and all tests, except for the test of a failed RBS. (b) For an EV equipped with an RBS that is not part of the service brake system, the RBS is operational and set to produce the maximum regenerative braking effect during the burnish, and is disabled during the test procedures. If the vehicle is equipped with a neutral gear that automatically disables the RBS, the test procedures which are designated to be conducted in gear may be conducted in neutral. S6.3.13.2 For tests conducted "in neutral", the operator of an EV with no "neutral" position (or other means such as a clutch for disconnecting the drive train from the propulsion motor(s)) does not apply any electromotive force to the propulsion motor(s). Any electromotive force that is applied to the propulsion motor(s) automatically remains in effect unless otherwise specified by the test procedure. #### S6.4. Instrumentation. S6.4.1. Brake temperature measurement. The brake temperature is measured by plug-type thermocouples installed in the approximate center of the facing length and width of the most heavily loaded shoe or disc pad, one per brake, as shown in Figure 1. A second thermocouple may be installed at the beginning of the test sequence if the lining wear is expected to reach a point causing the first thermocouple to contact the metal rubbing surface of a drum or rotor. For center-grooved shoes or pads, thermocouples are installed within 3 mm (.12 in) to 6 mm (.24 in) of the groove and as close to the center as possible. S6.4.2. Brake line pressure measurement for the torque wheel test. The vehicle shall be fitted with pressure transducers in each hydraulic circuit. On hydraulically proportioned circuits, the pressure transducer shall be downstream of the operative proportioning S6.4.3. Brake torque measurement for the torque wheel test. The vehicle shall be fitted with torque wheels at each wheel position, including slip ring assemblies and wheel speed indicators to permit wheel lock to be detected. DIMENSIONS ARE IN (mm) Figure 1-Typical Plug-Type Thermocouple Installations S6.5. Procedural conditions. S6.5.1. *Brake control*. All service brake system performance requirements, including the partial system requirements of S7.7, S7.10 and S7.11, must be met solely by use of the service brake control. S6.5.2. Test speeds. If a vehicle is incapable of attaining the specified normal test speed, it is tested at a speed that is a multiple of 5 km/h (3.1 mph) that is 4 to 8 km/h (2.5 to 5.0 mph) less than its maximum speed and its performance must be within a stopping distance given by the formula provided for the specific requirement. S6.5.3. Stopping distance. S6.5.3.1. The braking performance of a vehicle is determined by measuring the stopping distance from a given initial speed. S6.5.3.2. Unless otherwise specified, the vehicle is stopped in the shortest distance achievable (best effort) on all stops. Where more than one stop is required for a given set of test conditions, a vehicle is deemed to comply with the corresponding stopping distance requirements if at least one of the stops is made within the prescribed distance. S6.5.3.3. In the stopping distance formulas given for each applicable test (such as $S \le 0.10V + 0.0060V^2$), S is the maximum stopping distance in meters, and V is the test speed in km/h. S6.5.4. Vehicle position and attitude. S6.5.4.1. The vehicle is aligned in the center of the lane at the start of each brake application. Steering corrections are permitted during each stop. S6.5.4.2. Stops are made without any part of the vehicle leaving the lane and without rotation of the vehicle about its vertical axis of more than ±15° from the center line of the test lane at any time during any stop. S6.5.5. Transmission selector control. S6.5.5.1. For tests in neutral, a stop or snub is made in accordance with the following procedures: - (a) Exceed the test speed by 6 to 12 km/h (3.7 to 7.5 mph); - (b) Close the throttle and coast in gear to approximately 3 km/h (1.9 mph) above the test speed; - (c) Shift to neutral; and - (d) When the test speed is reached, apply the brakes. S6.5.5.2. For tests in gear, a stop or snub is made in accordance with the following procedures: - (a) With the transmission selector in the control position recommended by the manufacturer for driving on a level surface at the applicable test speed, exceed the test speed by 6 to 12 km/h (3.7 to 7.5 mph); - (b) Close the throttle and coast in gear; and (c) When the test speed is reached apply the brakes. (d) To avoid engine stall, a manual transmission may be shifted to neutral (or the clutch disengaged) when the vehicle speed is below 30 km/h (18.6 mph). S6.5.6. *Initial brake temperature (IBT)*. If the lower limit of the specified IBT for the first stop in a test sequence (other than a parking brake grade holding test) has not been reached, the brakes are heated to the IBT by making one or more brake applications from a speed of 50 km/h (31.1 mph), at a deceleration rate not greater than 3 m/s² (9.8 fps²). S7. Road test procedures and performance requirements. Each vehicle shall meet all the applicable requirements of this section, when tested according to the conditions and procedures set forth below and in S6, in the sequence specified in Table 1: TABLE 1.—ROAD TEST SEQUENCE | Testing order | Section
No. | |-------------------------------|----------------| | Vehicle loaded to GVWR: | | | 1 Burnish | S7.1 | | 2 Wheel lock sequence | S7.2 | | Vehicle loaded to LLVW: | | | 3 Wheel lock sequence | S7.2 | | 4 ABS performance | S7.3 | | 5 Torque wheel | S7.4 | | Vehicle loaded to GVWR: | | | 6 Torque wheel | S7.4 | | 7 Cold effectiveness | S7.5 | | 8 High speed effectiveness | S7.6 | | 9 Stops with engine off | S7.7 | | Vehicle loaded to LLVW: | | | 10 Cold effectiveness | S7.5 | | 11 High speed effectiveness | S7.6 | | 12 Failed antilock | S7.8 | | 13 Failed proportioning valve | S7.9 | | 14 Hydraulic circuit failure | S7.10 | | Vehicle loaded to GVWR: | | | 15 Hydraulic circuit failure | S7.10 | | 16 Failed antilock | S7.8 | | 17 Failed proportioning valve | S7.9 | | 18 Power brake unit failure | S7.11 | | 19 Parking brake | S7.12 | | 20 Heating Snubs | S7.13 | | 21 Hot Performance | S7.14 | | 22 Brake cooling | S7.15 | TABLE 1.—ROAD TEST SEQUENCE—Continued | Testing order | Section
No. | |-------------------------|----------------| | 23 Recovery Performance | S7.16
S7.17 | S7.1. Burnish. S7.1.1. General information. Any pretest instrumentation checks are conducted as part of the burnish procedure, including any necessary rechecks after instrumentation repair, replacement or adjustment. Instrumentation check test conditions must be in accordance with the burnish test procedure specified in S7.1.2 and S7.1.3. S7.1.2. *Vehicle conditions.* (a) Vehicle load: GVWR only. (b) Transmission position: In gear. S7.1.3. *Test conditions and procedures.* The road test surface conditions specified in S6.2 do not apply to the burnish procedure. (a) IBT: ≤100 °C (212 °F). (b) Test speed: 80 km/h (49.7 mph). (c) Pedal force: Adjust as necessary to maintain specified constant deceleration rate. (d) Deceleration rate: Maintain a constant deceleration rate of $3.0\ m/s^2$ ($9.8\ fps^2$). (e) Wheel lockup: No lockup of any wheel allowed for longer than 0.1 seconds at speeds greater than 15 km/h (9.3 mph). (f) Number of runs: 200 stops. (g) Interval between runs. The interval from the start of one service brake application to the start of the next is either the time necessary to reduce the IBT to 100 °C (212 °F) or less, or the distance of 2 km (1.24 miles), whichever occurs first. (h) Accelerate to $80\ km/h$ ($49.7\ mph$) after each stop and maintain that speed until making the next stop. (i) After burnishing, adjust the brakes as specified in S6.3.4. S7.2 Wheel lockup sequence. S7.2.1 General information. (a) The purpose of this test is to ensure that lockup of both front wheels occurs either simultaneously with, or at a lower deceleration rate than, the lockup of both rear wheels, when tested on road surfaces affording adhesion such that wheel lockup of the first axle occurs at a braking ratio of between 0.15 and 0.80, inclusive. (b)
This test is for vehicles without antilock brake systems. (c) This wheel lock sequence test is to be used as a screening test to evaluate a vehicle's axle lockup sequence and to determine whether the torque wheel test in S7.4 must be conducted. (d) For this test, a simultaneous lockup of the front and rear wheels refers to the conditions when the time interval between the first occurrence of lockup of the last (second) wheel on the rear axle and the first occurrence of lockup of the last (second) wheel on the front axle is \leq 0.1 second for vehicle speeds > 15 km/h (9.3 mph). (e) A front or rear axle lockup is defined as the point in time when the last (second) wheel on an axle locks up. (f) Vehicles that lock their front axle simultaneously or at lower deceleration rates than their rear axle need not be tested to the torque wheel procedure. (g) Vehicles which lock their rear axle at deceleration rates lower than the front axle shall also be tested in accordance with the torque wheel procedure in S7.4. (h) Any determination of noncompliance for failing adhesion utilization requirements shall be based on torque wheel test results. S7.2.2 *Vehicle conditions.* (a) Vehicle load: GVWR and LLVW. (b) Transmission position: In neutral. S7.2.3. *Test Conditions and Procedures.* (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F). (b) Test speed: 65 km/h (40.4 mph) for a braking ratio \leq 0.50; 100 km/h (62.1 mph) for a braking ratio > 0.50. (c) Pedal force: (1) Pedal force is applied and controlled by the vehicle driver or by a mechanical brake pedal actuator. (2) Pedal force is increased at a linear rate such that the first axle lockup occurs no less than one-half (0.5) second and no more than one and one-half (1.5) seconds after the initial application of the pedal. (3) The pedal is released when the second axle locks, or when the pedal force reaches 1kN (225 lbs), or 0.1 seconds after first axle lockup, whichever occurs first. (d) Wheel lockup: Only wheel lockups above a vehicle speed of 15 km/h (9.3 mph) are considered in determining the results of this test. - (e) Test surfaces: This test is conducted, for each loading condition, on two different test surfaces that will result in a braking ratio of between 0.15 and 0.80, inclusive. NHTSA reserves the right to choose the test surfaces to be used based on adhesion utilization curves or any other method of determining "worst case" conditions. - (f) The data recording equipment shall have a minimum sampling rate of 40 Hz. - (g) Data to be recorded. The following information must be automatically recorded in phase continuously throughout each test run such that values of the variables can be cross referenced in real time. - (1) Vehicle speed. - (2) Brake pedal force. - (3) Angular velocity at each wheel. - (4) Actual instantaneous vehicle deceleration or the deceleration calculated by differentiation of the vehicle speed. - (h) Speed channel filtration. For analog instrumentation, the speed channel shall be filtered by using a low-pass filter having a cut-off frequency of less than one fourth the sampling rate. - (i) Test procedure. For each test surface, three runs meeting the pedal force application and time for wheel lockup requirements shall be made. Up to a total of six runs will be allowed to obtain three valid runs. Only the first three valid runs obtained shall be used for data analysis purposes. - S7.2.4. Performance requirements. (a) In order to pass this test a vehicle shall be capable of meeting the test requirements on all test surfaces that will result in a braking ratio of between 0.15 and 0.80, inclusive. - (b) If all three valid runs on each surface result in the front axle locking before or simultaneously with the rear axle, or the front axle locks up with only one or no wheels locking on the rear axle, the torque wheel procedure need not be run, and the vehicle is considered to meet the adhesion utilization requirements of this Standard. This performance requirement shall be met for all vehicle braking ratios between 0.15 and 0.80. - (c) If any one of the three valid runs on any surface results in the rear axle locking before the front axle or the rear axle locks up with only one or no wheels locking on the front axle the torque wheel procedure shall be performed. This performance requirement shall be met for all vehicle braking ratios between 0.15 and 0.80. - (d) If any one of the three valid runs on any surface results in neither axle locking (i.e., only one or no wheels locked on each axle) before a pedal force of 1kN (225 lbs) is reached, the vehicle shall be tested to the torque wheel procedure. - (e) If the conditions listed in paragraph (c) or (d) of this section occur, vehicle compliance shall be determined from the results of a torquesults of a torque wheel test performed in accordance with S7.4. - (f) An EV with RBS that is part of the service brake system shall meet the performance requirements over the entire normal operating range of the RBS. - S7.3. ABS performance. [Reserved] - S7.4. Adhesion utilization (Torque Wheel Method). - S7.4.1. *General information.* This test is for vehicles without any ABS. The purpose of the test is to determine the adhesion utilization of a vehicle. - S7.4.2. *Vehicle conditions.* (a) Vehicle load: GVWR and LLVW. - (b) Transmission position: In neutral. - (c) Tires: For this test, a separate set of tires, identical to those used for all other tests under Section 7.0, may be - S7.4.3. Test conditions and procedures. (a) IBT: \leq 65 °C (149 °F), \leq 100 °C (212 °F). - (b) Test speeds: 100 km/h (62.1 mph), and 50 km/h (31.1 mph). - (c) Pedal force: Pedal force is increased at a linear rate between 100 and 150 N/sec (22.5 and 33.7 lbs/sec) for the 100 km/h test speed, or between 100 and 200 N/sec (22.5 and 45.0 lbs/sec) for the 50 km/h test speed, until the first axle locks or until a pedal force of 1 kN (225 lbs) is reached, whichever occurs first. - (d) Cooling: Between brake applications, the vehicle is driven at speeds up to 100 km/h (62.1 mph) until the IBT specified in S7.4.3(a) is reached. - (e) Number of runs: With the vehicle at LLVW, run five stops from a speed of 100 km/h (62.1 mph) and five stops from a speed of 50 km/h (31.1 mph), while alternating between the two test speeds after each stop. With the vehicle at GVWR, repeat the five stops at each test speed while alternating between the two test speeds. - (f) Test surface: PFC of at least 0.9. - (g) Data to be recorded. The following information must be automatically recorded in phase continuously throughout each test run such that values of the variables can be cross referenced in real time: - (1) Vehicle speed. - (2) Brake pedal force. - (3) Angular velocity at each wheel. - (4) Brake torque at each wheel. - (5) Hydraulic brake line pressure in each brake circuit. Hydraulically proportioned circuits shall be fitted with transducers on at least one front wheel and one rear wheel downstream of the operative proportioning or pressure limiting valve(s). - (6) Vehicle deceleration. - (h) Sample rate: All data acquisition and recording equipment shall support a minimum sample rate of 40 Hz on all channels. - (i) Determination of front versus rear brake pressure. Determine the front versus rear brake pressure relationship over the entire range of line pressures. Unless the vehicle has a variable brake proportioning system, this determination is made by static test. If the vehicle has a variable brake proportioning system, dynamic tests are run with the vehicle both empty and loaded. 15 snubs from 50 km/h (31.1 mph) are made for each of the two load conditions, using the same initial conditions specified in this section. - S7.4.4. *Data reduction.* (a) The data from each brake application under S7.4.3 is filtered using a five-point, oncenter moving average for each data channel. - (b) For each brake application under S7.4.3 determine the slope (brake factor) and pressure axis intercept (brake hold-off pressure) of the linear least squares equation best describing the measured torque output at each braked wheel as a function of measured line pressure applied at the same wheel. Only torque output values obtained from data collected when the vehicle deceleration is within the range of 0.15g to 0.80g are used in the regression analysis. - (c) Average the results of paragraph (b) of this section to calculate the average brake factor and brake hold-off pressure for all brake applications for the front axle. - (d) Average the results of paragraph (b) of this section to calculate the average brake factor and brake hold-off pressure for all brake applications for the rear axle. - (e) Using the relationship between front and rear brake line pressure determined in S7.4.3(i) and the tire rolling radius, calculate the braking force at each axle as a function of front brake line pressure. - (f) Calculate the braking ratio of the vehicle as a function of the front brake line pressure using the following equation: $$z = \frac{T_1 + T_2}{P}$$ where z = braking ratio at a given front line pressure; T₁, T₂ = Braking forces at the front and rear axles, respectively, corresponding to the same front brake line pressure, and P = total vehicle weight. (g) Calculate the adhesion utilized at each axle as a function of braking ratio using the following equations: $$f_1 = \frac{T_1}{P_1 + zhP/E}$$ $$f_2 = \frac{T_2}{P_2 - zhP/E}$$ where f_i = adhesion utilized by axle i T_i = braking force at axle i (from (e)) P_i = static weight on axle i i = 1 for the front axle, or 2 for the rear axle z = braking ratio (from (f)) h = height of center of gravity of the vehicle P = total vehicle weight E = wheelbase (h) Plot f_1 and f_2 obtained in (g) as a function of z, for both GVWR and LLVW load conditions. These are the ### 49 CFR Ch. V (10-1-98 Edition) ### § 571.135 adhesion utilization curves for the vehicle, which are compared to the per- formance requirements in
S7.4.5. shown graphically in Figure 2: Figure 2-Adhesion Utilization Requirements S7.4.5. Performance requirements. For all braking ratios between 0.15 and 0.80, each adhesion utilization curve for a rear axle shall be situated below a line defined by z=0.9k where z is the braking ratio and k is the PFC. S7.4.5.1 An EV with RBS that is part of the service brake system shall meet the performance requirement over the entire normal operating range of the RBS. S7.5. Cold effectiveness. S7.5.1. *Vehicle conditions.* (a) Vehicle load: GVWR and LLVW. (b) Transmission position: In neutral. - S7.5.2. Test conditions and procedures. (a) IBT: \leq 65 °C (149 °F), \leq 100 °C (212 °F). - (b) Test speed: 100 km/h (62.1 mph). - (c) Pedal force: ≤65N (14.6 lbs), ≤500N (112.4 lbs). - (d) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph). - (e) Number of runs: 6 stops. - (f) Test surface: PFC of 0.9. - (g) For each stop, bring the vehicle to test speed and then stop the vehicle in the shortest possible distance under the specified conditions. S7.5.3. Performance requirements. (a) Stopping distance for 100 km/h test speed: $\leq 70 \text{m}$ (230 ft). (b) Stopping distance for reduced test speed: $S \le 0.10V + 0.0060V^2$. S7.6. *High speed effectiveness.* This test is not run if vehicle maximum speed is less than or equal to 125 km/h (77.7 mph). S7.6.1. *Vehicle conditions.* (a) Vehicle load: GVWR and LLVW. (b) Transmission position: In gear. S7.6.2. *Test conditions and procedures.* (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F). - (b) Test speed: 80% of vehicle maximum speed if 125 km/h (77.7 mph) < vehicle maximum speed < 200 km/h (124.3 mph), or 160 km/h (99.4 mph) if vehicle maximum speed \le 200 km/h (124.3 mph). - (c) Pedal force: ≤65N (14.6 lbs), ≤500N (112.4 lbs). - (d) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph). (e) Number of runs: 6 stops. (f) Test surface: PFC of 0.9. S7.6.3. Performance requirements. Stopping distance: $S \le 0.10V + 0.0067V^2$. S7.7. Stops with Engine Off. S7.7.1. *General information*. This test is for vehicles equipped with one or more brake power units or brake power assist units. S7.7.2. *Vehicle conditions.* (a) Vehicle load: GVWR only. (b) Transmission position: In neutral. (c) Vehicle engine: Off (not running). (d) Ignition key position: May be returned to "on" position after turning engine off, or a device may be used to "kill" the engine while leaving the ignition key in the "on" position. S7.7.3. Test conditions and procedures. (a) IBT: \leq 65 °C (149 °F), \leq 100 °C (212 °F). (b) Test speed: 100 km/h (62.1 mph). (c) Pedal force: ≤65N (14.6 lbs), ≤500N (112.4 lbs). - (d) Wheel lockup: No lockup of any wheel allowed for longer than 0.1 seconds at speeds greater than 15 km/h (9.3 mph). - (e) Number of runs: 6 stops. - (f) Test surface: PFC of 0.9. (g) All system reservoirs (brake power and/or assist units) are fully charged and the vehicle's engine is off (not running) at the beginning of each stop. (h) For an EV, this test is conducted with no electromotive force applied to the vehicle propulsion motor(s), but with brake power or power assist still operating, unless cutting off the propulsion motor(s) also disables those systems. S7.7.4. *Performance requirements.* (a) Stopping distance for 100 km/h test speed: ≤70m (230 ft.) (b) Stopping distance for reduced test speed: $S \le 0.10V + 0.0060V^2$. S7.8. Antilock functional failure. S7.8.1. *Vehicle conditions.* (a) Vehicle loading: LLVW and GVWR. (b) Transmission position: In neutral. S7.8.2. *Test conditions and procedures.* (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F). (b) Test speed: 100 km/h (62.1 mph). (c) Pedal force: ≤ 65 N (14.6 lbs), ≤ 500 N (112.4 lbs). (d) Wheel lockup: No lockup of any wheel for more than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph). (e) Number of runs: 6 stops. (f) Test surface: PFC of 0.9. (g) Functional failure simulation: (1) Disconnect the functional power source, or any other electrical connector that creates a functional failure. (2) Determine whether the brake system indicator is activated when any electrical functional failure of the antilock system is created. (3) Restore the system to normal at the completion of this test. (h) If more than one antilock brake subsystem is provided, repeat test for each subsystem. S7.8.3. Performance requirements. For service brakes on a vehicle equipped with one or more antilock systems, in the event of any single functional failure in any such system, the service brake system shall continue to operate and shall stop the vehicle as specified in S7.8.3(a) or S7.8.3(b). (a) Stopping distance for 100 km/h test speed: ≤ 85 m (279 ft). (b) Stopping distance for reduced test speed: $S \le 0.10V + 0.0075V^2$. S7.9. Variable brake proportioning system functional failure. S7.9.1. *Vehicle conditions.* (a) Vehicle load: LLVW and GVWR. (b) Transmission position: In neutral. S7.9.2. *Test conditions and procedures.* (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F). - (b) Test speed: 100 km/h (62.1 mph). - (c) Pedal force: ≤ 65 N (14.6 lbs), ≤ 500 N (112.4 lbs). - (d) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph). - (e) Number of runs: 6 stops. - (f) Test surface: PFC of 0.9. - (g) Functional failure simulation: - (1) Disconnect the functional power source or mechanical linkage to render the variable brake proportioning system inoperative. - (2) If the system utilizes electrical components, determine whether the brake system indicator is activated when any electrical functional failure of the variable proportioning system is created. - (3) Restore the system to normal at the completion of this test. - (h) If more than one variable brake proportioning subsystem is provided, repeat the test for each subsystem. - \$7.9.3. Performance requirements. The service brakes on a vehicle equipped with one or more variable brake proportioning systems, in the event of any single functional failure in any such system, shall continue to operate and shall stop the vehicle as specified in \$7.9.3(a) or \$7.9.3(b). - (a) Stopping distance for 100 km/h test speed: ≤ 110 m (361 ft). - (b) Stopping distance for reduced test speed: $S \le 0.10V + 0.0100V^2$. S7.10. Hydraulic circuit failure. S7.10.1. *General information.* This test is for vehicles manufactured with or without a split service brake system. S7.10.2. *Vehicle conditions.* (a) Vehicle load: LLVW and GVWR. - (b) Transmission position: In neutral. S7.10.3. Test conditions and procedures. (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F). (b) Test speed: 100 km/h (62.1 mph). - (c) Pedal force: ≤65N (14.6 lbs), ≤500 N - (112.4 lbs). (d) Wheel lockup: No lockup of any - wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph). - (e) Test surface: PFC of 0.9. - (f) Alter the service brake system to produce any single failure. For a hydraulic circuit, this may be any single rupture or leakage type failure, other than a structural failure of a housing - that is common to two or more subsystems. For a vehicle in which the brake signal is transmitted electrically between the brake pedal and some or all of the foundation brakes, regardless of the means of actuation of the foundation brakes, this may be any single failure in any circuit that electrically transmits the brake signal. For an EV with RBS that is part of the service brake system, this may be any single failure in the RBS. - (g) Determine the control force pressure level or fluid level (as appropriate for the indicator being tested) necessary to activate the brake warning indicator. - (h) Number of runs: After the brake warning indicator has been activated, make the following stops depending on the type of brake system: - (1) 4 stops for a split service brake system. - (2) 10 consecutive stops for a non-split service brake system. - (i) Each stop is made by a continuous application of the service brake control. - (j) Restore the service brake system to normal at the completion of this test. - (k) Repeat the entire sequence for each of the other subsystems. - S7.10.4 Performance requirements. For vehicles manufactured with a split service brake system, in the event of any failure in a single subsystem, as specified in S7.10.3(f) of this standard, and after activation of the brake system indicator as specified in S5.5.1, the remaining portions of the service brake system shall continue to operate and shall stop the vehicle as specified in S7.10.4(a) or S7.10.4(b). For vehicles not manufactured with a split service brake system, in the event of any failure in any component of the service brake system, as specified in S7.10.3(f), and after activation of the brake system indicator as specified in S5.5.1 of this standard, the vehicle shall, by operation of the service brake control. stop 10 times consecutively as specified in \$7.10.4(a) or \$7.10.4(b). - (a) Stopping distance from 100 km/h test speed: \leq 168 m (551 ft). - (b) Stopping distance for reduced test speed: $S \le 0.10V + 0.0158V^2$. - S7.11. Brake power unit or brake power assist unit inoperative (System depleted). - S7.11.1. *General information.* This test is for vehicles equipped with one or more brake power units or brake power assist units. - S7.11.2. *Vehicle conditions.* (a) Vehicle load: GVWR only. - (b) Transmission position: In neutral. S7.11.3. *Test conditions and procedures.* (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F). - (b) Test speed: 100 km/h (62.1 mph). - (c) Pedal force: ≤ 65 N (14.6 lbs), ≤ 500 N (112.4 lbs). - (d) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph). - (e) Number of runs: 6 stops. - (f) Test surface: PFC of 0.9. - (g) Disconnect the primary source of
power for one brake power assist unit or brake power unit, or one of the brake power unit or brake power assist unit subsystems if two or more subsystems are provided. - (h) If the brake power unit or power assist unit operates in conjunction with a backup system and the backup system is automatically activated in the event of a primary power service failure, the backup system is operative during this test. - (i) $\widecheck{E}xhaust$ any residual brake power reserve capability of the disconnected system. - (j) Make each of the 6 stops by a continuous application of the service brake control. - (k) Restore the system to normal at completion of this test. - (l) For vehicles equipped with more than one brake power unit or brake power assist unit, conduct tests for each in turn. - (m) For vehicles with electrically-actuated service brakes (brake power unit), this test is conducted with any single electrical failure in the electrically-actuated service brakes instead of a failure of any other brake power or brake power assist unit, and all other systems intact. - (n) For an EV with RBS that is part of the service brake system, this test is conducted with the RBS disconnected and all other systems intact. - S7.11.4. Performance requirements. The service brakes on a vehicle equipped - with one or more brake power assist units or brake power units, with one such unit inoperative and depleted of all reserve capability, shall stop the vehicle as specified in S7.11.4(a) or S7.11.4(b). - (a) Stopping distance from 100 km/h test speed: ≤ 168 m (551 ft). - (b) Stopping distance for reduced test speed: $S \le 0.10V + 0.0158V^2$. - S7.12. Parking brake. - S7.12.1. *Vehicle conditions.* (a) Vehicle load: GVWR only. - (b) Transmission position: In neutral. - (c) Parking brake burnish: - (1) For vehicles with parking brake systems not utilizing the service friction elements, the friction elements of such a system are burnished prior to the parking brake test according to the published recommendations furnished to the purchaser by the manufacturer. - (2) If no recommendations are furnished, the vehicle's parking brake system is tested in an unburnished condition. - (d) Parking brake applications: 1 application and up to 2 reapplications, if necessary. - S7.12.2. *Test conditions and procedures.* (a) IBT: - (1) Parking brake systems utilizing service brake friction materials shall be tested with the IBT $\leq 100^{\circ}$ C (212°F) and shall have no additional burnishing or artificial heating prior to the start of the parking brake test. - (2) Parking brake systems utilizing non-service brake friction materials shall be tested with the friction materials at ambient temperature at the start of the test. The friction materials shall have no additional burnishing or artificial heating prior to or during the parking brake test. - (b) Parking brake control force: Hand control ≤ 400 N (89.9 lbs); foot control ≤ 500 N (112.4 lbs). - (c) Hand force measurement locations: The force required for actuation of a hand-operated brake system is measured at the center of the hand grip area or at a distance of 40 mm (1.57 in) from the end of the actuation lever as illustrated in Figure 3. - (d) Parking brake applications: 1 application and up to 2 reapplications, if necessary. Dimension a = 40 mm (1.57 in) Figure 3-Location for Measuring Brake Application Force (Hand Brake) - (e) Test surface gradient: 20% grade. - (f) Drive the vehicle onto the grade with the longitudinal axis of the vehicle in the direction of the slope of the grade. - (g) Stop the vehicle and hold it stationary by applying the service brake control and place the transmission in neutral. - (h) With the service brake applied sufficiently to just keep the vehicle from rolling, apply the parking brake as specified in S7.12.2(i) or S7.12.2(j). - (i) For a vehicle equipped with mechanically-applied parking brakes, make a single application of the parking brake control with a force not exceeding the limits specified in S7.12.2(b). For a vehicle using an electrically-activated parking brake, apply the parking brake by activating the parking brake control. - (j) In the case of a parking brake system that does not allow application of - the specified force in a single application, a series of applications may be made to achieve the specified force. - (k) Following the application of the parking brakes, release all force on the service brake control and, if the vehicle remains stationary, start the measurement of time. - (l) If the vehicle does not remain stationary, reapplication of a force to the parking brake control at the level specified in S7.12.2(b) as appropriate for the vehicle being tested (without release of the ratcheting or other holding mechanism of the parking brake) is used up to two times to attain a stationary position. - (m) Verify the operation of the parking brake application indicator. - (n) Following observation of the vehicle in a stationary condition for the specified time in one direction, repeat the same test procedure with the vehicle orientation in the opposite direction on the same grade. S7.12.3. *Performance requirement.* The parking brake system shall hold the vehicle stationary for 5 minutes in both a forward and reverse direction on the grade. S7.13. Heating Snubs. S7.13.1. *General information.* The purpose of the snubs is to heat up the brakes in preparation for the hot performance test which follows immediately. S7.13.2. *Vehicle conditions.* (a) Vehicle load: GVWR only. (b) Transmission position: In gear. S7.13.3. *Test conditions and procedures.* (a) IBT: - (1) Establish an IBT before the first brake application (snub) of \leq 55 °C (131 °F), \leq 65 °C (149 °F). - (2) IBT before subsequent snubs are those occurring at the distance intervals. - (b) Number of snubs: 15. - (c) Test speeds: The initial speed for each snub is 120~km/h (74.6 mph) or 80% of Vmax, whichever is slower. Each snub is terminated at one-half the initial speed. - (d) Deceleration rate: - (1) Maintain a constant deceleration rate of 3.0 m/s^2 (9.8 fps^2). - (2) Attain the specified deceleration within one second and maintain it for the remainder of the snub. - (e) Pedal force: Adjust as necessary to maintain the specified constant deceleration rate. - (f) Time interval: Maintain an interval of 45 seconds between the start of brake applications (snubs). - (g) Accelerate as rapidly as possible to the initial test speed immediately after each snub. - (h) Immediately after the 15th snub, accelerate to $100\ km/h$ (62.1 mph) and commence the hot performance test. S7.14. Hot performance. S7.14.1. *General information.* The hot performance test is conducted immediately after completion of the 15th heating snub. S7.14.2. *Vehicle conditions.* (a) Vehicle load: GVWR only. (b) Transmission position: In neutral. S7.14.3. *Test conditions and procedures.* (a) IBT: Temperature achieved at completion of heating snubs. (b) Test speed: 100 km/h (62.1 mph). (c) Pedal force: - (1) The first stop is done with an average pedal force not greater than the average pedal force recorded during the shortest GVWR cold effectiveness stop. - (2) The second stop is done with a pedal force not greater than $500\ N\ (112.4\ lbs)$. - (d) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph). (e) Number of runs: 2 stops. - (f) Immediately after the 15th heating snub, accelerate to 100 km/h (62.1 mph) and commence the first stop of the hot performance test. - (g) If the vehicle is incapable of attaining 100 km/h, it is tested at the same speed used for the GVWR cold effectiveness test. - (h) Immediately after completion of the first hot performance stop, accelerate as rapidly as possible to the specified test speed and conduct the second hot performance stop. - (i) Immediately after completion of the second hot performance stop, drive 1.5 km (0.93 mi) at 50 km/h (31.1 mph) before the first cooling stop. S7.14.4. Performance requirements. (a) For the first hot stop, the stopping distance must be less than or equal to a calculated distance which is based on 60 percent of the deceleration actually achieved on the shortest GVWR cold effectiveness stop. The following equations shall be used in calculating the performance requirement: $$d_{c} = \frac{0.0386V^{2}}{S_{c} - 0.10V}$$ $$S = 0.10V + \frac{0.0386V^2}{0.60(d_c)}$$ where d_c = the average deceleration actually achieved during the shortest cold effectiveness stop at GVWR (m/s²), S_c = actual stopping distance measured on the shortest cold effectiveness stop at GVWR (m), and V = cold effectiveness test speed (km/h). (b) In addition to the requirement in S7.14.4(a), the stopping distance for at least one of the two hot stops must be S \leq 89 m (292 ft) from a test speed of 100 km/h (62.1 mph) or, for reduced test speed, S \leq 0.10V + 0.0079V². The results of the second stop may not be used to meet the requirements of S7.14.4(a). S7.15. Brake cooling stops. S7.15.1. *General information*. The cooling stops are conducted immediately after completion of the hot performance test. S7.15.2. *Vehicle conditions.* (a) Vehicle load: GVWR only. (b) Transmission position: In gear. S7.15.3. *Test conditions and procedures.* (a) IBT: Temperature achieved at completion of hot performance. (b) Test speed: 50 km/h (31.1 mph). - (c) Pedal force: Adjust as necessary to maintain specified constant deceleration rate. - (d) Deceleration rate: Maintain a constant deceleration rate of 3.0 m/s² (9.8 fps²). - (e) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph). (f) Number of runs: 4 stops. (g) Immediately after the hot performance stops drive 1.5 km (0.93 mi) at 50 km/h (31.1 mph) before the first cooling stop. (h) For the first through the third cooling stops: - (1) After each stop, immediately accelerate at the
maximum rate to 50 km/h (31.1 mph). - (2) Maintain that speed until beginning the next stop at a distance of 1.5 km (0.93 mi) from the beginning of the previous stop. (i) For the fourth cooling stop: - (1) Immediately after the fourth stop, accelerate at the maximum rate to 100 km/h (62.1 mph). - (2) Maintain that speed until beginning the recovery performance stops at a distance of 1.5 km (0.93 mi) after the beginning of the fourth cooling stop. S7.16. Recovery performance. S7.16.1. *General information.* The recovery performance test is conducted immediately after completion of the brake cooling stops. - S7.16.2. *Vehicle conditions.* (a) Vehicle load: GVWR only. - (b) Transmission position: In neutral. S7.16.3. *Test conditions and procedures.* (a) IBT: Temperature achieved at completion of cooling stops. (b) Test speed: 100 km/h (62.1 mph). - (c) Pedal force: The average pedal force shall not be greater than the average pedal force recorded during the shortest GVWR cold effectiveness stop. - (d) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph). (e) Number of runs: 2 stops. (f) Immediately after the fourth cooling stop, accelerate at the maximum rate to 100 km/h (62.1 mph). (g) Maintain that speed until beginning the first recovery performance stop at a distance of 1.5 km (0.93 mi) after the beginning of the fourth cool- ing stop. (h) If the vehicle is incapable of attaining 100 km/h, it is tested at the same speed used for the GVWR cold effectiveness test. (i) Immediately after completion of the first recovery performance stop accelerate as rapidly as possible to the specified test speed and conduct the second recovery performance stop. S7.16.4. Performance requirements. The stopping distance, S, for at least one of the two stops must be within the following limits: $$\frac{0.0386V^2}{1.50d_c} \le S - 0.10V \le \frac{0.0386V^2}{0.70d_c}$$ where d_c and V are defined in S7.14.4(a). S7.17. Final Inspection. Inspect: (a) The service brake system for detachment or fracture of any components, such as brake springs and brake shoes or disc pad facings. (b) The friction surface of the brake, the master cylinder or brake power unit reservoir cover, and seal and filler openings, for leakage of brake fluid or lubricant. (c) The master cylinder or brake power unit reservoir for compliance with the volume and labeling requirements of S5.4.2 and S5.4.3. In determining the fully applied worn condition, assume that the lining is worn to (1) rivet or bolt heads on riveted or bolted linings or (2) within 0.8 mm (1/32 inch) of shoe or pad mounting surface on bonded linings or (3) the limit recommended by the manufacturer, whichever is larger relative to the total possible shoe or pad movement. Drums or rotors are assumed to be at nominal design drum diameter or rotor thickness. Linings are assumed adjusted for normal operating clearance in the released position. (d) The brake system indicators, for compliance with operation in various key positions, lens color, labeling, and location, in accordance with S5.5. [60 FR 6434, Feb. 2, 1995; as amended at 60 FR 37847, July 24, 1995; 60 FR 44548, Aug. 28, 1995; 62 FR 46917, Sept. 5, 1997; 62 FR 51070, Sept. 30. 1997] #### §571.201 Standard No. 201; Occupant protection in interior impact. S1. Purpose and scope. This standard specifies requirements to afford impact protection for occupants. S2. Application. This standard applies to passenger cars and to multipurpose passenger vehicles, trucks, and buses with a GVWR of 4,536 kilograms or less, except that the requirements of S6 do not apply to buses with a GVWR of more than 3,860 kilograms. S3. Definitions. A-pillar means any pillar that is entirely forward of a transverse vertical plane passing through the seating reference point of the driver's seat. Ambulance means a motor vehicle designed exclusively for the purpose of emergency medical care, as evidenced by the presence of a passenger compartment to accommodate emergency medical personnel, one or more patients on litters or cots, and equipment and supplies for emergency care at a location or during transport. *B-pillar* means the forwardmost pillar on each side of the vehicle that is, in whole or part, rearward of a transverse vertical plane passing through the seating reference point of the driver's seat, unless there is only one pillar rearward of that plane and it is also a rearmost pillar. Brace means a fixed diagonal structural member in an open body vehicle that is used to brace the roll-bar and that connects the roll-bar to the main body of the vehicle structure. Convertible means a vehicle whose Apillars are not joined with the B-pillars (or rearmost pillars) by a fixed, rigid structural member. Convertible roof frame means the frame of a convertible roof. Convertible roof linkage mechanism means any anchorage, fastener, or device necessary to deploy a convertible roof frame. Daylight opening means, for openings on the side of the vehicle, other than a door opening, the locus of all points where a horizontal line, perpendicular to the vehicle longitudinal centerline, is tangent to the periphery of the opening. For openings on the front and rear of the vehicle, other than a door opening, daylight opening means the locus of all points where a horizontal line, parallel to the vehicle longitudinal centerline, is tangent to the periphery of the opening. If the horizontal line is tangent to the periphery at more than one point at any location, the most inboard point is used to determine the daylight opening. Door opening means, for door openings on the side of the vehicle, the locus of all points where a horizontal line, perpendicular to the vehicle longitudinal centerline, is tangent to the periphery of the side door opening. For door openings on the back end of the vehicle, door opening means the locus of all points where a horizontal line, parallel to the vehicle longitudinal centerline, is tangent to the periphery of the back door opening. If the horizontal line is tangent to the periphery at more than one point at any location, the most inboard point is the door opening. Dynamically deployed upper interior head protection system means a protective device or devices which are integrated into a vehicle and which, when activated by an impact, provide, through means requiring no action from occupants, protection against head impacts with upper interior structures and components of the vehicle in Forehead impact zone means the part of the free motion headform surface area that is determined in accordance with the procedure set forth in S8.10. Free motion headform means a test device which conforms to the specifications of part 572, subpart L of this chapter. Mid-sagittal plane of a dummy means a longitudinal vertical plane passing through the seating reference point of a designated seating position. Motor Home means a motor vehicle with motive power that is designed to provide temporary residential accommodations, as evidenced by the presence of at least four of the following facilities: Cooking; refrigeration or ice box; self-contained toilet; heating and/or air conditioning; a potable water supply system including a faucet and a sink; and a separate 110–125 volt electrical power supply and/or an LP gas supply. Other pillar means any pillar which is not an A-pillar, a B-pillar, or a rearmost pillar. Pillar means any structure, excluding glazing and the vertical portion of door window frames, but including accompanying moldings, attached components such as safety belt anchorages and coat hooks, which: - (1) Supports either a roof or any other structure (such as a roll-bar) that is above the driver's head, or - (2) Is located along the side edge of a window. Roll-bar means a fixed overhead structural member, including its vertical support structure, that extends from the left to the right side of the passenger compartment of any open body vehicles and convertibles. It does not include a header. Seat belt anchorage means any component involved in transferring seat belt loads to the vehicle structure, including, but not limited to, the attachment hardware, but excluding webbing or straps, seat frames, seat pedestals, and the vehicle structure itself, whose failure causes separation of the belt from the vehicle structure. Sliding door track means a track structure along the upper edge of a side door opening that secures the door in the closed position and guides the door when moving to and from the open position. Stiffener means a fixed overhead structural member that connects one roll-bar to another roll-bar or to a header of any open body vehicle or convertible. Upper roof means the area of the vehicle interior that is determined in accordance with the procedure set forth in S8 15 Windshield trim means molding of any material between the windshield glazing and the exterior roof surface, including material that covers a part of either the windshield glazing or exterior roof surface. - S4 Requirements - S4.1 Except as provided in S4.2, each vehicle shall comply with either: - (a) The requirements specified in S5, or, - (b) The requirements specified in S5 and S6. - S4.2 Vehicles manufactured on or after September 1, 1998 shall comply with the requirements of S5 and S6. - S5 Requirements for instrument panels, seat backs, interior compartment doors, sun visors, and armrests. Each vehicle shall comply with the requirements specified in S5.1 through S5.5.2. - S5.1 *Instrument panels.* Except as provided in S5.1.1, when that area of the instrument panel that is within the head impact area is impacted in accordance with S5.1.2 by a 6.8 kilogram, 165 mm diameter head form at— - (a) A relative velocity of 24 kilometers per hour for all vehicles except those specified in paragraph (b) of this section, - (b) A relative velocity of 19 kilometers per hour for vehicles that meet the occupant crash protection requirements of
S5.1 of 49 CFR 571.208 by means of inflatable restraint systems and meet the requirements of S4.1.5.1(a)(3) by means of a Type 2 seat belt assembly at the right front designated seating position, the deceleration of the head form shall not exceed 80 g continuously for more than 3 milliseconds. - S5.1.1 The requirements of S5.1 do not apply to: - (a) Console assemblies; - (b) Areas less than 125 mm inboard from the juncture of the instrument panel attachment to the body side inner structure; - (c) Areas closer to the windshield juncture than those statically contactable by the head form with the windshield in place; - (d) Areas outboard of any point of tangency on the instrument panel of a 165 mm diameter head form tangent to and inboard of a vertical longitudinal plane tangent to the inboard edge of the steering wheel; or - (e) Areas below any point at which a vertical line is tangent to the rearmost surface of the panel. - S5.1.2 Demonstration procedures. Tests shall be performed as described in Society of Automotive Engineers Recommended Practice J921, "Instrument Panel Laboratory Impact Test Procedure," June 1965, using the specified instrumentation or instrumentation that meets the performance requirements specified in Society of Automotive Engineers Recommended Practice J977, "Instrumentation for Laboratory Impact Tests," November 1966, except that: - (a) The origin of the line tangent to the instrument panel surface shall be a point on a transverse horizontal line through a point 125 mm horizontally forward of the seating reference point of the front outboard passenger designated seating position, displaced vertically an amount equal to the rise which results from a 125 mm forward adjustment of the seat or 19 mm; and - (b) Direction of impact shall be either: - (1) In a vertical plane parallel to the vehicle longitudinal axis; or - (2) In a plane normal to the surface at the point of contact. - S5.2 Seat Backs. Except as provided in S5.2.1, when that area of the seat back that is within the head impact area is impacted in accordance with S5.2.2 by a 6.8 kilogram, 165 mm diameter head form at a relative velocity of 24 kilometers per hour, the deceleration of the head form shall not exceed 80g continuously for more than 3 milliseconds. - S5.2.1 The requirements of S5.2 do not apply to seats installed in school buses which comply with the requirements of Standard No. 222, School Bus Passenger Seating and Occupant Protection (49 CFR 571.222) or to rearmost side-facing, back-to-back, folding auxiliary jump, and temporary seats. S5.2.2 Demonstration procedures. Tests shall be performed as described in Society of Automotive Engineers Recommended Practice J921, "Instrument Panel Laboratory Impact Test Procedure," June 1965, using the specified instrumentation or instrumentation that meets the performance requirements specified in Society of Automotive Engineers Recommended Practice J977, "Instrumentation for Laboratory Impact Tests," November 1966, except that: (a) The origin of the line tangent to the uppermost seat back frame component shall be a point on a transverse horizontal line through the seating reference point of the right rear designated seating position, with adjustable forward seats in their rearmost design driving position and reclinable forward seat backs in their nominal design driving position; (b) Direction of impact shall be either: (1) In a vertical plane parallel to the vehicle longitudinal axis; or (2) In a plane normal to the surface at the point of contact. - (c) For seats without head restraints installed, tests shall be performed for each individual split or bucket seat back at points within 100 mm left and right of its centerline, and for each bench seat back between points 100 mm outboard of the centerline of each outboard designated seating position; - (d) For seats having head restraints installed, each test shall be conducted with the head restraints in place at its lowest adjusted position, at a point on the head restraint centerline; and (e) For a seat that is installed in more than one body style, tests conducted at the fore and aft extremes identified by application of subparagraph (a) shall be deemed to have demonstrated all intermediate conditions. S5.3 Interior compartment doors. Each interior compartment door assembly located in an instrument panel, console assembly, seat back, or side panel adjacent to a designated seating position shall remain closed when tested in accordance with either S5.3.1(a) and S5.3.1(b) or S5.3.1(a) and S5.3.1(c). Additionally, any interior compartment door located in an instrument panel or seat back shall remain closed when the instrument panel or seat back is tested in accordance with S5.1 and S5.2. All interior compartment door assemblies with a locking device must be tested with the locking device in an unlocked position. S5.3.1 Demonstration procedures. - (a) Subject the interior compartment door latch system to an inertia load of 10g in a horizontal transverse direction and an inertia load of 10g in a vertical direction in accordance with the procedure described in section 5 of SAE Recommended Practice J839b, "Passenger Car Side Door Latch Systems," May 1965, or an approved equivalent. - (b) Impact the vehicle perpendicularly into a fixed collision barrier at a forward longitudinal velocity of 48 kilometers per hour. - (c) Subject the interior compartment door latch system to a horizontal inertia load of 30g in a longitudinal direction in accordance with the procedure described in section 5 of SAE Recommended Practice J839b, "Passenger Car Side Door Latch Systems," May 1965, or an approved equivalent. S5.4 Sun visors. - S5.4.1 A sun visor that is constructed of or covered with energy-absorbing material shall be provided for each front outboard designated seating position. - S5.4.2 Each sun visor mounting shall present no rigid material edge radius of less than 3.2 mm that is statically contactable by a spherical 165 mm diameter head form. S5.5 Armrests. - S5.5.1 *General.* Each installed armrest shall conform to at least one of the following: - (a) It shall be constructed with energy-absorbing material and shall deflect or collapse laterally at least 50 mm without permitting contact with any underlying rigid material. - (b) It shall be constructed with energy-absorbing material that deflects or collapses to within 32 mm of a rigid test panel surface without permitting contact with any rigid material. Any rigid material between 13 and 32 mm from the panel surface shall have a minimum vertical height of not less than 25 mm. - (c) Along not less than 50 continuous mm of its length, the armrest shall, when measured vertically in side elevation, provide at least 50 mm of coverage within the pelvic impact area. - S5.5.2 *Folding armrests.* Each armrest that folds into the seat back or between two seat backs shall either: - (a) Meet the requirements of S5.5.1; or - (b) Be constructed of or covered with energy-absorbing material. - S6 Requirements for upper interior components. - S6.1 Vehicles manufactured on or after September 1, 1998 and before September 1, 2002. Except as provided in S6.3, for vehicles manufactured on or after September 1, 1998 and before September 1, 2002, a percentage of the manufacturer's production, as specified in S6.1.1, S6.1.2, S6.1.3, or S6.1.4, shall conform, at the manufacturer's option, to either S6.1(a) or S6.1(b). The manufacturer shall select the option by the time it certifies the vehicle and may not thereafter select a different option for the vehicle. - (a) When tested under the conditions of S8, comply with the requirements specified in S7 at the target locations specified in S10 when impacted by the free motion headform specified in S8.9 at any speed up to and including 24 km/h (15 mph). The requirements do not apply to any target that cannot be located using the procedures of S10. - (b) When equipped with a dynamically deployed upper interior head protection system and tested under the conditions of S8, comply with the requirements specified in S7 at the target locations specified in S10 as follows: - (1) Targets that are not located over any point inside the area measured along the contour of the vehicle surface within 50 mm (2.0 inch) of the periphery of the stowed system projected perpendicularly onto the vehicle interior surface, including mounting and inflation components but exclusive of any cover or covers, shall be impacted by the free motion headform specified in S8.9 at any speed up to and including 24 km/h (15 mph). The requirements do not apply to any targets that can not be located by using the procedures of S10. - (2) Targets that are over any point inside the area measured along the contour of the vehicle interior within 50 mm (2.0 inch) of the periphery of the stowed system projected perpendicularly onto the vehicle interior surface, including mounting and inflation components but exclusive of any cover or covers, when the dynamically deployed upper interior head protection system is not deployed, shall be impacted by the free motion headform specified in S8.9 at any speed up to and including 19 km/h (12 mph) with the system undeployed. The requirements do not apply to any target that can not be located using the procedures of S10. (3) Each vehicle shall, when equipped with a dummy test device specified in part 572, subpart M, and tested as specified in S8.16 through S8.28, comply with the requirements specified in S7 when crashed into a fixed, rigid pole of 254 mm in diameter, at any velocity up to and including 29 kilometers per hour (18 mph). S6.1.1 Phase-in Schedule #1 - S6.1.1.1 Vehicles manufactured on or after September 1, 1998 and before September 1, 1999. Subject to S6.1.5(a), for vehicles manufactured by a manufacturer on or after September 1, 1998 and before September 1, 1999, the amount of vehicles complying with S7 shall be not less than 10 percent of: - (a) The manufacturer's
average annual production of vehicles manufactured on or after September 1, 1996 and before September 1, 1999, or - (b) The manufacturer's production on or after September 1, 1998 and before September 1, 1999. - \$6.1.1.2 Vehicles manufactured on or after September 1, 1999 and before September 1, 2000. Subject to \$6.1.5(b), for vehicles manufactured by a manufacturer on or after September 1, 1999 and before September 1, 2000, the amount of vehicles complying with \$7 shall be not less than 25 percent of: - (a) The manufacturer's average annual production of vehicles manufactured on or after September 1, 1997 and before September 1, 2000, or - (b) The manufacturer's production on or after September 1, 1999 and before September 1, 2000. - S6.1.1.3 Vehicles manufactured on or after September 1, 2000 and before September 1, 2001. Subject to S6.1.5(c), for vehicles manufactured by a manufacturer on or after September 1, 2000 and before September 1, 2001, the amount of vehicles complying with S7 shall be not less than 40 percent of: - (a) The manufacturer's average annual production of vehicles manufactured on or after September 1, 1998 and before September 1, 2001, or - (b) The manufacturer's production on or after September 1, 2000 and before September 1, 2001. - S6.1.1.4 Vehicles manufactured on or after September 1, 2001 and before September 1, 2002. Subject to S6.1.5(d), for vehicles manufactured by a manufacturer on or after September 1, 2001 and before September 1, 2002, the amount of vehicles complying with S7 shall be not less than 70 percent of: - (a) The manufacturer's average annual production of vehicles manufactured on or after September 1, 1999 and before September 1, 2002, or - (b) The manufacturer's production on or after September 1, 2001 and before September 1, 2002. \$6.1.2 Phase-in Schedule #2 - S6.1.2.1 Vehicles manufactured on or after September 1, 1998 and before September 1, 1999. Subject to S6.1.5(a), for vehicles manufactured by a manufacturer on or after September 1, 1998 and before September 1, 1999, the amount of vehicles complying with S7 shall be not less than seven percent of: - (a) The manufacturer's average annual production of vehicles manufactured on or after September 1, 1996 and before September 1, 1999, or - (b) The manufacturer's production on or after September 1, 1998 and before September 1, 1999. - S6.1.2.2 Vehicles manufactured on or after September 1, 1999 and before September 1, 2000. Subject to S6.1.5(b), for vehicles manufactured by a manufacturer on or after September 1, 1999 and before September 1, 2000, the amount of vehicles complying with S7 shall be not less than 31 percent of: - (a) The manufacturer's average annual production of vehicles manufactured on or after September 1, 1997 and before September 1, 2000, or - (b) The manufacturer's production on or after September 1, 1999 and before September 1, 2000. - S6.1.2.3 Vehicles manufactured on or after September 1, 2000 and before September 1, 2001. Subject to S6.1.5(c), for vehicles manufactured by a manufacturer on or after September 1, 2000 and before September 1, 2001, the amount of vehicles complying with S7 shall be not less than 40 percent of: - (a) The manufacturer's average annual production of vehicles manufactured on or after September 1, 1998 and before September 1, 2001, or - (b) The manufacturer's production on or after September 1, 2000 and before September 1, 2001. - S6.1.2.4 Vehicles manufactured on or after September 1, 2001 and before September 1, 2002. Subject to S6.1.5(d), for vehicles manufactured by a manufacturer on or after September 1, 2001 and before September 1, 2002, the amount of vehicles complying with S7 shall be not less than 70 percent of: - (a) The manufacturer's average annual production of vehicles manufactured on or after September 1, 1999 and before September 1, 2002, or - (b) The manufacturer's production on or after September 1, 2001 and before September 1, 2002. - S6.1.3 Phase-in Schedule #3 - S6.1.3.1 Vehicles manufactured on or after September 1, 1998 and before September 1, 1999 are not required to comply with the requirements specified in S7. - S6.1.3.2 Vehicles manufactured on or after September 1, 1999 shall comply with the requirements specified in S7. - S6.1.4 *Phase-in Schedule* #4 A final stage manufacturer or alterer may, at its option, comply with the requirements set forth in S6.1.4.1 and S6.1.4.2. - S6.1.4.1 Vehicles manufactured on or after September 1, 1998 and before September 1, 2002 are not required to comply with the requirements specified in S7. - S6.1.4.2 Vehicles manufactured on or after September 1, 2002 shall comply with the requirements specified in S7. - S6.1.5 Calculation of complying vehicles. - (a) For the purposes of complying with S6.1.1.1 or S6.1.2.1, a manufacturer may count a vehicle if it is manufactured on or after May 8, 1997, but before September 1, 1999. - (b) For the purposes of complying with S6.1.1.2 or S6.1.2.2, a manufacturer may count a vehicle if it: - (1) Is manufactured on or after May 8, 1997, but before September 1, 2000, and - (2) Is not counted toward compliance with S6.1.1.1 or S6.1.2.1, as appropriate. - (c) For the purposes of complying with S6.1.1.3 or S6.1.2.3, a manufacturer may count a vehicle if it: - (1) Is manufactured on or after May 8, 1997, but before September 1, 2001, and - (2) Is not counted toward compliance with S6.1.1.1, S6.1.1.2, S6.1.2.1, or S6.1.2.2, as appropriate. - (d) For the purposes of complying with S6.1.1.4 or S6.1.2.4, a manufacturer may count a vehicle if it: - (1) Is manufactured on or after May 8, 1997, but before September 1, 2002, and - (2) Is not counted toward compliance with S6.1.1.1, S6.1.1.2, S6.1.1.3, S6.1.2.1, S6.1.2.2, or S6.1.2.3, as appropriate. - S6.1.6 Vehicles produced by more than one manufacturer. - S6.1.6.1 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S6.1.1 through S6.1.4, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S6.1.6.2. - (a) A vehicle which is imported shall be attributed to the importer. - (b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer which markets the vehicle. - S6.1.6.2 A vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle's manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 589, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S6.1.6.1. - S6.2 Vehicles manufactured on or after September 1, 2002. Except as provided in S6.3, vehicles manufactured on or after September 1, 2002 shall, when tested under the conditions of S8, conform, at the manufacturer's option, to either S6.2(a) or S6.2(b). The manufacturer shall select the option by the time it certifies the vehicle and may not thereafter select a different option for the vehicle. - (a) When tested under the conditions of S8, comply with the requirements specified in S7 at the target locations specified in S10 when impacted by the free motion headform specified in S8.9/ at any speed up to and including 24 km/ h (15 mph). The requirements do not apply to any target that cannot be located using the procedures of S10. - (b) When equipped with a dynamically deployed upper interior head protection system and tested under the conditions of S8, comply with the requirements specified in S7 at the target locations specified in S10 as follows: - (1) Targets that are not located over any point inside the area measured along the contour of the vehicle surface within 50 mm (2.0 inch) of the periphery of the stowed system projected perpendicularly onto the vehicle interior surface, including mounting and inflation components but exclusive of any cover or covers, shall be impacted by the free motion headform specified in S8.9 at any speed up to and including 24 km/h (15 mph). The requirements do not apply to any targets that cannot be located by using the procedures of S10. - (2) Targets that are over any point inside the area measured along the contour of the vehicle interior within 50 mm (2.0 inch) of the periphery of the stowed system projected perpendicularly onto the vehicle interior surface, including mounting and inflation components but exclusive of any cover or covers, when the dynamically deployed upper interior head protection system is not deployed, shall be impacted by the free motion headform specified in S8.9 at any speed up to and including 19 km/h (12 mph) with the system undeployed. The requirements do not apply to any target that cannot be located using the procedures of S10. - (3) Each vehicle shall, when equipped with a dummy test device specified in part 572, subpart M, and tested as specified in S8.16 through S8.28, comply with the requirements specified in S7 when crashed into a fixed, rigid pole of 254 mm in diameter, at any velocity up to and including 29 kilometers per hour (18 mph). - S6.3 A vehicle need not meet the requirements of S6.1 through S6.2 for: - (a) Any target located on a convertible roof frame or a convertible roof linkage mechanism. - (b) Any target located rearward of a vertical plane 600 mm behind the seating reference point of the rearmost designated seating position. - (c) Any target located rearward of a vertical plane 600 mm behind the seating reference point of the driver's seating position in an ambulance or a motor home. - (d) Any target in a walk-in van-type vehicles - S7 Performance Criterion. The HIC(d) shall not exceed 1000 when calculated in accordance with the following formula: HIC = $$\left[\frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} a dt\right]^{2.5} (t_2 - t_1)$$ Where the term a
is the resultant head acceleration expressed as a multiple of g (the acceleration of gravity), and t1 and t2 are any two points in time during the impact which are separated by not more than a 36 millisecond time interval - (a) For the free motion headform; HIC(d)=0.75446 (free motion headform HIC)+166.4. - (b) For the part 572, subpart M, anthropomorphic test dummy; HIC(d)=HIC. - S8 Target location and test conditions. The vehicle shall be tested and the targets specified in S10 located under the following conditions. - S8.1 Vehicle test attitude. - (a) The vehicle is supported off its suspension at an attitude determined in accordance with S8.1(b). - (b) Directly above each wheel opening, determine the vertical distance between a level surface and a standard reference point on the test vehicle's body under the conditions of S8.1(b)(1) through S8.1(b)(3). - (1) The vehicle is loaded to its unloaded vehicle weight, plus its rated cargo and luggage capacity or 136 kg, whichever is less, secured in the luggage area. The load placed in the cargo area is centered over the longitudinal centerline of the vehicle. - (2) The vehicle is filled to 100 percent of all fluid capacities. - (3) All tires are inflated to the manufacturer's specifications listed on the vehicle's tire placard. S8.2 Windows and Sunroofs. - (a) Movable vehicle windows are placed in the fully open position. - (b) For testing, any window on the opposite side of the longitudinal centerline of the vehicle from the target to be impacted may be removed. - (c) For testing, movable sunroofs are placed in the fully open position. - S8.3 Convertible tops. The top, if any, of convertibles and open-body type vehicles is in the closed passenger compartment configuration. S8.4 Doors. - (a) Except as provided in S8.4(b) or S8.4(c), doors, including any rear hatchback or tailgate, are fully closed and latched but not locked. - (b) During testing, any side door on the opposite side of the longitudinal centerline of the vehicle from the target to be impacted may be open or removed. - (c) During testing, any rear hatchback or tailgate may be open or removed for testing any target except targets on the rear header, rearmost pillars, or the rearmost other side rail on either side of the vehicle. - S8.5 Sun visors. Each sun visor shall be placed in any position where one side of the visor is in contact with the vehicle interior surface (windshield, side rail, front header, roof, etc.). S8.6 Steering wheel and seats. - (a) During targeting, the steering wheel and seats may be placed in any position intended for use while the vehicle is in motion. - (b) During testing, the steering wheel and seats may be removed from the vehicle. - S8.7 Seat belt anchorages. If a target is on a seat belt anchorage, and if the seat belt anchorage is adjustable, tests are conducted with the anchorage adjusted to a point midway between the two extreme adjustment positions. If the anchorage has distinct adjustment positions, none of which is midway between the two extreme positions, tests are conducted with the anchorage ad- justed to the nearest position above the midpoint of the two extreme positions. S8.8 Temperature and humidity. - (a) The ambient temperature is between 19 degrees C. and 26 degrees C., at any relative humidity between 10 percent and 70 percent. - (b) Tests are not conducted unless the headform specified in S8.9 is exposed to the conditions specified in S8.8(a) for a period not less than four hours. - S8.9 *Headform.* The headform used for testing conforms to the specifications of part 572, subpart L of this chapter. - S8.10 *Forehead impact zone.* The forehead impact zone of the headform is determined according to the procedure specified in (a) through (f). - (a) Position the headform so that the baseplate of the skull is horizontal. The midsagittal plane of the headform is designated as Plane S. - (b) From the center of the threaded hole on top of the headform, draw a 69 mm line forward toward the forehead, coincident with Plane S, along the contour of the outer skin of the headform. The front end of the line is designated as Point P. From Point P, draw a 100 mm line forward toward the forehead, coincident with Plane S, along the contour of the outer skin of the headform. The front end of the line is designated as Point O. - (c) Draw a 125 mm line which is coincident with a horizontal plane along the contour of the outer skin of the forehead from left to right through Point O so that the line is bisected at Point O. The end of the line on the left side of the headform is designated as Point a and the end on the right as Point b. - (d) Draw another 125 mm line which is coincident with a vertical plane along the contour of the outer skin of the forehead through Point P so that the line is bisected at Point P. The end of the line on the left side of the headform is designated as Point c and the end on the right as Point d. - (e) Draw a line from Point a to Point c along the contour of the outer skin of the headform using a flexible steel tape. Using the same method, draw a line from Point b to Point d. (f) The forehead impact zone is the surface area on the FMH forehead bounded by lines a-O-b and c-P-d, and a-c and b-d. S8.11 Target circle. The area of the vehicle to be impacted by the headform is marked with a solid circle 12.7 mm in diameter, centered on the targets specified in S10, using any transferable opaque coloring medium. S8.12 Location of head center of gravity. - (a) Location of head center of gravity for front outboard designated seating positions (CG-F). For determination of head center of gravity, all directions are in reference to the seat orientation. - (1) Location of rearmost CG-F (CG-F2). For front outboard designated seating positions, the head center of gravity with the seat in its rearmost normal design driving or riding position (CG-F2) is located 160 mm rearward and 660 mm upward from the seating reference point. - (2) Location of forwardmost CG-F (CG-F1). For front outboard designated seating positions, the head center of gravity with the seat in its forwardmost adjustment position (CG-F1) is located horizontally forward of CG-F2 by the distance equal to the fore-aft distance of the seat track. - (b) Location of head center of gravity for rear outboard designated seating positions (CG-R). For rear outboard designated seating positions, the head center of gravity (CG-R) is located 160 mm rearward, relative to the seat orientation, and 660 mm upward from the seating reference point. S8.13 Impact configuration. S8.13.1 The headform is launched from any location inside the vehicle which meets the conditions of S8.13.4. At the time of launch, the midsagittal plane of the headform is vertical and the headform is upright. S8.13.2 The headform travels freely through the air, along a velocity vector that is perpendicular to the headform's skull cap plate, not less than 25 mm before making any contact with the vehicle. S8.13.3 At the time of initial contact between the headform and the vehicle interior surface, some portion of the forehead impact zone of the headform must contact some portion of the target circle. S8.13.4 Approach Angles. The headform launching angle is as specified in Table 1. For components for which Table 1 specifies a range of angles, the headform launching angle is within the limits determined using the procedures specified in S8.13.4.1 and S8.13.4.2, and within the range specified in Table I, using the orthogonal reference system specified in S9. TABLE 1.—APPROACH ANGLE LIMITS [In degrees] | Target component | Horizontal angle | Vertical angle | |---|---|--| | Front Header Rear Header Left Side Rail Right Side Rail Left Sliding Door Track Right Sliding Door Track Right A-Pillar Left B-Pillar Right B-Pillar Other Left Pillars Other Left Pillars Left Rearmost Pillar Left Rearmost Pillar Upper Roof Overhead Rollbar Brace or Stiffener | 180
0 or 360
270
90
270
90
195–255
105–165
195–345
15–165
270
90
270–345
15–90
Any
0 or 180
90 or 270 | 0-50
0-50
0-50
0-50
0-50
0-50
0-50
0-50
-10-50
-10-50
-10-50
0-50
0-50
0-50
0-50 | S8.13.4.1 Horizontal Approach Angles for Headform Impacts. (a) Left A-Pillar Horizontal Approach Angles. - (I) Locate a line formed by the shortest horizontal distance between CG-F1 for the left seat and the right A-pillar. The maximum horizontal approach angle for the left A-pillar equals 360 degrees minus the angle formed by that line and the X-axis of the vehicle, measured counterclockwise. - (2) Locate a line formed by the shortest horizontal distance between CG-F2 for the left seat and the left A-pillar. The minimum horizontal approach angle for the left A-pillar impact equals the angle formed by that line and the X-axis of the vehicle, measured counterclockwise. (b) Right A-Pillar Horizontal Approach Angles. (1) Locate a line formed by the shortest horizontal distance between CG-F1 for the right seat and the left A-pillar. The minimum horizontal approach angle for the right A-pillar equals 360 degrees minus the angle formed by that line and the X-axis of the vehicle, measured counterclockwise. - (2) Locate a line formed by the shortest horizontal distance between CG-F2 for the right seat and the right A-pillar. The maximum horizontal approach angle for the right A-pillar impact equals the
angle formed by that line and the X-axis of the vehicle measured counterclockwise. - (c) Left B-Pillar Horizontal Approach Angles. - (I) Locate a line formed by the shortest horizontal distance between CG-F2 for the left seat and the left B-pillar. The maximum horizontal approach angle for the left B-pillar equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise, or 270 degrees, whichever is greater - (2) Locate a line formed by the shortest horizontal distance between CG-R for the left seat and the left B-pillar. The minimum horizontal approach angle for the left B-pillar equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise. - (d) Right B-Pillar Horizontal Approach - (1) Locate a line formed by the shortest horizontal distance between CG-F2 for the right seat and the right B-pillar. The minimum horizontal approach angle for the right B-pillar equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise, or 90 degrees, whichever is less. - (2) Locate a line formed by the shortest horizontal distance between CG-R for the right seat and the right B-pillar. The maximum horizontal approach angle for the right B-pillar equals the angle between that line and the X-axis of the vehicle measured counterclockwise. S8.13.4.2 Vertical Approach Angles (a) Position the forehead impact zone in contact with the selected target at the prescribed horizontal approach angle. If a range of horizontal approach angles is prescribed, position the forehead impact zone in contact with the selected target at any horizontal approach angle within the range which may be used for testing. - (b) Keeping the forehead impact zone in contact with the target, rotate the FMH upward until the lip, chin or other part of the FMH contacts the component or other portion of the vehicle interior. - (1) Except as provided in S8.13.4.2(b)(2), keeping the forehead impact zone in contact with the target, rotate the FMH downward by 5 degrees for each target to determine the maximum vertical angle. - (2) For all pillars except A-Pillars, keeping the forehead impact zone in contact with the target, rotate the FMH downward by 10 degrees for each target to determine the maximum vertical angle. S8.14 Multiple impacts. - (a) A vehicle being tested may be impacted multiple times, subject to the limitations in S8.14 (b) and (c). - (b) As measured as provided in S8.14(d), impacts within 300 mm of each other may not occur less than 30 minutes apart. - (c) As measured as provided in S8.14(d), no impact may occur within 150 mm of any other impact. - (d) For S8.14(b) and S8.14(c), the distance between impacts is the distance between the centers of the target circle specified in S8.11 for each impact, measured along the vehicle interior. - S8.15 *Upper Roof.* The upper roof of a vehicle is determined according to the procedure specified in S8.15 (a) through (h). - (a) Locate the transverse vertical plane A at the forwardmost point where it contacts the interior roof (including trim) at the vehicle centerline. - (b) Locate the transverse vertical plane B at the rearmost point where it contacts the interior roof (including trim) at the vehicle centerline. - (c) Measure the horizontal distance (D1) between Plane A and Plane B. - (d) Locate the vertical longitudinal plane C at the leftmost point at which a vertical transverse plane, located 300 mm rearward of the A-pillar reference point described in S10.1(a), contacts the interior roof (including trim). - (e) Locate the vertical longitudinal plane D at the rightmost point at which a vertical transverse plane, located 300 mm rearward of the A-pillar reference point described in S10.1(a), contacts the interior roof (including trim). - (f) Measure the horizontal distance (D2) between Plane C and Plane D. - (g) Locate a point (Point M) on the interior roof surface, midway between Plane A and Plane B along the vehicle longitudinal centerline. - (h) The upper roof zone is the area of the vehicle upper interior surface bounded by the four planes described in S8.15(h)(1) and S8.15(h)(2): - (1) A transverse vertical plane E located at a distance of (.35 D1) forward of Point M and a transverse vertical plane F located at a distance of (.35 D1) rearward of Point M, measured horizontally. - (2) A longitudinal vertical plane G located at a distance of (.35 D2) to the left of Point M and a longitudinal vertical plane H located at a distance of (.35 D2) to the right of Point M, measured horizontally. S8.16 Test weight—vehicle to pole test. Each vehicle shall be loaded to its unloaded vehicle weight, plus 136 kilograms (300 pounds) or its rated cargo and luggage capacity (whichever is less), secured in the luggage or load-carrying area, plus the weight of the necessary anthropomorphic test dummy. Any added test equipment shall be located away from impact areas in secure places in the vehicle. S8.17 Vehicle test attitude—vehicle to pole test. Determine the distance between a level surface and a standard reference point on the test vehicle's body, directly above each wheel opening, when the vehicle is in its "as delivered" condition. The "as delivered" condition is the vehicle as received at the test site, filled to 100 percent of all fluid capacities and with all tires inflated to the manufacturer's specifications listed on the vehicle's tire placard. Determine the distance between the same level surface and the same standard reference points in the vehicle's "fully loaded condition." The "fully loaded condition" is the test vehicle loaded in accordance with S8.16. The load placed in the cargo area shall be centered over the longitudinal centerline of the vehicle. The pretest vehicle attitude shall be the same as either the "as delivered" or "fully loaded" attitude or is between the "as delivered" attitude and the "fully loaded" attitude. If the test configuration requires that the vehicle be elevated off the ground, the pretest vehicle attitude must be maintained. S8.18 Adjustable seats—vehicle to pole test. Initially, adjustable seats shall be adjusted as specified in S6.3 of Standard 214 (49 CFR 571.214). S8.19 Adjustable seat back placement—vehicle to pole test. Initially, position adjustable seat backs in the manner specified in S6.4 of Standard 214 (49 CFR 571.214). S8.20 Adjustable steering wheels—vehicle to pole test. Adjustable steering controls shall be adjusted so that the steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions. S8.21 Windows and sunroof—vehicle to pole test. Movable windows and vents shall be placed in the fully open position. Any sunroof shall be placed in the fully closed position. S8.22 Convertible tops—vehicle to pole test. The top, if any, of convertibles and open-body type vehicles shall be in the closed passenger compartment configuration. S8.23 *Doors—vehicle to pole test.* Doors, including any rear hatchback or tailgate, shall be fully closed and latched but not locked. S8.24 Impact reference line—vehicle to pole test. On the striking side of the vehicle, place an impact reference line at the intersection of the vehicle exterior and a transverse vertical plane passing through the center of gravity of the head of the dummy seated in accordance with S8.28, in the front outboard designated seating position. S8.25 Rigid Pole—vehicle to pole test. The rigid pole is a vertical metal structure beginning no more than 102 millimeters (4 inches) above the lowest point of the tires on the striking side of the test vehicle when the vehicle is loaded as specified in S8.16 and extending above the highest point of the roof of the test vehicle. The pole is 254 mm ±3 mm (10 inches) in diameter and set off from any mounting surface, such as a barrier or other structure, so that the test vehicle will not contact such a mount or support at any time within 100 milliseconds of the initiation of vehicle to pole contact. S8.26 Impact configuration—vehicle to pole test. The rigid pole shall be stationary. The test vehicle shall be propelled sideways so that its line of forward motion forms an angle of 90 degrees (±3 degrees) with the vehicle's longitudinal center line. The impact reference line shall be aligned with the center line of the rigid pole so that, when the vehicle-to-pole contact occurs, the center line of the pole contacts the vehicle area bounded by two transverse vertical planes 38 mm (1.5 inches) forward and aft of the impact reference line. S8.27 Anthropomorphic test dummy—vehicle to pole test. S8.27.1 The anthropomorphic test dummy used for evaluation of a vehicle's head impact protection shall conform to the requirements of subpart M of part 572 of this chapter (49 CFR part 572, subpart M). In a test in which the test vehicle is striking its left side, the dummy is to be configured and instrumented to strike on its left side, in accordance with subpart M of part 572. In a test in which the test vehicle is striking its right side, the dummy is to be configured and instrumented to strike its right side, in accordance with subpart M of part 572. S8.27.2 The part 572, subpart M, test dummy specified is clothed in form fitting cotton stretch garments with short sleeves and midcalf length pants. Each foot of the test dummy is equipped with a size 11EEE shoe, which meets the configuration size, sole, and heel thickness specifications of MIL-S-13192 (1976) and weighs 0.57 ±0.09 kilograms (1.25 ±0.2 pounds). S8.27.3 Limb joints shall be set at between 1 and 2 g's. Leg joints are adjusted with the torso in the supine position. S8.27.4 The stabilized temperature of the test dummy at the time of the side impact test shall be at any temperature between 20.6 degrees C. and 22.2 degrees C., and at any relative humidity between 10 percent and 70 percent. S8.27.5 The acceleration data from the accelerometers installed inside the skull cavity
of the test dummy are processed according to the practices set forth in SAE Recommended Practice J211, March 1995, "Instrumentation for Impact Tests," Class 1000. S8.28 Positioning procedure for the Part 572 Subpart M Test Dummy—vehicle to pole test. The part 572, subpart M, test dummy shall be initially positioned in the front outboard seating position on the struck side of the vehicle in accordance with the provisions of S7 of Standard 214, 49 CFR 571.214, and the vehicle seat shall be positioned as specified in S6.3 and S6.4 of that standard. The position of the dummy shall then be measured as follows. Locate the horizontal plane passing through the dummy head center of gravity. Identify the rearmost point on the dummy head in that plane. Construct a line in the plane that contains the rearward point of the front door daylight opening and is perpendicular to the longitudinal vehicle centerline. Measure the longitudinal distance between the rearmost point on the dummy head and this line. If this distance is less than 50 mm (2 inches) or the point is not forward of the line, then the seat and/or dummy positions shall be adjusted as follows. First, the seat back angle is adjusted, a maximum of 5 degrees, until a 50 mm (2 inches) distance is achieved. If this is not sufficient to produce the 50 mm (2 inches) distance, the seat is moved forward until the 50 mm (2 inches) distance is achieved or until the knees of the dummy contact the dashboard or knee bolster, whichever comes first. If the required distance cannot achieved through movement of the seat, the seat back angle shall be adjusted even further forward until the 50mm (2 inches) distance is obtained or until the seat back is in its full upright locking position. S9. Orthogonal Reference System. The approach angles specified in S8.13.4 are determined using the reference system specified in S9.1 through S9.4. S9.1 An orthogonal reference system consisting of a longitudinal X axis and a transverse Y axis in the same horizontal plane and a vertical Z axis through the intersection of X and Y is used to define the horizontal direction of approach of the headform. The X-Z plane is the vertical longitudinal zero plane and is parallel to the longitudinal centerline of the vehicle. The X-Y plane is the horizontal zero plane parallel to the ground. The Y-Z plane is the vertical transverse zero plane that is perpendicular to the X-Y and X-Z planes. The X coordinate is negative forward of the Y-Z plane and positive to the rear. The Y coordinate is negative to the left of the X-Z plane and positive to the right. The Z coordinate is negative below the X-Y plane and positive above it. (See Figure 1.) S9.2 The origin of the reference system is the center of gravity of the headform at the time immediately prior to launch for each test. S9.3 The horizontal approach angle is the angle between the X axis and the headform impact velocity vector projected onto the horizontal zero plane, measured in the horizontal zero plane, in the counter-clockwise direction. A 0 degree horizontal vector and a 360 degree horizontal vector point in the positive X direction; a 90 degree horizontal vector points in the positive Y direction; a 180 degree horizontal vector points in the negative X direction; and a 270 horizontal degree vector points in the negative Y direction. (See Figure 2.) \$9.4 The vertical approach angle is the angle between the horizontal plane and the velocity vector, measured in the midsagittal plane of the headform. A 0 degree vertical vector in Table I coincides with the horizontal plane and a vertical vector of greater than 0 degrees in Table I makes a upward angle of the same number of degrees with that plane. S10 Target Locations. (a) The target locations specified in S10.1 through S10.13 are located on both sides of the vehicle and, except as specified in S10(b), are determined using the procedures specified in those paragraphs. (b) Except as specified in S10(c), if there is no combination of horizontal and vertical angles specified in S8.13.4 at which the forehead impact zone of free motion headform can contact one of the targets located using the procedures in S10.1 through S10.13, the center of that target is moved to any location within a sphere with a radius of 25 mm, centered on the center of the original target and measured along the vehicle interior, which the forehead impact zone can contact at one or more combination of angles. (c) If there is no point within the sphere specified in S10(b) which the forehead impact zone of the free motion headform can contact at one or more combination of horizontal and vertical angles specified in S8.13.4, the radius of the sphere is increased by 25 mm increments until the sphere contains at least one point that can be contacted at one or more combination of angles. S10.1 A-pillar targets (a) A-pillar reference point and target AP1. On the vehicle exterior, locate a transverse vertical plane (Plane 1) which contacts the rearmost point of the windshield trim. The intersection of Plane 1 and the vehicle exterior surface is Line 1. Measuring along the vehicle exterior surface, locate a point (Point 1) on Line 1 that is 125 mm inboard of the intersection of Line 1 and a vertical plane tangent to the vehicle at the outboardmost point on Line 1 with the vehicle side door open. Measuring along the vehicle exterior surface in a longitudinal vertical plane (Plane 2) passing through Point 1, locate a point (Point 2) 50 mm rearward of Point 1. Locate the A-pillar reference point (Point APR) at the intersection of the interior roof surface and a line that is perpendicular to the vehicle exterior surface at Point 2. Target AP1 is located at point APR. (b) Target AP2. Locate the horizontal plane (Plane 3) which intersects point APR. Locate the horizontal plane (Plane 4) which is 88 mm below Plane 3. Target AP2 is the point in Plane 4 and on the A-pillar which is closest to CG-F2 for the nearest seating position. (c) Target AP3. Locate the horizontal plane (Plane 5) containing the highest point at the intersection of the dashboard and the A-pillar. Locate a horizontal plane (Plane 6) half-way between Plane 3 and Plane 5. Target AP3 is the point on Plane 6 and the A-pillar which is closest to CG-F1 for the nearest seating position. S10.2 *B-pillar targets*. (a) *B-pillar reference point and target BP1*. Locate the point (Point 3) on the vehicle interior at the intersection of the horizontal plane passing through the highest point of the forwardmost door opening and the centerline of the width of the B-pillar, as viewed laterally. Locate a transverse vertical plane (Plane 7) which passes through Point 3. Locate the point (Point 4) at the intersection of the interior roof surface, Plane 7, and the plane, described in S8.15(h), defining the nearest edge of the upper roof. The B-pillar reference point (Point BPR) is the point located at the middle of the line from Point 3 to Point 4 in Plane 7, measured along the vehicle interior surface. Target BP1 is located at Point BPR. (b) Target BP2. If a seat belt anchorage is located on the B-pillar, Target BP2 is located at any point on the an- chorage. (c) Target BP3. Target BP3 is located in accordance with this paragraph. Locate a horizontal plane (Plane 8) which intersects Point BPR. Locate a horizontal plane (Plane 9) which passes through the lowest point of the daylight opening forward of the pillar. Locate a horizontal plane (Plane 10) halfway between Plane 8 and Plane 9. Target BP3 is the point located in Plane 10 and on the interior surface of the B-pillar, which is closest to CG-F(2) for the nearest seating position. (d) Target BP4. Locate a horizontal plane (Plane 11) half-way between Plane 9 and Plane 10. Target BP4 is the point located in Plane 11 and on the interior surface of the B-pillar which is closest to CG-R for the nearest seating position. S10.3 Other pillar targets. (a) Target OP1. (1) Except as provided in S10.3(a)(2), target OP1 is located in accordance with this paragraph. Locate the point (Point 5), on the vehicle interior, at the intersection of the horizontal plane through the highest point of the highest adjacent door opening or daylight opening (if no adjacent door opening) and the centerline of the width of the other pillar, as viewed laterally. Locate a transverse vertical plane (Plane 12) passing through Point 5. Locate the point (Point 6) at the intersection of the interior roof surface, Plane 12 and the plane, described in S8.15(h), defining the nearest edge of the upper roof. The other pillar reference point (Point OPR) is the point located at the middle of the line between Point 5 and Point 6 in Plane 12, measured along the vehicle interior surface. Target OP1 is located at Point OPR. (2) If a seat belt anchorage is located on the pillar, Target OP1 is any point on the anchorage. (b) Target OP2. Locate the horizontal plane (Plane 13) intersecting Point OPR. Locate a horizontal plane (Plane 14) passing through the lowest point of the daylight opening forward of the pillar. Locate a horizontal plane (Plane 15) half-way between Plane 13 and Plane 14. Target OP2 is the point located on the interior surface of the pillar at the intersection of Plane 15 and the centerline of the width of the pillar, as viewed laterally. S10.4 Rearmost pillar targets - (a) Rearmost pillar reference point and target RP1. Locate the point (Point 7) at the corner of the upper roof nearest to the pillar. The distance between Point M, as described in S8.15(g), and Point 7, as measured along the vehicle interior surface, is D. Extend the line from Point M to Point 7 along the vehicle interior surface in the same vertical plane by (3*D/7) beyond Point 7 or until the edge of a daylight opening, whichever comes first, to locate Point 8. The rearmost pillar reference point (Point RPR) is at the midpoint of the line between Point 7 and Point 8, measured along the vehicle interior. Target RP1 is
located at Point RPR. - (b) Target RP2. - (1) Except as provided in S10.4(b)(2), target RP2 is located in accordance with this paragraph. Locate the horizontal plane (Plane 16) through Point RPR. Locate the horizontal plane (Plane 17) 150 mm below Plane 16. Target RP2 is located in Plane 17 and on the pillar at the location closest to CGR for the nearest designated seating position. (2) If a seat belt anchorage is located on the pillar, Target RP2 is any point on the anchorage. S10.5 Front header targets. (a) Target FH1. Locate the contour line (Line 2) on the vehicle interior trim which passes through the APR and is parallel to the contour line (Line 3) at the upper edge of the windshield on the vehicle interior. Locate the point (Point 9) on Line 2 that is 125 mm inboard of the APR, measured along that line. Locate a longitudinal vertical plane (Plane 18) that passes through Point 9. Target FH1 is located at the intersection of Plane 18 and the upper vehicle interior, halfway between a transverse vertical plane (Plane 19) through Point 9 and a transverse vertical plane (Plane 20) through the intersection of Plane 18 and Line 3. (b) Target FH2. - (1) Except as provided in S10.5(b)(2), target FH2 is located in accordance with this paragraph. Locate a point (Point 10) 275 mm inboard of Point APR, along Line 2. Locate a longitudinal vertical plane (Plane 21) that passes through Point 10. Target FH2 is located at the intersection of Plane 21 and the upper vehicle interior, halfway between a transverse vertical plane (Plane 22) through Point 10 and a transverse vertical plane (Plane 23) through the intersection of Plane 21 and Line 3. - (2) If a sun roof opening is located forward of the front edge of the upper roof and intersects the mid-sagittal plane of a dummy seated in either front outboard seating position, target FH2 is the nearest point that is forward of a transverse vertical plane (Plane 24) through CG-F(2) and on the intersection of the mid-sagittal plane and the interior sunroof opening. S10.6 Targets on the side rail between the A-pillar and the B-pillar or rearmost pillar in vehicles with only two pillars on each side of the vehicle. - (a) Target SR1. Locate a transverse vertical plane (Plane 25) 150 mm rearward of Point APR. Locate the point (Point 11) at the intersection of Plane 25 and the upper edge of the forwardmost door opening. Locate the point (Point 12) at the intersection of the interior roof surface, Plane 25 and the plane, described in S8.15(h), defining the nearest edge of the upper roof. Target SR1 is located at the middle of the line between Point 11 and Point 12 in Plane 25, measured along the vehicle interior. - (b) Target SR2. Locate a transverse vertical plane (Plane 26) 300 mm rearward of the APR or 300 mm forward of the BPR (or the RPR in vehicles with no B-pillar). Locate the point (Point 13) at the intersection of Plane 26 and the upper edge of the forwardmost door opening. Locate the point (Point 14) at the intersection of the interior roof surface, Plane 26 and the plane, described in S8.15(h), defining the nearest edge of the upper roof. Target SR2 is located at the middle of the line between Point 13 and Point 14 in Plane 26, measured along the vehicle interior. S10.7 Other side rail target (target SR3). - (a) Except as provided in S10.7(b), target SR3 is located in accordance with this paragraph. Locate a transverse vertical plane (Plane 27) 150 mm rearward of either Point BPR or Point OPR. Locate the point (Point 15) as provided in either S10.7(a)(1) S10.7(a)(2), as appropriate. Locate the point (Point 16) at the intersection of the interior roof surface, Plane 27 and the plane, described in S8.15(h), defining the nearest edge of the upper roof. Target SR3 is located at the middle of the line between Point 15 and Point 16 in Plane 27, measured along the vehicle interior surface. - (1) If Plane 27 intersects a door or daylight opening, the Point 15 is located at the intersection of Plane 27 and the upper edge of the door opening or daylight opening. - (2) If Plane 27 does not intersect a door or daylight opening, the Point 15 is located on the vehicle interior at the intersection of Plane 27 and the horizontal plane through the highest point of the door or daylight opening nearest Plane 27. If the adjacent door(s) or daylight opening(s) are equidistant to Plane 27, Point 15 is located on the vehicle interior at the intersection of Plane 27 and either horizontal plane through the highest point of each door or daylight opening. (b) Except as provided in S10.7(c), if a grab handle is located on the side rail, target SR3 is located at any point on the anchorage of the grab-handle. Folding grab-handles are in their stowed position for testing. (c) If a seat belt anchorage is located on the side rail, target SR3 is located at any point on the anchorage. S10.8 Rear header target (target RH). Locate the point (Point 17) at the intersection of the surface of the upper intersection of the surface of the upper vehicle interior, the mid-sagittal plane (Plane 28) of the outboard rearmost dummy and the plane, described in S8.15(h), defining the rear edge of the upper roof. Locate the point (Point 18) as provided in S10.8(a) or S10.8(b), as appropriate. Except as provided in S10.8(c), Target RH is located at the mid-point of the line that is between Point 17 and Point 18 and is in Plane 28, as measured along the surface of the vehicle interior. - (a) If Plane 28 intersects a rear door opening or daylight opening, then Point 18 is located at the intersection of Plane 28 and the upper edge of the door opening or the daylight opening (if no door opening). - (b) If Plane 28 does not intersect a rear door opening or daylight opening, then Point 18 is located on the vehicle interior at the intersection of Plane 28 and a horizontal plane through the highest point of the door or daylight opening nearest to Plane 28. If the adjacent door(s) or daylight opening(s) are equidistant to Plane 28, Point 18 is located on the vehicle interior at the intersection of Plane 28 and either horizontal plane through the highest point of each door or daylight opening. - (c) If Target RH is more than 112 mm from Point 18 on the line that is between Point 17 and Point 18 and is in Plane 28, as measured along the surface of the vehicle interior, then Target RH is the point on that line which is 112 mm from Point 18. S10.9 *Upper roof target (target UR)*. Target UR is any point on the upper roof. S10.10 *Sliding door track target (target SD)*. Locate the transverse vertical plane (Plane 29) passing through the middle of the widest opening of the sliding door, measured horizontally and parallel to the vehicle longitudinal centerline. Locate the point (Point 19) at the intersection of the surface of the upper vehicle interior, Plane 29 and the plane, described in S8.15(h), defining the nearest edge of the upper roof. Locate the point (Point 20) at the intersection of Plane 29 and the upper edge of the sliding door opening. Target SD is located at the middle of the line between Point 19 and Point 20 in Plane 29, measured along the vehicle interior. S10.11 Roll-bar targets. - (a) Target RB1. Locate a longitudinal vertical plane (Plane 30) at the midsagittal plane of a dummy seated in any outboard designated seating position. Target RB1 is located on the rollbar and in Plane 30 at the location closest to either CG-F2 or CG-R, as appropriate, for the same dummy. - (b) *Target RB2*. If a seat belt anchorage is located on the roll-bar, Target RB2 is any point on the anchorage. S10.12 Stiffener targets. - (a) Target ST1. Locate a transverse vertical plane (Plane 31) containing either CG-F2 or CG-R, as appropriate, for any outboard designated seating position. Target ST1 is located on the stiffener and in Plane 31 at the location closest to either CG-F2 or CG-R, as appropriate. - (b) *Target ST2*. If a seat belt anchorage is located on the stiffener, Target ST2 is any point on the anchorage. S10.13 *Brace target (target BT)* Target BT is any point on the width of the brace as viewed laterally from inside the passenger compartment. # VERTICAL AND HORIZONTAL APPROACH ANGLE PLANE FIGURE 2 [62 FR 16725, Apr. 8, 1997; 63 FR 28, Jan. 2, 1998; 63 FR 41464, Aug. 4, 1998; 63 FR 45965, Aug. 28, 1998] # §571.202 Standard No. 202; Head restraints. S1. *Purpose and scope.* This standard specifies requirements for head restraints to reduce the frequency and severity of neck injury in rear-end and other collisions. S2. Application. This standard applies to passenger cars, and to multi- purpose passenger vehicles, trucks and buses with a GVWR of 4,536 kg or less. S3. *Definitions. Head restraint* means a device that limits rearward angular displacement of the occupant's head relative to his torso line. S4. Requirements. S4.1 Each passenger car shall comply with S4.3. S4.2 Each truck, multipurpose passenger vehicle and bus with a GVWR of 4,536 kg or less, shall comply with S4.3. ### § 571.202, Nt. - S4.3 Performance levels. Except for school buses, a head restraint that conforms to either (a) or (b) shall be provided at each outboard front designated seating position. For school buses, a head restraint that conforms to either (a) or (b) shall be provided for the driver's seating position. - (a) It shall, when tested in accordance with S5.1, during a forward acceleration of at least $78~\rm m/s^2$ on the seat supporting structure, limit rearward angular displacement of the head reference line to 45° from the torso reference line; or - (b) It shall, when adjusted to its fully extended design position, conform to each of the following— - (1) When measured parallel to torso line, the top of the head restraint shall not be less than 700 mm above the seating reference point; - (2) When measured either 64 mm below the top of the head restraint or 635 mm above the seating reference point, the lateral width of the head restraint shall be not
less than— - (i) 254 mm for use with bench-type seats: and - (ii) 171 mm for use with individual seats: - (3) When tested in accordance with S5.2, the rearmost portion of the head form shall not be displaced to more than 102 mm perpendicularly rearward of the displaced extended torso reference line during the application of the load specified in S5.2(c); and - (4) When tested in accordance with S5.2, the head restraint shall withstand an increasing load until one of the following occurs: - (i) Failure of the seat or seat back; or(ii) Application of a load of 890 N. - S5. Demonstration procedures. - S5.1 Compliance with S4.3(a) shall be demonstrated in accordance with the following with the head restraint in its fully extended design position: - (a) On the exterior profile of the head and torso of a dummy having the weight and seated height of a 95th percentile adult male with an approved representation of a human, articulated neck structure, or an approved equivalent test device, establish reference lines by the following method: - (1) Position the dummy's back on a horizontal flat surface with the lumbar joints in a straight line. - (2) Rotate the head of the dummy rearward until the back of the head contacts the same flat horizontal surface in paragraph (1). - (3) Position the SAE J-826 two-dimensional manikin's back against the flat surface in S5.1(a)(1), alongside the dummy with the h-point of the manikin aligned with the h-point of the dummy. - (4) Establish the torso line of the manikin as defined in SAE Aerospace-Automotive Drawing Standards, sec. 2.3.6, P.E1.01, September 1963. - (5) Establish the dummy torso reference line by superimposing the torso line of the manikin on the torso of the dummy. - (6) Establish the head reference line by extending the dummy torso reference line onto the head. - (b) At each designated seating position having a head restraint, place the dummy, snugly restrained by a Type 1 seat belt, in the manufacturer's recommended design seated position. - (c) During forward acceleration applied to the structure supporting the seat as described in this paragraph, measure the maximum rearward angular displacement between the dummy torso reference line and head reference line. When graphically depicted, the magnitude of the acceleration curve shall not be less than that of a half-sine wave having the amplitude of 78 m/s² and a duration of 80 milliseconds and not more than that of a half-sine wave curve having an amplitude of 94 m/s² and a duration of 96 milliseconds. - S5.2 Compliance with S4.3(b) shall be demonstrated in accordance with the following with the head restraint in its fully extended design position: - (a) Place a test device, having the back plan dimensions and torso line (centerline of the head room probe in full back position), of the three dimensional SAE J826 manikin, at the manufacturer's recommended design seated position. - (b) Establish the displaced torso reference line by applying a rearward moment of 373 Nm moment about the seating reference point to the seat back through the test device back pan located in (a). - (c) After removing the back pan, using a 165 mm diameter spherical head form or cylindrical head form having a 165 mm diameter in plan view and a 152 mm height in profile view, apply, perpendicular to the displaced torso reference line, a rearward initial load 64 mm below the top of the head restraint that will produce a 373 Nm moment about the seating reference point. - (d) Gradually increase this initial load to 890 N or until the seat or seat back fails, whichever occurs first. [36 FR 22902, Dec. 2, 1971, as amended at 54 FR 39187, Sept. 25, 1989; 61 FR 27025, May 30, 1996; 63 FR 28935, May 27, 1998] EFFECTIVE DATE NOTE: At 63 FR 28935, May 27, 1998, §571.202 was amended by revising S2, S4.2, S4.3, S5.1, paragraph (c) and S5.2, effective May 27, 1999. For the convenience of the user, the superseded text follows: #### § 571.202 Standard No. 202; Head restraints. * * * * * * S2. Application. This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks and buses with a ${ m GVWR}$ of 10,000 pounds or less. * * * * * - S4.2 Each truck, multipurpose passenger vehicle and bus with a GVWR of 10,000 pounds or less, manufactured on or after September 1, 1991, shall comply with S4.3. - \$4.3 Performance levels. Except for school buses, a head restraint that conforms to either (a) or (b) shall be provided at each outboard front designated seating position. For school buses, a head restraint that conforms to either (a) or (b) shall be provided for the driver's seating position. - (a) It shall, when tested in accordance with S5.1, during a forward acceleration of at least 8g on the seat supporting structure, limit rearward angular displacement of the head reference line to 45° from the torso reference line; or - (b) It shall, when adjusted to its fully extended design position, conform to each of the following— - (1) When measured parallel to torso line, the top of the head restraint shall not be less than 27.5 inches above the seating reference point; - (2) When measured either 2.5 inches below the top of the head restraint or 25 inches above the seating reference point, the lateral width of the head restraint shall be not less than— $\,$ - (i) 10 inches for use with bench-type seats; and - (ii) 6.75 inches for use with individual seats: - (3) When tested in accordance with S5.2, any portion of the head form in contact with the head restraint shall not be displaced to more than 4 inches perpendicularly rearward of the displaced extended torso reference line during the application of the load specified in S5.2(c); and - (4) When tested in accordance with S5.2, the head restraint shall withstand an increasing load until one of the following occurs: - (i) Failure of the seat or seat back; or, - (ii) Application of a load of 200 pounds. * * * * * * S5.1 * * * - (c) During a forward acceleration applied to the structure supporting the seat as described below, measure the maximum rearward angular displacement between the dummy torso reference line and the head reference line. When graphically depicted, the magnitude of the acceleration curve shall not be less than that of a half-sine wave having the amplitude of 8g and a duration of 80 milliseconds and not more than that of a half-sine wave curve having an amplitude of 9.6g and a duration of 96 milliseconds. - S5.2 Compliance with S4.3(b) shall be demonstrated in accordance with the following with the head restraint in its fully extended design position: - (a) Place a test device, having the back plan dimensions and torso line (centerline of the head room probe in full back position), of the three dimensional SAE J826 manikin, at the manufacturer's recommended design seated position. - (b) Establish the displaced torso reference line by applying a rearward moment of 3,300 in. lb. about the seating reference point to the seat back through the test device back pan located in (a). - (c) After removing the back pan, using a 6.5 inch diameter spherical head form or a cylindrical head form having a 6.5 inch diameter in plan view and a 6-inch height in profile view, apply, perpendicular to the displaced torso reference line, a rearward initial load 2.5 inches below the top of the head restraint that will produce a 3,300 in. lb. moment about the seating reference point. - (d) Gradually increase this initial load to 200 pounds or until the seat or seat back fails, whichever occurs first. # § 571.203 Standard No. 203; Impact protection for the driver from the steering control system. S1. *Purpose and scope.* This standard specifies requirements for steering control systems that will minimize chest, neck, and facial injuries to the driver as a result of impact. S2. Application. This standard applies to passenger cars and to multipurpose passenger vehicles, trucks and buses with a gross vehicle weight rating of 4,536 kg or less. However, it does not apply to vehicles that conform to the frontal barrier crash requirements (S5.1) of Standard No. 208 (49 CFR 571.208) by means of other than seat belt assemblies. It also does not apply to walk-in vans. S3. Definitions. Steering control system means the basic steering mechanism and its associated trim hardware, including any portion of a steering column assembly that provides energy absorption upon impact. S4. Requirements. Each passenger car and each multipurpose passenger vehicle, truck and bus with a gross vehicle weight rating of 4,536 kg or less manufactured on or after September 1, 1981 shall meet the requirements of S5.1 and S5.2. S5. Impact protection requirements. S5.1 Except as provided in this paragraph, the steering control system of any vehicle to which this standard applies shall be impacted in accordance with S5.1(a). However, the steering control system of any such vehicle manufactured on or before August 31, 1996, may be impacted in accordance with S5.1(b). (a) When the steering control system is impacted by a body block in accordance with SAE Recommended Practice J944 JUN80 Steering Control System—Passenger Car—Laboratory Test Procedure, at a relative velocity of 24 km/h, the impact force developed on the chest of the body block transmitted to the steering control system shall not exceed 11,120 N, except for intervals whose cumulative duration is not more than 3 milliseconds. (b) When the steering control system is impacted in accordance with Society of Automotive Engineers Recommended Practice J944, "Steering Wheel Assembly Laboratory Test Pro- cedure," December 1965, or an approved equivalent, at a relative velocity of 24 km/h, the impact force developed on the chest of the body block transmitted to the steering control system shall not exceed 11,120 N, except for intervals whose cumulative duration is not more than 3 milliseconds. S5.2 The steering control system shall be so constructed that no components or attachments, including
horn actuating mechanisms and trim hardware, can catch the driver's clothing or jewelry during normal driving maneuvers. NOTE: The term jewelry refers to watches, rings, and bracelets without loosely attached or dangling members. [36 FR 22902, Dec. 2, 1971, as amended at 44 FR 68475, Nov. 29, 1979; 47 FR 47842, Oct. 28, 1982; 58 FR 26527, May 4, 1993; 58 FR 63304, Dec. 1, 1993; 63 FR 28935, May 27, 1998; 63 FR 51003, Sept. 24, 1998] EFFECTIVE DATE NOTE: At 63 FR 28935, May 27, 1998, §571.203 was amended by revising S2, S4, and S5.1, effective May 27, 1999. At 63 FR 51003, Sept. 24, 1998, S5.1 paragraph (a) was revised, effective May 27, 1999. For the convenience of the user, the superseded text follows: # § 571.203 Standard No. 203, Impact protection for the driver from the steering control system. * * * * * * S2. Application. This standard applies to passenger cars and to multipurpose passenger vehicles, trucks and buses with a GVWR of 10,000 pounds or less. However, it does not apply to vehicles that conform to the frontal barrier crash requirements (S5.1) of Standard No. 208 (49 CFR 571.208) by means of other than seat belt assemblies. It also does not apply to walk-in vans. * * * * * S4. Requirements. Each passenger car and each multipurpose passenger vehicle, truck and bus with a GVWR of 10,000 pounds or less manufactured on or after September 1, 1981, shall meet the requirements of S5.1 and S5.2. S5. Impact protection requirements. S5.1 Except as herein provided, the steering control system of any vehicle to which this standard applies shall be impacted in accordance with S5.1(a). However, the steering control system of any such vehicle manufactured on or before August 31, 1996, may be impacted in accordance with S5.1(b). (a) When the steering control system is impacted by a body block in accordance with SAE Recommended Practice J944 JUN80 Steering Control System—Passenger Car—Laboratory Test Procedure, at a relative velocity of 15 miles per hour, the impact force developed on the chest of the body block transmitted to the steering control system shall not exceed 2,500 pounds, except for intervals whose cumulative duration is not more than 3 milliseconds. (b) When the steering control system is impacted in accordance with Society of Automotive Engineers Recommended Practice J944, "Steering Wheel Assembly Laboratory Test Procedure," December 1965, or an approved equivalent, at a relative velocity of 15 miles per hour, the impact force developed on the chest of the body block transmitted to the steering control system shall not exceed 2,500 pounds, except for intervals whose cumulative duration is not more than 3 milliseconds. ## § 571.204 Standard No. 204; Steering control rearward displacement. S1. Purpose and scope. This standard specifies requirements limiting the rearward displacement of the steering control into the passenger compartment to reduce the likelihood of chest, neck, or head injury. S2. Application. This standard applies to passenger cars and to multipurpose passenger vehicles, trucks, and buses. However, it does not apply to walk-in vans. S3. Definitions. Steering column means a structural housing that surrounds a steering shaft. Steering shaft means a component that transmits steering torque from the steering wheel to the steering gear. S4 Requirements. S4.1 Vehicles manufactured before September 1, 1991. When a passenger car or a truck, bus, or multipurpose passenger vehicle with a gross vehicle weight rating of 10,000 pounds or less and an unloaded vehicle weight of 4,000 pounds or less is tested under the conditions of S5 in a 30 mile per hour perpendicular impact into a fixed collision barrier, the upper end of the steering column and shaft in the vehicle shall not be displaced more than 5 inches in a horizontal rearward direction parallel to the longitudinal axis of the vehicle. The amount of displacement shall be measured relative to an undisturbed point on the vehicle and shall represent the maximum dynamic movement of the upper end of the steering column and shaft during the crash test. S4.2 Vehicles manufactured on or after September 1, 1991. When a passenger car or a truck, bus or multipurpose passenger vehicle with a gross vehicle weight rating of 4,536 kg or less and an unloaded vehicle weight of 2,495 kg or less is tested under the conditions of S5 in a 48 km/h perpendicular impact into a fixed collision barrier, the upper end of the steering column and shaft in the vehicle shall not be displaced more than 127 mm in a horizontal rearward direction parallel to the longitudinal axis of the vehicle. The amount of displacement shall be measured relative to an undisturbed point on the vehicle and shall represent the maximum dynamic movement of the upper end of the steering column and shaft during the crash test. S5. *Test conditions*. The requirements of S4 shall be met when the vehicle is tested in accordance with the following conditions. S5.1 The vehicle, including test devices and instrumentation, is loaded to its unloaded vehicle weight. S5.2 Adjustable steering controls are adjusted so that a tilting steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions. A telescoping steering control is set at the adjustment position midway between the forwardmost and rearwardmost position. S5.3 Convertibles and open-body type vehicles have the top, if any, in place in the closed passenger compartment configuration. S5.4 Doors are fully closed and latched but not locked. S5.5 The fuel tank is filled to any level from 90 to 95 percent of capacity. S5.6 The parking brake is disengaged and the transmission is in neutral. S5.7 Tires are inflated to the vehicle manufacturer's specifications. [52 FR 44897, Nov. 23, 1987, as amended at 63 FR 28935, May 27, 1998; 63 FR 51003, Sept. 24, 1998] EFFECTIVE DATE NOTE: At 63 FR 28935, May 27, 1998, §571.204 was amended by revising S4.2. At 63 FR 51003, Sept. 24, 1998, §571.204 was amended in S4.2 by revising the first sentence. Both amendments are effective May 27, 1999. For the convenience of the user, the superseded text follows: ### §571.204 Standard No. 204, Steering control rearward displacement. * * * * * S4.2 Vehicles manufactured on or after September 1, 1991. When a passenger car or a truck, bus, or multipurpose passenger vehicle with a gross vehicle weight rating of 10,000 pounds or less and an unloaded vehicle weight of 5,500 pounds or less is tested under the conditions of S5 in a 30 mile per hour perpendicular impact into a fixed collision barrier, the upper end of the steering column and shaft in the vehicle shall not be displaced more than 5 inches in a horizontal rearward direction parallel to the longitudinal axis of the vehicle. The amount of displacement shall be measured relative to an undisturbed point on the vehicle and shall represent the maximum dynamic movement of the upper end of the steering column and shaft during the crash test. ### rgi oor staadaad Na oor sila # § 571.205 Standard No. 205, Glazing materials. S1. *Scope.* This standard specifies requirements for glazing materials for use in motor vehicles and motor vehicle equipment. S2. Purpose. The purpose of this standard is to reduce injuries resulting from impact to glazing surfaces, to ensure a necessary degree of transparency in motor vehicle windows for driver visibility, and to minimize the possibility of occupants being thrown through the vehicle windows in collisions. S3. Application. This standard applies to glazing materials for use in passenger cars, multipurpose passenger vehicles, trucks, buses, motorcycles, slide-in campers, and pickup covers designed to carry persons while in motion S4. Definitions. Bullet resistant shield means a shield or barrier that is installed completely inside a motor vehicle behind and separate from glazing materials that independently comply with the requirements of this standard. Camper means a structure designed to be mounted in the cargo area of a truck, or attached to an incomplete vehicle with motive power, for the purpose of providing shelter for persons. Glass-plastic glazing material means a laminate of one or more layers of glass and one or more layers of plastic in which a plastic surface of the glazing faces inward when the glazing is installed in a vehicle. *Motor home* means a multipurpose passenger vehicle that provides living accommodations for persons. Pickup cover means a camper having a roof and sides but without a floor, designed to be mounted on and removable from the cargo area of a truck by the user. Slide-in camper means a camper having a roof, floor, and sides, designed to be mounted on and removable from the cargo area of a truck by the user. S5. Requirements. S5.1 Materials. S5.1.1 Glazing materials for use in motor vehicles, expect as otherwise provided in this standard shall conform to the American National Standard "Safety Code for Safety Glazing Materials for Glazing Motor Vehicles Operating on Land Highways" Z-26.1-1977, January 26, 1977, as supplemented by Z26.1a, July 3, 1980 (hereinafter referred to as "ANS Z26"). However, Item 11B glazing as specified in that standard may not be used in motor vehicles at levels requisite for driving visibility, and Item 11B glazing is not required to pass Test Nos. 17, 30, and 31. S5.1.1.1 The chemicals specified for testing chemical resistance in Tests Nos. 19 and 20 of ANS Z26 shall be: - (a) One percent solution of nonabrasive soap. - (b) Kerosene. - (c) Undiluted denatured alcohol, Formula SD No. 30 (1 part 100-percent methyl alcohol in 10 parts 190-proof ethyl alcohol by volume). - (d) Gasoline, ASTM Reference Fuel C, which is composed of Isooctane 50 volume percentage and Toluene 50 volume percentage. Isooctane must conform to A2.7 in Annex 2 of the Motor Fuels Section of the 1985 Annual Book of ASTM Standards, Vol. 05.04, and Toluene must conform to ASTM Specification D362-84,
Standard Specification for Industrial Grade Toluene. ASTM Reference Fuel C must be used as specified in: - (1) Paragraph A2.3.2 and A2.3.3 of Annex 2 of Motor Fuels, Section 1 in the 1985 Annual Book of ASTM Standards: and (2) OSHA Standard 29 CFR 1910.106-"Handling Storage and Use of Flammable Combustible Liquids. This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be inspected at the Technical Reference Library, NHTSA, 400 Seventh Street, SW., Room 5108, Washington, DC 20590, or at the Office of the Federal Register, 800 North Capitol Street, NW., suite 700, Washington, DC. S5.1.1.2 The following locations are added to the lists specified in ANS Z26 in which item 4, item 5, item 8, and item 9 safety glazing may be used: (a)—(i) [Reserved] - (j) Windows and doors in motor homes, except for the windshield and windows to the immediate right or left of the driver. - (k) Windows and doors in slide-in campers and pickup covers. - (l) Windows and doors in buses except for the windshield, windows to the immediate right or left of the driver, and rearmost windows if used for driving - (m) For Item 5 safety glazing only: Motorcycle windscreens below the intersection of a horizontal plane 380 millimeters vertically above the lowest seating position. S5.1.1.3 The following locations are added to the lists specified in ANS Z26 in which item 6 and item 7 safety glazing may be used: (a)—(i) [Reserved] - (j) Windows and doors in motor homes, except for the windshield, forward-facing windows, and windows to the immediate right or left of the driv- - (k) Windows, except forward-facing windows, and doors in slide-in campers and pickup covers. - (l) For item 7 safety glazing only: - (1) Standee windows in buses. - (2) Interior partitions. - (3) Openings in the roof. S5.1.1.4 The following locations are added to the lists specified in ANS Z26 in which item 8 and item 9 safety glazing may be used: (a)—(e) [Reserved] - (f) Windows and doors in motor homes, except for the windshield and windows to the immediate right or left of the driver. - (g) Windows and doors in slide-in campers and pickup covers. S5.1.1.5 The phrase "readily removable" windows as defined in ANS Z26, for the purposes of this standard, in buses having a GVWR of more than 4536 kilograms, shall include pushout windows and windows mounted in emergency exists that can be manually pushed out of their location in the vehicle without the use of tools, regardless of whether such windows remain hinged at one side to the vehicle. S5.1.1.6 Multipurpose passenger vehicles. Except as otherwise specifically provided by this standard, glazing for use in multipurpose passenger vehicles shall conform to the requirements for glazing for use in trucks as specified in ANS Z26. S5.1.1.7 Test No. 17 is deleted from the list of tests specified in ANS Z26 for Item 5 glazing material and Test No. 18 is deleted from the lists of tests specified in ANS Z26 for Item 3 and Item 9 glazing material. S5.1.2 In addition to the glazing materials specified in ANS Z26, materials conforming to S5.1.2.1, S5.1.2.2, S5.1.2.3, S5.1.2.4, S5.1.2.5, S5.1.2.6, S5.1.2.7, S5.1.2.8 and S5.1.2.11 may be used in the locations of motor vehicles specified in those sections. S5.1.2.1 Item 11C—Safety Glazing Material for Use in Bullet Resistant Shields. Bullet resistant glazing that complies with Test Nos. 2, 17, 19, 20, 21, 24, 27, 28, 29, 30 and 32 of ANS Z26 and the labeling requirements of S5.1.2.5 may be used only in bullet resistant shields that can be removed from the motor vehicle easily for cleaning and maintenance. A bullet resistant shield may be used in areas requisite for driving visibility only if the combined parallel luminous transmittance with perpendicular incidence through both the shield and the permanent vehicle glazing is at least 60 percent. S5.1.2.2 Item 12-Rigid Plastics. Safety plastics materials that comply with Test Nos. 10, 13, 16, 19, 20, 21 and 24 of ANS Z26, with the exception of the test for resistance to undilated denatured alcohol Formula SD No. 30, and that comply with the labeling requirements of S5.1.2.5, may be used in a motor vehicle only in the following specified locations at levels not requisite for driving visibility. (a) Window and doors in slide-in campers and pick-up covers. (b) Motorcycle windscreens below the intersection of a horizontal plane 380 millimeters vertically above the lowest seating position. - (c) Standee windows in buses. - (d) Interior partitions. - (e) Openings in the roof. - (f) Flexible curtains or readily removable windows or in ventilators used in conjunction with readily removable windows. - (g) Windows and doors in motor homes, except for the windshield and windows to the immediate right or left of the driver. - (h) Windows and doors in buses except for the windshield and window to the immediate right and left of the driver. - S5.1.2.3 Item 13—Flexible plastics. Safety plastic materials that comply with Tests Nos. 16, 19, 20, 22, and 23 or 24 of ANS Z26, with the exception of the test for resistance to undiluted denatured alcohol Formula SD No. 30, and that comply with the labeling requirements of S5.1.2.5 may be used in the following specific locations at levels not requisite for driving visibility. - (a) Windows, except forward-facing windows, and doors in slide-in campers and pick-up covers. - (b) Motorcycle windscreens below the intersection of a horizontal plane 380 millimeters vertically above the lowest seating position. - (c) Standee windows in buses. - (d) Interior partitions. - (e) Openings in the roof. - (f) Flexible curtains or readily removable windows or in ventilators used in conjunction with readily removable windows. - (g) Windows and doors in motor homes, except for the windshield, forward-facing windows, and windows to the immediate right or left of the driv- S5.1.2.4. Item 14—*Glass Plastics.* Glass-plastic glazing materials that comply with the labeling requirements of S5.1.2.10 and Test Nos. 1, 2, 3, 4, 9, 12, 15, 16, 17, 18, 19, 24, 26, and 28, as those tests are modified in S5.1.2.9, *Test Procedures for Glass-Plastics*, may be used anywhere in a motor vehicle, except that it may not be used in windshields of any of the following vehicles: convertibles, vehicles that have no roof, vehicles whose roofs are completely removable. S5.1.2.5. Item 15A—Annealed Glass-Plastic for use in all Positions in a Vehicle Except the Windshield. Glass-plastic glazing materials that comply with Test Nos. 1, 2, 3, 4, 9, 12, 16, 17, 18, 19, 24, and 28, as those tests are modified in S5.1.2.9 Test Procedures for Glass-Plastics, may be used anywhere in a motor vehicle except the windshield. S5.1.2.6 Item 15B—Tempered Glass-Plastic for Use in All Positions In a Vehicle Except the Windshield. Glass-plastic glazing materials that comply with Tests Nos. 1, 2, 3, 4, 6, 7, 8, 16, 17, 18, 19, 24, and 28, as those tests are modified in S5.1.2.9 Test Procedures for Glass-Plastics, may be used anywhere in a motor vehicle except the windshield. S5.1.2.7. İtem 16A—Annealed Glass-Plastic for Use in all Positions in a Vehicle not Requisite for Driving Visibility. Glass-plastic glazing materials that comply with Test Nos. 3, 4, 9, 12, 16, 19, 24, and 28, as those tests are modified in S5.1.2.9 Test Procedures for Glass-Plastics, may be used in a motor vehicle in all locations not requisite for driving visibility. S5.1.2.8. Item 16B—Tempered Glass-Plastic for Use in all Positions in a Vehicle not Requisite for Driving Visibility. Glass-plastic glazing materials that comply with Test Nos. 3, 4, 6, 7, 8, 16, 19, 24, and 28, as those tests are modified in S5.1.2.9 Test Procedures for Glass-Plastics, may be used in a motor vehicle in all locations not requisite for driving visibility. S5.1.2.9 Test Procedures for Glass-Plastics. (a) Tests Nos. 6, 7, 8, 9, 12, 16, and 18 shall be conducted on the glass side of the specimen, i.e., the surface which would face the exterior of the vehicle. Tests Nos. 17, 19, 24, and 26 shall be conducted on the plastic side of the specimen, i.e., the surface which would face the interior of the vehicle. Test No. 15 should be conducted with the glass side of the glazing facing the illuminated box and the screen, respectively. For Test No. 19, add the following to the specified list: an aqueous solution of isopropanol and glycol ether solvents in concentration no greater than 10% or less than 5% by weight and ammonium hydroxide no greater than 5% or less than 1% by weight, simulating typical commercial windshield cleaner. - (b) Glass-plastic specimens shall be exposed to an ambient air temperature of -40 degrees Celsius (plus or minus 5 degrees Celsius), for a period of 6 hours at the commencement of Test No. 28, rather than at the initial temperature specified in that test. After testing, the glass-plastic specimens shall show no evidence of cracking, clouding, delaminating, or other evidence of deterioration. - (c) Glass-plastic specimens tested in accordance with Test No. 17 shall be carefully rinsed with distilled water following the abrasion procedure and wiped dry with lens paper. After this procedure, the arithmetic means of the percentage of light scattered by the three specimens as a result of abrasion shall not exceed 4.0 percent. - (d) Data obtained from Test No. 1 should be used when conducting Test No. 2. - (e)(1)Except as provided S5.1.2.9(e)(2), glass-plastic glazing specimens tested in accordance with Test Nos. 9, 12 and 26 shall be clamped in the test fixture in Figure 1 of this standard in the manner shown in that figure. The clamping gasket shall be made of rubber 3 millimeters (mm) thick of hardness 50 IRHD (International Rubber Hardness Degrees), plus or minus five degrees. Movement of the test specimen, measured after the test, shall not exceed 2 mm at any point along the inside periphery of the fixture. Movement of
the test specimen beyond the 2 mm limit shall be considered an incomplete test, not a test failure. A specimen used in such an incomplete test shall not be retested. - (2) At the option of the manufacturer, glass-plastic glazing specimens tested in accordance with Test Nos. 9 and 12 may be tested unclamped. Such specimens shall be tested using the fixture in Figure 1 of the standard, including the upper frame (unclamped) which holds the specimen in place. - S5.1.2.10 Cleaning instructions. Each manufacturer of glazing materials designed to meet the requirements of S5.1.2.1, S5.1.2.2, S5.1.2.3, S5.1.2.5, S5.1.2.6, S5.1.2.4. S5.1.2.7. S5.1.2.8, or S5.1.2.11 shall affix a label, removable by hand without tools, to each item of glazing materials. The label shall identify the product involved, specify instructions and agents for cleaning the material that will minimize the loss of transparency, and instructions for removing frost and ice, and, at the option of the manufacturer, refer owners to the vehicle's Owners Manual for more specific cleaning and other instructions. - (b) Each manufacturer of glazing materials designed to meet the requirements of paragraphs S5.1.2.4, S5.1.2.5, S5.1.2.6, S5.1.2.7, or S5.1.2.8 may permanently and indelibly mark the lower center of each item of such glazing material, in letters not less than 4.5 millimeters nor more than 6 millimeters high, the following words, GLASS PLASTIC MATERIAL—SEE OWNER'S MANUAL FOR CARE INSTRUCTIONS. - S5.1.2.11 Test procedures for Item 4A—Rigid Plastic for Use in Side Windows Rearward of the "C" pillar. (a) Glazing materials that comply with Tests Nos. 2, 10, 13, 16, 17, as that test is modified in S5.1.2.9(c) (on the interior side only), 17, as that test is modified in paragraph (b) of this section (on the exterior side only), 19, 20, 21, and 24 of ANS Z26.1, may be used in the following specific locations: - (1) All areas in which Item 4 safety glazing may be used. - (2) Any side window that meets the criteria in S5.1.2.11(a)(2)(i) and (ii): - (i) Is in a vehicle whose rearmost designated seating position is forward-facing and cannot be adjusted so that it is side or rear-facing; and - (ii) The forwardmost point on its visible interior surface is rearward of the vertical transverse plane that passes through the shoulder reference point (as described in Figure 1 of §571.210 Seat belt assembly anchorages) of that rearmost seating position. - (b) (1) The initial maximum haze level shall not exceed 1.0 percent. The specimens are subjected to abrasion for 100 cycles and then carefully wiped with dry lens paper (or its equivalent). The light scattered by the abraded track is measured in accordance with Test 17. The arithmetic mean of the percentages of light scattered by the three specimens shall not exceed 4.0 percent after being subjected to abrasion for 100 cycles. (2) The specimen is remounted on the specimen holder so that it rotates substantially in a plane and subjected to abrasion for an additional 400 cycles on the same track already abraded for 100 cycles. Specimens are carefully wiped after abrasion with dry lens paper (or its equivalent). The light scattered by the abraded track is then measured as specified in Test 17. The arithmetic mean of the percentages of light scattered by the three specimens shall not exceed 10.0 percent after being subjected to abrasion for 500 cycles. S5.2 Edges. In vehicles except schoolbuses, exposed edges shall be treated in accordance with SAE Recommended Practice J673a, "Automotive Glazing", August 1967. In schoolbuses, exposed edges shall be banded. S6. Certification and marking. S6.1 Each prime glazing material manufacturer, except as specified below, shall mark the glazing materials it manufactures in accordance with section 6 of ANS Z26. The materials specified in S5.1.2.1, S5.1.2.2, S5.1.2.3, S5.1.2.4, S5.1.2.5, S5.1.2.5, S5.1.2.8, and S5.1.2.11 shall be identified by the marks "AS 11C", "AS 12", "AS 13", "AS 14", "AS 15A", "AS 15B", "AS 16A", "AS 16B", and "AS 4A", respectively. A prime glazing ma- terial manufacturer is one which fabricates, laminates, or tempers the glazing material. S6.2 Each prime glazing material manufacturer shall certify each piece of glazing material to which this standard applies that is designed as a component of any specific motor vehicle or camper, pursuant to section 114 of the National Traffic and Motor Vehicle Safety Act of 1966, by adding to the mark required by S6.1 in letters and numerals of the size specified in section 6 of ANS Z26, the symbol "DOT" and a manufacturer's code mark, which will be assigned by the NHTSA on the written request of the manufacturer. S6.3 Each prime glazing material manufacturer shall certify each piece of glazing material to which this standard applies that is designed to be cut into components for use in motor vehicles or items of motor vehicle equipment, pursuant to section 114 of the National Traffic and Motor Vehicle Safety Act. S6.4 Each manufacturer or distributor who cuts a section of glazing material to which this standard applies, for use in a motor vehicle or camper, shall mark that material in accordance with section 6 of ANS Z26. S6.5 Each manufacturer or distributor who cuts a section of glazing material to which this standard applies, for use in a motor vehicle or camper, shall certify that his product complies with this standard in accordance with section 114 of the National Traffic and Motor Vehicle Safety Act. Dimensions in millimeters Figure 1 — Test Fixture For Clamped Specimens [37 FR 12239, June 21, 1972, as amended at 37 FR 13097, July 1, 1972; 37 FR 24036, Nov. 11, 1972; 37 FR 24826, Nov. 22, 1972; 42 FR 61466, Dec. 5, 1977; 45 FR 47151, July 14, 1980; 46 FR 43690, Aug. 31, 1981; 48 FR 52065, Nov. 16, 1983; 49 FR 6734, Feb. 23, 1984; 56 FR 12674, Mar. 27, 1991; 56 FR 18531, Apr. 23, 1991; 56 FR 49149, Sept. 27, 1991; 57 FR 1654, Jan. 15, 1992; 57 FR 13656, Apr. 17, 1992; 57 FR 30164, July 8, 1992; 57 FR 58150, Dec. 9, 1992; 60 FR 13646, Mar. 14, 1995; 61 FR 41743, Aug. 12, 1996] # §571.206 Standard No. 206; Door locks and door retention components. S1. Purpose and Scope. This standard specifies requirements for door locks and door retention components including latches, hinges, and other supporting means, to minimize the likelihood of occupants being thrown from the vehicle as a result of impact. S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, and trucks. ### S3. Definitions. Auxiliary door latch means a latch or latches, other than the primary latch or latches, fitted to a back door or back door system that is equipped with more than one latch. Back door means a door or door system on the back end of a motor vehicle through which passengers can enter or depart the vehicle, or cargo can be loaded or unloaded; but does not include: (a) A trunk lid; or (b) A door or window that us composed entirely of glazing material and whose latches and/or hinges are attached directly onto the glazing material. Cargo-Type Door means a door designed primarily to accommodate cargo loading including, but not limited to, a two-part door that latches to itself. *Fork-bolt* means the part of the door latch that engages the striker when in a latched position. Fork-bolt opening means the direction opposite to that in which the striker enters to engage the fork-bolt. *Primary door latch* means, with respect to a back door or back door system, the latch or latches equipped with both the fully latched position and the secondary latched position. Side front door means a door that in a side view, has 50 percent or more of its opening area forward of the rearmost point on the driver's seatback, when the driver's seat is adjusted to its most vertical and rearward position. Side rear door means a door that, in a side view, has more than 50 percent of its opening area to the rear of the rearmost point on the driver's seatback, when the driver's seat is adjusted to its most vertical and rearward position. Trunk lid means a movable body panel that provides access from outside the vehicle to a space wholly partitioned from the occupant compartment by a permanently attached partition or a fixed or fold-down seat back. S4. Requirments. - (a) Components on side doors. Components on any side door that leads directly into a compartment that contains one or more seating accommodations shall conform to this standard. - (b) Components on back doors. Components on any back door of a passenger car or multipurpose passenger vehicle with a gross vehicle weight rating (GVWR) of 4,536 kilograms (10,000 pounds) or less that leads directly into a compartment that contains one or more seating accommodations shall conform to this standard, subject to the following compliance schedule: - (1)(i) For those affected passenger cars and multipurpose passenger vehicles manufactured on or after September 1, 1997, and before September 1, 1998, the amount of such vehicles complying with this standard shall be not less than 60 percent of the combined total production of passenger cars and multipurpose passenger vehicles, based on: - (A) The manufacturer's average annual production of such vehicles manufactured on or after September 1, 1996 and before September 1, 1998; or - (B) The manufacturer's production of such vehicles on or after September 1, 1997 and before September 1, 1998. - (ii) For calculating average annual production of affected passenger cars and multipurpose passenger vehicles for each manufacturer and the number of such vehicles manufactured by each manufacturer, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows: - (A) A vehicle that is imported shall be attributed to the importer; - (B) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle. - (C) A
vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle's manufacturers specified by an express written contract between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under paragraph (b)(1)(ii)(A) or (B) of this section. - (2) Components on the back doors of affected passenger cars and multipurpose passenger vehicles manufactured on and after September 1, 1998 shall conform to all applicable requirements of this standard. - (c) Components on folding doors, rollup doors, doors that are designed to be easily attached to or detached from motor vehicles manufactured for operation without doors, and doors that are equipped with the wheelchair lifts and that are linked to an alarm system consisting of either a flashing visible signal located in the driver's compartment or an alarm audible to the driver that is activated when the door is open, need not conform to this standard. - (d) A particular latch or hinge assembly utilized as a test specimen need not meet further requirements after having been subjected to and having met any one of the requirements of S4 or S5.1 through S5.4. - S4.1 Hinged Side Doors, Except Cargo-Type Doors. - S4.1.1 *Door Latches.* Each door latch and striker assembly shall be provided with two positions consisting of— - (a) A fully latched position; and - (b) A secondary latched position. - S4.1.1.1 Longitudinal Load. The door latch and striker assembly, when in the fully latched position, shall not separate when a longitudinal load of 11,000 Newtons (2,500 pounds) is applied. When in the secondary latched position, the door latch and striker assembly shall not separate when a longitudinal load of 4,450 Newtons (1,000 pounds) is applied. S4.1.1.2 Transverse Load. The door latch and striker assembly, when in the fully latched position, shall not separate when a transverse load of 8,900 Newtons (2,000 pounds) is applied. When in the secondary latched position, the door latch and striker assembly shall not separate when a transverse load of 4,450 Newtons (1,000 pounds) is applied. S4.1.1.3 *Inertia Load.* The door latch shall not disengage from the fully latched position when a longitudinal or transverse inertia load of 30g is applied to the door latch system (including the latch and its actuating mechanism with the locking mechanism disengaged). S4.1.2 Door Hinges. Each door hinge system shall support the door and shall not separate when a longitudinal load of 11,000 Newtons (2,500 pounds) is applied. Similarly, each door hinge system shall not separate when a transverse load of 8,900 Newtons (2,000 pounds) is applied. S4.1.3 *Door Locks.* Each door shall be equipped with a locking mechanism with an operating means in the interior of the vehicle. S4.1.3.1 *Side Front Door Locks.* When the locking mechanism is engaged, the outside door handle or other outside latch release control shall be inoperative. S4.1.3.2 *Side Rear Door Locks.* In passenger cars and multipurpose passenger vehicles, when the locking mechanism is engaged both the outside and inside door handles or other latch release controls shall be inoperative. S4.2 Hinged Cargo-Type Side Doors. S4.2.1 Door Latches. S4.2.1.1 Longitudinal Load. Each latch system, when in the latched position, shall not separate when a longitudinal load of 11,000 Newtons (2,500 pounds) is applied. S4.2.1.2 *Transverse Load.* Each latch system, when in the latched position, shall not separate when a transverse load of 8,900 Newtons (2,000 pounds) is applied. When more than one latch sys- tem is used on a single door, the load requirement may be divided among the total number of latch systems. S4.2.2 Door Hinges. Each door hinge system shall support the door and shall not separate when a longitudinal load of 11,000 Newtons (2,500 pounds) is applied, and when a transverse load of 8,900 Newtons (2,000 pounds) is applied. S4.3 Sliding Side Doors. The track and slide combination or other supporting means for each sliding door shall not separate when a total transverse load of 17,800 Newtons (4,000 pounds) is applied, with the door in the closed position. S4.4. Hinged Back Doors. S4.4.1 *Door Latches.* Each back door system shall be equipped with at least one primary latch and striker assembly. S4.4.1.1 *Load Test One.* The primary door latch and striker assembly, when in the fully latched position, shall not separate when a load of 11,000 Newtons (2,500 pounds) is applied in the direction perpendicular to the face of the latch (corresponding to the longitudinal load test for side door latches) such that the latch and the striker anchorage are not compressed against each other. When in the secondary latched position, the primary latch and striker assembly shall not separate when a load of 4,450 Newtons (1,000 pounds) is applied in the same direction. S4.4.1.2 Load Test Two. The primary door latch and striker assembly, when in the fully latched position, shall not separate when a load of 8,900 Newtons (2,000 pounds) is applied in the direction of the fork-bolt opening and parallel to the face of the latch (corresponding to the transverse load test). Figure 1 depicts the loading direction for this test. When in the secondary latched position, the primary latch and striker assembly shall not separate when a load of 4,450 Newtons (1,000 pounds) is applied in the same direction. S4.4.1.3 Load Test Three. The primary door latch and striker assembly on back doors equipped with a latch and striker assembly at the bottom of the door and that open upward shall not disengage from the fully latched position when a load of 8,900 Newtons (2,000 pounds) is applied in a direction orthogonal to the directions specified in S4.4.1.1 and S4.4.1.2 above. S4.4.1.4 *Inertia Load.* The primary door latch shall not disengage from the fully latched position when an inertia load of 30g is applied to the door latch system, including the latch and its activation mechanism with the locking mechanism disengaged, in the directions specified in S4.4.1.1, S4.4.1.2, and S4.4.1.3. S4.4.1.5 *Auxiliary Door Latches.* Each auxiliary back door latch and striker assembly shall be provided with a fully latched position and shall comply with the requirements specified in S4.4.1.1, S4.4.1.2, and S4.4.1.4. S4.4.2 Door Locks. Each back door system equipped with interior door handles or that leads directly into a compartment that contains one or more seating accommodations shall be equipped with a locking mechanism with operating means in both the interior and exterior of the vehicle. When the locking mechanism is engaged, both the inside and outside door handles or other latch release controls shall be inoperative. S4.4.3 Door Hinges. S4.4.3.1 *Load Test One.* Each back door hinge system shall support the door and shall not separate when a load of 11,000 Newtons (2,500 pounds) is applied perpendicular to the hinge face plate (longitudinal load test) such that the hinge plates are not compressed against each other. S4.4.3.2 Load Test Two. Each back door hinge system shall not separate when a load of 8,900 Newtons (2,000 pounds) is applied perpendicular to the axis of the hinge pin and parallel to the hinge face plate (transverse load test) such that the hinge plates are not compressed against each other. S4.4.3.3 *Load Test Three.* Each hinge system on back doors that open upward shall not separate when a load of 8,900 Newtons (2,000 pounds) is applied in the direction of the axis of the hinge pin. S4.5 Sliding Back Doors. The track and slide combination or other supporting means for each sliding door shall not separate when a total longitudinal load of 17,800 Newtons (4,000 pounds) is applied, with the door in the closed position. S5.1 Hinged Side Doors, Except Cargo-Type Doors. \$5.1.1 Door Latches. S5.1.1.1 Longitudinal and Transverse Loads. Compliance with paragraphs S4.1.1.1 and S4.1.1.2 shall be demonstrated in accordance with paragraph 5 of Society of Automotive Engineers Recommended Practice J839, Passenger Car Side Door Latch Systems, June 1991. S5.1.1.2 Inertia Load. Compliance with S4.1.1.3 shall be demonstrated by approved tests or in accordance with paragraph 6 of Society of Automotive Engineers Recommended Practice J839, Passenger Car Side Door Latch Systems, June 1991. S5.1.2 Door Hinges. Compliance with S4.1.2 shall be demonstrated in accordance with paragraph 4 or 5, as appropriate, of Society of Automotive Engineers Recommended Practice J934, Vehicle Passenger Door Hinge Systems, July 1982. For piano-type hinges, the hinge spacing requirements of SAE J934 shall not be applicable and arrangement of the test fixture shall be altered as required so that the test load will be applied to the complete hinge. S5.2 Hinged Cargo-Type Side Doors. S5.2.1 Door Latches. Compliance with S4.2.1 shall be demonstrated in accordance with paragraphs 5.1 and 5.3, SAE Recommended Practice J839, Passenger Car Side Door Latch Systems, June 1991. An equivalent static test fixture may be substituted for that shown in Figure 2 of SAE J839, if required. S5.2.2 Door Hinges. Compliance with S4.2.2 shall be demonstrated in accordance with paragraph 4 or 5, as appropriate, of SAE Recommended Practice J934, Vehicle Passenger Door Hinge Systems, July 1982. For piano-type hinges, the hinge spacing requirement of SAE J934 shall not be applicable and arrangement of the test fixture shall be altered as required so that the test load will be applied to the complete hinge. S5.3 Sliding Side Doors. Compliance with S4.3 shall be demonstrated by applying an outward transverse load of 8,900 Newtons (2,000 pounds) to the load-bearing members at the opposite edges of the door (17,800 Newtons (4,000 pounds) total). The demonstration may be performed either in the vehicle or with the door retention components in a bench test fixture. S5.4 Hinged Back Doors. S5.4.1.1 Load Tests One, Two, and Three. Compliance with S4.4.1.1, S4.4.1.2, and
S4.4.1.3 shall be demonstrated in the same manner as specified in S5.1.1.1, except that the loads shall be in the directions specified in S4.4.1.1, S4.4.1.2, and S4.4.1.3. The same test device may be used for Load Tests Two and Three. S5.4.1.2 *Inertia Load.* Compliance with S4.4.1.4 shall be demonstrated in the same manner as specified in S5.1.1.2. S5.4.2 *Door Hinges.* Compliance with S4.4.3.1, S4.4.3.2, and S4.4.3.3 shall be demonstrated in the same manner as specified in S5.1.2, except that the loads shall be in the directions specified in S4.4.3.1, S4.4.3.2, and S4.4.3.3. The same test device may be used for Load Tests Two and Three. S5.5 Sliding Back Doors. Compliance with S4.5 shall be demonstrated by applying an outward longitudinal load of 8,900 Newtons (2,000 pounds) to the load bearing members at the opposite edges of the door (17,000 Newtons (4,000 pounds) total). The demonstration may be performed either in the vehicle or with the door retention components in a bench test fixture. [36 FR 22902, Dec. 2, 1971, as amended at 37 FR 284, Jan. 8, 1972; 50 FR 12031, Mar. 27, 1985; 60 FR 13646, Mar. 14, 1995; 60 FR 50134, Sept. 28, 1995; 61 FR 39907, July 31, 1996] ## §571.207 Standard No. 207; Seating systems. S1. Purpose and scope. This standard establishes requirements for seats, their attachment assemblies, and their installation to minimize the possibility of their failure by forces acting on them as a result of vehicle impact. S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks and buses. S3. *Definitions. Occupant seat* means a seat that provides at least one designated seating position. Seat adjuster means the part of the seat that provides forward and rearward positioning of the seat bench and back, and/or rotation around a vertical axis, including any fixed portion, such as a seat track. In the case of a seat equipped with seat adjusters at different levels, the term means the uppermost seat adjuster. S4. Requirements. S4.1 *Driver's seat.* Each vehicle shall have an occupant seat for the driver. S.4.2 General performance requirements. When tested in accordance with S5., each occupant seat, other than a side-facing seat or a passenger seat on a bus, shall withstand the following forces, in newtons. (a) In any position to which it can be adjusted—20 times the mass of the seat in kilograms multiplied by 9.8 applied in a forward longitudinal direction; (b) In any position to which it can be adjusted—20 times the mass of the seat in kilograms multiplied by 9.8 applied in a rearward longitudinal direction; (c) For a seat belt assembly attached to the seat—the force specified in paragraph (a), if it is a forward facing seat, or paragraph (b), if it is a rearward facing seat, in each case applied simultaneously with the forces imposed on the seat by the seat belt assembly when it is loaded in accordance with S4.2 of §571.210; and (d) In its rearmost position—a force that produces a 373 newton meters moment about the seating reference point for each designated seating position that the seat provides, applied to the upper cross-member of the seat back or the upper seat back, in a rearward longitudinal direction for forward-facing seats and in a forward longitudinal direction for rearward-facing seats. S4.2.1 Seat adjustment. Except for vertical movement of nonlocking suspension type occupant seats in trucks or buses, each seat shall remain in its adjusted position when tested in accordance with the test procedures specified in S5. S4.3. Restraining device for hinged or folding seats or seat backs. Except for a passenger seat in a bus or a seat having a back that is adjustable only for the comfort of its occupants, a hinged or folding occupant seat or occupant seat back shall— (a) Be equipped with a self-locking device for restraining the hinged or folding seat or seat back, and (b) If there are any designated seating positions or auxiliary seating accommodations behind the seat, either immediately to the rear or to the sides, be equipped with a control for releasing that restraining device. S4.3.1 Accessibility of release control. If there is a designated seating position immediately behind a seat equipped with a restraining device, the control for releasing the device shall be readily accessible to the occupant of the seat equipped with the device and, if access to the control is required in order to exit from the vehicle, to the occupant of the designated seating position immediately behind the seat. S4.3.2 Performance of restraining device. S4.3.2.1 Static force. (a) Once engaged, the restraining device for a forward-facing seat shall not release or fail when a forward longitudinal force, in newtons, equal to 20 times the mass of the hinged or folding portion of the seat in kilograms multiplied by 9.8 is applied through the center of gravity of that portion of the seat. (b) Once engaged, the restraining device for a rearward-facing seat shall not release or fail when a rearward longitudinal force, in newtons, equal to 8 times the mass of the hinged or folding portion of the seat in kilograms multiplied by 9.8 is applied through the center of gravity of that portion of the seat. S4.3.2.2 *Acceleration.* Once engaged, the restraining device shall not release or fail when the device is subjected to an acceleration of 20 g., in the longitudinal direction opposite to that in which the seat folds. S4.4 *Labeling.* Seats not designated for occupancy while the vehicle is in motion shall be conspicuously labeled to that effect. S5. Test procedures. S5.1 Apply the forces specified in S4.2(a) and S4.2(b) as follows: S5.1.1 For a seat whose seat back and seat bench are attached to the vehicle by the same attachments. (a) For a seat whose seat back and seat bench are attached to the vehicle by the same attachments and whose height is adjustable, the loads are applied when the seat is in its highest adjustment position in accordance with the procedure or procedures specified in S5.1.1(a)(1), S5.1.1(a)(2), or S5.1.1(a)(3), as appropriate. (1) For a seat whose center of gravity is in a horizontal plane that is above the seat adjuster or that passes through any part of the adjuster, use, at the manufacturer's option, either S5.1.1(b) or, if physically possible, S5.1.1(c). (2) For a seat specified in S5.1.1(a)(1) for which it is not physically possible to follow the procedure in S5.1.1(c), use S5.1.1(b). (3) For a seat whose center of gravity is in a horizontal plane that is below the seat adjuster, use S5.1.1(c). (4) For all other seats whose seat back and seat bench are attached to the vehicle by the same attachments, use S5.1.1(b). (b) Secure a strut on each side of the seat from a point on the outside of the seat frame in the horizontal plane of the seat's center of gravity to a point on the frame as far forward as possible of the seat anchorages. Between the upper ends of the struts attach a rigid cross-member, in front of the seat back frame for rearward loading and behind the seat back frame for forward load- ing. Apply the force specified by S4.2(a) or S4.2(b) horizontally through the rigid cross-member as shown in Figure 1. (c) Find "cg1," the center of gravity of the portion of the seat that is above the lowest surface of the seat adjuster. On each side of the seat, secure a strut from a point on the outside of the seat frame in the horizontal plane of cg_1 to a point on the frame as far forward as possible of the seat adjusted position. Between the upper ends of the struts attach a rigid cross-member, in front of the seat back frame for rearward loading and behind the seat back frame for forward loading. Find "cg2," the center of gravity of the portion of the seat that is below the seat adjuster. Apply a force horizontally through cg1 equal to 20 times the weight of the portion of the seat represented by cg1, and simultaneously apply a force horizontally through cg2 equal to 20 times the weight of the portion of the seat represented by cg₂. S5.1.2 If the seat back and the seat bench are attached to the vehicle by different attachments, attach to each component a fixture capable of transmitting a force to that component. Apply forces, in newtons, equal to 20 times the mass of the seat back in kilograms multiplied by 9.8 m/s² horizontally through the center of gravity of the seat back, as shown in Figure 2 and apply forces, in newtons, equal to 20 times the mass of the seat bench in kilograms multiplied by 9.8 m/s² horizontally through the center of gravity of the seat bench, as shown in Figure 3. S5.2 Develop the moment specified in S4.2(d) as shown in Figure 4. S5.3 Apply the forces specified in S4.3.2.1(a) and (b) to a hinged or folding seat as shown in Figure 1 and to a hinged or folding seat back as shown in Figure 5. S5.4 Determine the center of gravity of a seat or seat component with all cushions and upholstery in place and with the head restraint in its fully extended design position. FIGURE 4 $[36\ FR\ 22902,\ Dec.\ 2,\ 1971,\ as\ amended\ at\ 52\ FR\ 7868,\ Mar.\ 13,\ 1987;\ 53\ FR\ 30434,\ Aug.\ 12,\ 1988;\ 59\ FR\ 37167,\ July\ 21,\ 1994;\ 60\ FR\ 13647,\ Mar.\ 14,\ 1995;\ 63\ FR\ 28935,\ May\ 27,\ 1998]$ EFFECTIVE DATE NOTE: At 63 FR 28935, May 27, 1998, §571.207 was amended by revising S5.1.2, effective May 27, 1999. For the convenience of the user, the superseded text follows: $\S\,571.207$ Standard No. 207; Seating systems. * * * * * S5.1.2 If the seat back and the seat bench are attached to the vehicle by different attachments, attach to each component a fixture capable of transmitting a force to that component. Apply forces, in newtons, equal to 20 times the mass of the seat in kilograms multiplied by 9.8 horizontally through the center of gravity of the seat back, as shown in Figure 2 and apply forces, in newtons, equal to 20 times the mass of the seat in kilograms multiplied by 9.8 horizontally through the center of gravity of the seat
bench, as shown in Figure 3. # §571.208 Standard No. 208; Occupant crash protection. S1. *Scope.* This standard specifies performance requirements for the protection of vehicle occupants in crashes. S2. Purpose. The purpose of this standard is to reduce the number of deaths of vehicle occupants, and the severity of injuries, by specifying vehicle crashworthiness requirements in terms of forces and accelerations measured on anthropomorphic dummies in test crashes, and by specifying equipment requirements for active and passive restraint systems. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses. In addition, S9, Pressure vessels and explosive devices, applies to vessels designed to contain a pressurized fluid or gas, and to explosive devices, for use in the above types of motor vehicles as part of a system designed to provide protection to occupants in the event of a crash. Notwithstanding any language to the contrary, any vehicle manufactured after March 19, 1997 and before September 1, 2001 that is subject to a dynamic crash test requirement conducted with unbelted dummies may meet the requirements specified in S13 instead of the applicable unbelted requirement. Compliance with S13 shall, for purposes of Standards No. 201, 203 and 209, be deemed as compliance with the unbelted frontal barrier requirements of S5.1 of this section. S4. General requirements. S4.1 Passenger cars. S4.1.1 Passenger cars manufactured from January 1, 1972, to August 31, 1973. Each passenger car manufactured from January 1, 1972, to August 31, 1973, inclusive, shall meet the requirements of S4.1.1.1, S4.1.1.2, or S4.1.1.3. A protection system that meets the require- ments of S4.1.1.1, or S4.1.1.2 may be installed at one or more designated seating positions of a vehicle that otherwise meets the requirements of S4.1.1.3. S4.1.1.1 First option—complete passive protection system. The vehicle shall meet the crash protection requirements of S5. by means that require no action by vehicle occupants. S4.1.1.2 Second option—lap belt protection system with belt warning. The vehicle shall— - (a) At each designated seating position have a Type 1 seatbelt assembly or a Type 2 seatbelt assembly with a detachable upper torso portion that conforms to S7.1 and S7.2 of this standard; - (b) At each front outboard designated seating position, have a seat belt warning system that conforms to S7.3; and - (c) Meet the frontal crash protection requirements of S5.1, in a perpendicular impact, with respect to anthropomorphic test devices in each front outboard designated seating position restrained only by Type 1 seat belt assemblies. S4.1.1.3 Third option—lap and shoulder belt protection system with belt warning. S4.1.1.3.1 Except for convertibles and open-body vehicles, the vehicle shall— $\,$ - (a) At each front outboard designated seating position have a Type 2 seatbelt assembly that conforms to §571.209 and S7.1 and S7.2 of this standard, with either an integral or detachable upper torso portion, and a seatbelt warning system that conforms to S7.3; - (b) At each designated seating position other than the front outboard positions, have a Type 1 or Type 2 seat belt assembly that conforms to §571.209 and to S7.1 and S7.2 of this standard; and - (c) When it perpendicularly impacts a fixed collision barrier, while moving longitudinally forward at any speed up to and including 30 m.p.h., under the test conditions of S8.1 with anthropomorphic test devices at each front outboard position restrained by Type 2 seatbelt assemblies, experience no complete separation of any loadbearing element of a seatbelt assembly or anchorage. S4.1.1.3.2 Convertibles and openbody type vehicles shall at each designated seating position have a Type 1 or Type 2 seatbelt assembly that conforms to §571.209 and to S7.1 and S7.2 of this standard, and at each front outboard designated seating position have a seatbelt warning system that conforms to S7.3. S4.1.2 Passenger cars manufactured on or after September 1, 1973, and before September 1, 1986. Each passenger car manufactured on or after September 1, 1973, and before September 1, 1986, shall meet the requirements of S4.1.2.1, S4.1.2.2 or S4.1.2.3. A protection system that meets the requirements of S4.1.2.1 or S4.1.2.2 may be installed at one or more designated seating positions of a vehicle that otherwise meets the requirements of S4.1.2.3. S4.1.2.1 First option—frontal/angular automatic protection system. The vehicle shall: - (a) At each front outboard designated seating position meet the frontal crash protection requirements of S5.1 by means that require no action by vehicle occupants; - (b) At the front center designated seating position and at each rear designated seating position have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 and to S7.1 and S7.2; and (c) Either. (1) Meet the lateral crash protection requirements of S5.2 and the rollover crash protection requirements of S5.3 by means that require no action by vehicle occupants; or (2) At each front outboard designated seating position have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 and S7.1 through S7.3, and that meets the requirements of S5.1 with front test dummies as required by S5.1, restrained by the Type 1 or Type 2 seat belt assembly (or the pelvic portion of any Type 2 seat belt assembly which has a detachable upper torso belt) in addition to the means that require no action by the vehicle occupant. S4.1.2.2 Second option—head-on automatic protection system. The vehicle shall (a) At each designated seating position have a Type 1 seat belt assembly or Type 2 seat belt assembly with a detachable upper torso portion that conforms to \$7.1 and \$7.2 of this standard. - (b) At each front outboard designated seating position, meet the frontal crash protecton requirements of S5.1, in a perpendicular impact, by means that require no action by vehicle occu- - (c) At each front outboard designated seating position, meet the frontal crash protection requirements of S5.1, in a perpendicular impact, with a test device restrained by a Type 1 seat belt assembly; and - (d) At each front outboard designated seating position, have a seat belt warning system that conforms to S7.3. S4.1.2.3 Third option—lap and shoulder belt protection system with belt warning. - S4.1.2.3.1 Except for convertibles and open-body vehicles, the vehicle shall- - (a) At each front outboard designated seating position have a seat belt assembly that conforms to S7.1 and S7.2 of this standard, and a seat belt warning system that conforms to S7.3. The belt assembly shall be either a Type 2 seat belt assembly with a nondetachable shoulder belt that conforms to Standard No. 209 (§571.209), or a Type 1 seat belt assembly such that with a test device restrained by the assembly the vehicle meets the frontal crash protection requirements of S5.1 in a perpendicular impact. - (b) At any center front designated seating position, have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 (§571.209) and to S7.1 and S7.2 of this standard, and a seat belt warning system that conforms to S7.3; and - (c) At each other designated seating position, have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 (§571.209) and S7.1 and S7.2 of this standard. S4.1.2.3.2 Convertibles and body type vehicles shall at each designated seating position have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 (§571.209) and to S7.1 and S7.2 of this standard, and at each front designated seating position have a seat belt warning system that conforms to S7.3. - S4.1.3 Passenger cars manufactured on or after September 1, 1986, and before September 1, 1989. - S4.1.3.1 Passenger cars manufactured on or after September 1, 1986, and before September 1, 1987. - \$4.1.3.1.1 Subject to \$4.1.3.1.2 and \$4.1.3.4, each passenger car manufactured on or after September 1, 1986, and before September 1, 1987, shall comply with the requirements of \$4.1.2.1, \$4.1.2.2 or \$4.1.2.3. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard. - S4.1.3.1.2 Subject to S4.1.3.4 and S4.1.5, the amount of passenger cars, specified in S4.1.3.1.1 complying with the requirements of S4.1.2.1 shall be not less than 10 percent of: - (a) The average annual production of passenger cars manufactured on or after September 1, 1983, and before September 1, 1986, by each manufacturer, or - (b) The manufacturer's annual production of passenger cars during the period specified in S4.1.3.1.1. - S4.1.3.1.3 A manufacturer may exclude convertibles which do not comply with the requirements of S4.1.2.1, when it is calculating its average annual production under S4.1.3.1.2(a) or its annual production under S4.1.3.1.2(b). - S4.1.3.2 Passenger cars manufactured on or after September 1, 1987, and before September 1, 1988. - S4.1.3.2.1 Subject to S4.1.3.2.2 and S4.1.3.4, each passenger car manufactured on or after September 1, 1987, and before September 1, 1988, shall comply with the requirements of S4.1.2.1, S4.1.2.2 or S4.1.2.3. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard. - S4.1.3.2.2 Subject to S4.1.3.4 and S4.1.5, the amount of passenger cars specified in S4.1.3.2.1 complying with the requirements of S4.1.2.1. shall be not less than 25 percent of: - (a) The average annual production of passenger cars manufactured on or - after September 1, 1984, and before September 1, 1987, by each manufacturer, or - (b) The manufacturer's annual production
of passenger cars during the period specified in S4.1.3.2.1. - S4.1.3.2.3 A manufacturer may exclude convertibles which do not comply with the requirements of S4.1.2.1, when it is calculating its average annual production under S4.1.3.2.2(a) or its annual production under S4.1.3.2.2(b). - S4.1.3.3 Passenger cars manufactured on or after September 1, 1988, and before September 1, 1989. - S4.1.3.3.1 Subject to S4.1.3.3.2 and S4.1.3.4, each passenger car manufactured on or after September 1, 1988, and before September 1, 1989, shall comply with the requirements of S4.1.2.1, S4.1.2.2 or S4.1.2.3. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard. - S4.1.3.3.2 Subject to S4.1.3.4 and S4.1.5, the amount of passenger cars specified in S4.1.3.3.1 complying with the requirements of S4.1.2.1 shall be not less than 40 percent of: - (a) The average annual production of passenger cars manufactured on or after September 1, 1985, and before September 1, 1988, by each manufacturer or - (b) The manufacturer's annual production of passenger cars during the period specified in S4.1.3.3.1. - S4.1.3.3.3 A manufacturer may exclude convertibles which do not comply with the requirements of S4.1.2.1, when it is calculating its average annual production under S4.1.3.3.2(a) or its annual production under S4.1.3.3.2(b). - S4.1.3.4 Calculation of complying passenger cars. - (a) For the purposes of calculating the numbers of cars manufactured under S4.1.3.1.2, S4.1.3.2.2, or S4.1.3.3.2 to comply with S4.1.2.1: - (1) Each car whose driver's seating position complies with the requirements of S4.1.2.1(a) by means not including any type of seat belt and whose front right seating position will comply with the requirements of S4.1.2.1(a) by any means is counted as 1.5 vehicles, and - (2) Each car whose driver's seating position complies with the requirements of S4.1.2.1(a) by means not including any type of seat belt and whose right front seat seating position is equipped with a manual Type 2 seat belt is counted as one vehicle. - (b) For the purposes of complying with S4.1.3.1.2, a passenger car may be counted if it: - (1) Is manufactured on or after September 1, 1985, but before September 1, 1986, and - (2) Complies with S4.1.2.1. - (c) For the purposes of complying with S4.1.3.2.2, a passenger car may be counted if it: - (1) Is manufactured on or after September 1, 1985, but before September 1, 1987, - (2) Complies with S4.1.2.1, and - (3) Is not counted toward compliance with S4.1.3.1.2 - (d) For the purposes of complying with S4.1.3.3.2, a passenger car may be counted if it: - (1) Is manufactured on or after September 1, 1985, but before September 1, 1988. - (2) Complies with S4.1.2.1, and - (3) Is not counted toward compliance with S4.1.3.1.2 or S4.1.3.2.2. - S4.1.3.5 Passenger cars produced by more than one manufacturer. - S4.1.3.5.1 For the purposes of calculating average annual production of passenger cars for each manufacturer and the amount of passenger cars manufactured by each manufacturer under S4.1.3.1.2, S4.1.3.2.2 or S4.1.3.3.2, a passenger car produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S4.1.3.5.2: - (a) A passenger car which is imported shall be attributed to the importer. - (b) A passenger car manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer which markets the vehicle. S4.1.3.5.2 A passenger car produced by more than one manufacturer shall be attributed to any one of the vehicle's manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S4.1.3.5.1. S4.1.4 Passenger cars manufactured on or after September 1, 1989, but before September 1, 1996. provided S4.1.4.1 Except as S4.1.4.2, each passenger car manufactured on or after September 1, 1989 shall comply with the requirements of S4.1.2.1. Any passenger car manufactured on or after September 1, 1989 and before September 1, 1993 whose driver's designated seating position complies with the requirements of S4.1.2.1(a) by means not including any type of seat belt and whose right front designated seating position is equipped with a manual Type 2 seat belt so that the seating position complies with the occupant crash protection requirements of S5.1, with the Type 2 seat belt assembly adjusted in accordance with S7.4.2, shall be counted as a vehicle complying with S4.1.2.1. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not know in the exercise of due care that such vehicle is not in conformity with this standard. S4.1.4.2 (a) Each passenger car, other than a convertible, manufactured before December 11, 1989 may be equipped with, and each passenger car, other than a convertible, manufactured on or after December 11, 1989 and before September 1, 1990 shall be equipped with a Type 2 seat belt assembly at every forward-facing rear outboard desegnated seating position. Type 2 seat belt assemblies installed pursuant to this provision shall comply with Standard No. 209 (49 CFR 571.209) and with S7.1.1 of this standard. (b) Except as provided in S4.1.4.2.1 and S4.1.4.2.2, each passenger car, other than a convertible, manufactured on or after September 1, 1990 and each convertible passenger car manufactured on or after September 1, 1991 shall be equipped with an integral Type 2 seat belt assembly at every forward-facing rear outboard designated seating position. Type 2 seat belt assemblies installed in compliance with this requirement shall comply with Standard No. 209 (49 CFR 571.209) and with S7.1 an S7.2 of this standard. If a Type 2 seat belt assembly installed in compliance with this requirement incorporates any webbing tension-relieving device, the vehicle owner's manual shall include the information specified in S7.4.2(b) dethis standard for the tension relieving device, and the vehicle shall comply with S7.4.2(c) of this standard. (c) As used in this section, "rear outboard designated seating position" means any "outboard designated seating position" (as that term is defined at 49 CFR 571.3) that is rearward of the front seat(s), except any designated seating position adjacent to a walkway that is located between the seat and the near side of the vehicle and is designed to allow access to more rearward seating positions. S4.1.4.2.1 Any rear outboard designated seating position with a seat that can be adjusted to be forward-facing and to face some other direction shall either: - (i) Meet the requirements of S4.1.4.2 with the seat in any position in which it can be occupied while the vehicle is in motion; or - (ii) When the seat is in its forward-facing position, have a Type 2 seat belt assembly with an upper torso restraint that conforms to S7.1 and S7.2 of this standard and that adjusts by means of an emergency locking retractor that conforms with Standard No. 209 (49 CFR 571.209), which upper torso restraint may be detachable at the buckle, and, when the seat is in any position in which it can be occupied while the vehicle is in motion, have a Type 1 seat belt or the pelvic portion of a Type 2 seat belt assembly that conforms to S7.1 and S7.2 of this standard. S4.1.4.2.2 Any rear outboard designated seating position on a readily removable seat (that is, a seat designed to be easily removed and replaced by means installed by the manufacturer for that purpose) in a vehicle manufactured on or after September 1, 1992 shall meet the requirements of S4.1.4.2 and may use an upper torso belt that detaches at either its upper or lower anchorage points, but *not* both anchorage points, to meet those requirements. The means for detaching the upper torso belt may use a pushbutton action. S4.1.5 Passenger cars manufactured on or after September 1, 1996. S4.1.5.1 Frontal/angular automatic protection system. - (a) Each passenger car manufactured on or after September 1, 1996 shall: - (1) At each front outboard designated seating position meet the frontal crash protection requirements of S5.1 by means that require no action by vehicle occupants; - (2) At any front designated seating positions that are not "outboard designated seating positions," as that term is defined at 49 CFR 571.3, and at any rear designated seating positions that are not "rear outboard designated seating positions," as that term is defined at S4.1.4.2(c) of this standard, have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 and S7.1 and S7.2 of this standard; and - (3) At each front designated seating position that is an "outboard designated seating position," as that term is defined at 49 CFR 571.3, and at each forward-facing rear designated seating position that is a "rear outboard designated seating positions," as that term is defined at S4.1.4.2(c) of this standard, have a Type 2 seat belt assembly that conforms to Standard No. 209 and S7.1 through S7.3 of this standard, and, in the case of the Type 2 seat belt assemblies installed at the front outboard designated seating positions, meet the frontal crash protection requirements with the appropriate anthropomorphic test dummy restrained by the Type 2 seat belt assembly in addition to the means that requires no action by the vehicle occupant. - (b) For the purposes of sections S4.1.5 through S4.1.5.3 and S4.2.6 through S4.2.6.2 of this standard, an *inflatable restraint system* means an air bag that is activated in a crash. S4.1.5.2 Passenger cars manufactured on or after September 1, 1996 and before September 1, 1997. S4.1.5.2.1 The
amount of passenger cars complying with the requirement of S4.1.5.1(a)(1) by means of an inflatable restraint system at the driver's and right front passenger's position shall be not less than 95 percent of the manufacturer's total production of passenger cars manufactured on or after September 1, 1996, and before September 1, 1997. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard. S4.1.5.2.2 Passenger cars produced by more than one manufacturer. S4.1.5.2.2.1 For the purpose of calculating the production of passenger cars by each manufacturer during the period specified in S4.1.5.2, a passenger car produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S4.1.5.2.2.2: (a) A passenger car that is imported into the United States shall be attributed to the importer. (b) A passenger car manufactured within the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle. S4.1.5.2.2.2 A passenger car produced by more than one manufacturer shall be attributed to any one of the vehicle's manufacturers, as specified in an express written contract, reported to the National Highway Traffic Safety Administration pursuant to part 585 of this chapter, between the manufacturer so specified and the manufacturer to which the vehicle otherwise would be attributed, pursuant to S4.1.5.2.2.1. S4.1.5.3 Passenger cars manufactured on or after September 1, 1997. Each passenger car manufactured on or after September 1, 1997 shall comply with the requirement of S4.1.5.1(a)(1) by means of an inflatable restraint system at the driver's and right front passenger's position. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard. S4.2 Trucks and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. As used in this section, vehicles manufactured for operation by persons with disabilities means vehicles that incorporate a level change device (e.g., a wheelchair lift or a ramp) for onloading or offloading an occupant in a wheelchair, an interior element of design intended to provide the vertical clearance necessary to permit a person in a wheelchair to move between the lift or ramp and the driver's position or to occupy that position, and either an adaptive control or special driver seating accommodation to enable persons who have limited use of their arms or legs to operate a vehicle. For purposes of this definition, special driver seating accommodations include a driver's seat easily removable with means installed for that purpose or with simple tools, or a driver's seat with extended adjustment capability to allow a person to easily transfer from a wheelchair to the driver's seat. S4.2.1 Trucks and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less, manufactured on or after January 1, 1976 and before September 1, 1991. Each truck and multipurpose passenger vehicle, with a gross vehicle weight rating of 10,000 pounds or less, manufactured before September 1, 1991, shall meet the requirements of S4.1.2.1, or at the option of the manufacturer, S4.1.2.2 or S4.1.2.3 (as specified for passenger cars), except that forward control vehicles manufactured prior to September 1, 1981, convertibles, openbody type vehicles, walk-in van-type trucks, motor homes, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles carrying chassis-mount campers may instead meet the requirements of S4.2.1.1 or S4.2.1.2. S4.2.1.1 First option—complete automatic protection system. The vehicle shall meet the crash protection requirements of S5 by means that require no action by vehicle occupants. S4.2.1.2 Second option—belt system. The vehicle shall have seat belt assemblies that conform to Standard 209 (49 CFR 571.209) installed as follows: (a) A Type 1 or Type 2 seat belt assembly shall be installed for each designated seating position in convertibles, open-body type vehicles, and walk-in van-type trucks. (b) In vehicles manufactured for operation by persons with disabilities, a Type 2 or Type 2A seat belt assembly shall be installed for the driver's seating position, a Type 2 seat belt assembly shall be installed for each other outboard designated seating position that includes the windshield header within the head impact area, and a Type 1 or Type 2 seat belt assembly shall be installed for each other designated seating position. (c) In all vehicles except those for which requirements are specified in S4.2.1.2 (a) or (b), a Type 2 seat belt assembly shall be installed for each outboard designated seating position that includes the windshield header within the head impact area, and a Type 1 or Type 2 seat belt assembly shall be installed for each other designated seating position. S4.2.2 Trucks and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less, manufactured on or after September 1, 1991 and before September 1, 1997. Except as provided in S4.2.4, each truck and multipurpose passenger vehicle, with a gross vehicle weight rating of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less, manufactured on or after September 1, 1991 and before September 1, 1997, shall meet the requirements of S4.1.2.1, or at the option of the manufacturer, S4.1.2.2 or S4.1.2.3 (as specified for passenger cars), except that convertibles, open-body type vehicles, walk-in van-type trucks, motor homes, vehicles designed to be exclusively sold to the $U.\bar{S}.$ Postal Service, vehicles carrying chassis-mount campers, and vehicles manufactured for operation by persons with disabilities may instead meet the requirements of S4.2.1.1 or S4.2.1.2. Each Type 2 seat belt assembly installed in a front outboard designated seating position in accordance with S4.1.2.3 shall meet the requirements of S4.6. S4.2.3 Trucks and multipurpose passenger vehicles manufactured on or after September 1, 1991 with either a GVWR or more than 8,500 pounds but not greater than 10,000 pounds or with an unloaded vehicle weight greater than 5,500 pounds and a GVWR of 10,000 pounds or less. Except as provided in S4.2.4, each truck and multipurpose passenger vehicle manufactured on or after September 1, 1991, that has either a gross vehicle weight rating which is greater than 8,500 pounds, but not greater than 10,000 pounds, or has an unloaded vehicle weight greater than 5,500 pounds and a GVWR of 10,000 pounds or less, shall meet the requirements of S4.1.2.1, or at the option of the manufacturer, S4.1.2.2 or S4.1.2.3 (as specified for passenger cars), except that convertibles, open-body type vehicles, walk-in vantype trucks, motor homes, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles carrying chassis-mount campers may instead meet the requirements of S4.2.1.1 or S4.2.1.2. S4.2.4 Rear outboard seating positions in trucks and multipurpose passenger vehicles manufactured on or after September 1, 1991 with a GVWR of 10,000 pounds or less. Except as provided in S4.2.4.2 and S4.2.4.3, each truck and each multipurpose passenger vehicle, other than a motor home, manufactured on or after September 1, 1991 that has a gross vehicle weight rating of 10,000 pounds or less shall be equipped with an integral Type 2 seat belt assembly at every forward-facing rear outboard designated seating position. Type 2 seat belt assemblies installed in compliance with this requirement shall comply with Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard. If a Type 2 seat belt assembly installed in compliance with this requirement incorporates any webbing tension-relieving device, the vehicle owner's manual shall include the information specified in S7.4.2(b) of this standard for the tension relieving device, and the vehicle shall comply with S7.4.2(c) of this standard. S4.2.4.1 As used in this section— (a) Motor home means a motor vehicle with motive power that is designed to provide temporary residential accommodations, as evidenced by the presence of at least four of the following facilities: cooking; refrigeration or ice box; self-contained toilet; heating and/or air conditioning; a potable water supply system including a faucet and a sink; and a separate 110–125 volt electrical power supply and/or an LP gas supply. (b) Rear outboard designated seating position means any "outboard designated seating position" (as that term is defined at 49 CFR 571.3) that is rearward of the front seat(s), except any designated seating positions adjacent to a walkway located between the seat and the side of the vehicle, which walkway is designed to allow access to more rearward seating positions. S4.2.4.2 Any rear outboard designated seating position with a seat that can be adjusted to be forward-facing and to face some other direction shall either: (i) Meet the requirements of S4.2.4 with the seat in any position in which it can be occupied while the vehicle is in motion; or (ii) When the seat is in its forward-facing position, have a Type 2 seat belt assembly with an upper torso restraint that conforms to S7.1 and S7.2 of this standard and that adjusts by means of an emergency locking retractor that conforms with Standard No. 209 (49 CFR 571.209), which upper torso restraint may be detachable at the buckle, and, when the seat is in any position in which it can be occupied while the vehicle is in motion, have a Type 1 seat belt or the pelvic portion of a Type 2 seat belt assembly that conforms to S7.1 and S7.2 of this standard. S4.2.4.3 Any
rear outboard designated seating position on a readily removable seat (that is, a seat designed to be easily removed and replaced by means installed by the manufacturer for that purpose) in a vehicle manufactured on or after September 1, 1992 shall meet the requirements of S4.2.4 and may use an upper torso belt that detaches at either its upper or lower anchorage point, but not both anchorage points, to meet those requirements. The means for detaching the upper torso belt may use a pushbutton action. S4.2.5 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1994, and before September 1, 1997. S4.2.5.1 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1994, and before September 1, 1995. S4.2.5.1.1 Subject to S4.2.5.1.2 and S4.2.5.5 and except as provided in S4.2.4, each truck, bus and multipurpose passenger vehicle, other than walk-in vantype trucks, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles manufactured for operation by persons with disabilities, with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that is manufactured on or after September 1, 1994 and before September 1, 1995, shall comply with the requirements of S4.1.2.1, S4.1.2.2, or S4.1.2.3 (as specified for passenger cars). A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of standard. S4.2.5.1.2 Subject to S4.2.5.5, the amount of trucks, buses, and multipurpose passenger vehicles specified in S4.2.5.1.1 complying with S4.1.2.1 (as specified for passenger cars) shall be not less than 20 percent of: (a) The average annual production of trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1991, and before September 1, 1994, by each manufacturer that produced such vehicles during each of those annual production periods, or (b) The manufacturer's total production of trucks, buses, and multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less during the period specified in S4.2.5.1.1. S4.2.5.2 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1995 and before September 1, 1996. S4.2.5.2.1 Subject to S4.2.5.2.2 and S4.2.5.5 and except as provided in S4.2.4, each truck, bus, and multipurpose passenger vehicle, other than walk-in vantype trucks, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles manufactured for operation by persons with disabilities, with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that is manufactured on or after September 1, 1995 and before September 1, 1996, shall comply with the requirements of S4.1.2.1, S4.1.2.2, or S4.1.2.3 (as specified for passenger cars). A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard. S4.2.5.2.2 Subject to S4.2.5.5, the amount of trucks, buses, and multipurpose passenger vehicles specified in S4.2.5.2.1 complying with S4.1.2.1 (as specified for passenger cars) shall be not less than 50 percent of: (a) The average annual production of trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1992, and before September 1, 1995, by each manufacturer that produced such vehicles during each of those annual production periods, or (b) The manufacturer's total production of trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less during the period specified in S4.2.5.2.1. S4.2.5.3 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1996 and before September 1, 1997. S4.2.5.3.1 Subject to S4.2.5.3.2 and S4.2.5.5 and except as provided in S4.2.4, each truck, bus, and multipurpose passenger vehicle, other than walk-in vantype trucks, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles manufactured for operation by persons with disabilities, with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that is manufactured on or after September 1, 1996 and before September 1, 1997, shall comply with the requirements of S4.1.2.1, S4.1.2.2, or S4.1.2.3 (as specified for passenger cars). A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard. S4.2.5.3.2 Subject to S4.2.5.5, the amount of trucks, buses, and multipurpose passenger vehicles specified in S4.2.5.3.1 complying with S4.1.2.1 (as specified for passenger cars) shall be not less than 90 percent of: (a) The average annual production of trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1993, and before September 1, 1996, by each manufacturer that produced such vehicles during each of those annual production periods, or (b) The manufacturer's total production of trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less during the period specified in S4.2.5.3.1. S4.2.5.4 Alternative phase-in schedule. A manufacturer may, at its option, comply with the requirements of this section instead of complying with the requirements set forth in S4.2.5.1, S4.2.5.2, and S4.2.5.3. (a) Except as provided in S4.2.4, each truck, bus, and multipurpose passenger vehicle, other than walk-in van-type trucks, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles manufactured for operation by persons with disabilities, with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that is manufactured on or after September 1, 1994 and before September 1, 1995 shall comply with the requirements of S4.1.2.1, S4.1.2.2, or S4.1.2.3 (as specified for passenger cars). (b) Except as provided in S4.2.4, each truck, bus, and multipurpose passenger vehicle, other than walk-in van-tape trucks, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles manufactured for operation by persons with disabilities, with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that is manufactured on or after September 1, 1995 shall comply with the requirements of S4.1.2.1 (as specified for passenger cars) of this standard. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard. (c) Each truck, bus, and multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1995, but before September 1, 1998, whose driver's seating position complies with the requirements of S4.1.2.1(a) of this standard by means not including any type of seat belt and whose right front passenger's seating position is equipped with a manual Type 2 seat belt that complies with S5.1 of this standard, with the seat belt assembly adjusted in accordance with S7.4.2, shall be counted as a vehicle complying with S4.1.2.1. S4.2.5.5 Calculation of complying trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less. - (a) For the purposes of the calculations required in S4.2.5.1.2, S4.2.5.2.2, and S4.2.5.3.2 of the number of trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that comply with S4.1.2.1 (as specified for passenger cars): - (1) Each truck, bus, and multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less whose driver's seating position complies with the requirements of S4.1.2.1(a) by means not including any type of seat belt and whose front right seating position complies with the requirements of S4.1.2.1(a) by any means is counted as 1.5 vehicles, and - (2) Each truck, bus, and multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less whose driver's seating position complies with the requirements of S4.1.2.1(a) by means not including any type of seat belt and whose right front passenger's seating position is equipped with a manual Type 2 seat belt that complies with S5.1 of this standard, with the seat belt assembly adjusted in accord- ance with S7.4.2, is counted as one vehicle. - (3) Each truck, bus, and multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that is manufactured in two or more stages or that is altered
(within the meaning of \$567.7 of this chapter) after having previously been certified in accordance with part 567 of this chapter is not subject to the requirements of S4.2.5.1.2, S4.2.5.2.2, and S4.2.5.3.2. Such vehicles may be excluded from all calculations of compliance with S4.2.5.1.2, S4.2.5.2.2, and S4.2.5.3.2. - (b) For the purposes of complying with S4.2.5.1.2, a truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less may be counted if it: - (1) Is manufactured on or after September 1, 1992, but before September 1, 1994, and - (2) Is certified as complying with S4.1.2.1 (as specified for passenger cars). - (c) For the purposes of complying with S4.2.5.2.2, a truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less may be counted if it: - (1) Is manufactured on or after September 1, 1992, but before September 1, 1995 - (2) Is certified as complying with S4.1.2.1 (as specified for passenger cars), and - (3) Is not counted toward compliance with S4.2.5.1.2. - (d) For the purposes of complying with S4.2.5.3.2, a truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less may be counted if it: - (1) Is manufactured on or after September 1, 1992, but before September 1, 1996, - (2) Is certified as complying with S4.1.2.1 (as specified for passenger cars), and - (3) Is not counted toward compliance with S4.2.5.1.2 or S4.2.5.2.2. - S4.2.5.6 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less produced by more than one manufacturer. S4.2.5.6.1 For the purposes of calculating average annual production for each manufacturer and the amount of vehicles manufactured by each manufacturer under S4.2.5.1.2, S4.2.5.2.2, or S4.2.5.3.2, a truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S4.2.5.6.2: (a) A vehicle that is imported shall be attributed to the importer. (b) A vehicle that is manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle. S4.2.5.6.2 A truck, bus, or multipurpose passenger vehicle with, GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less produced by more than one manufacturer shall be attributed to any one of the vehicle's manufacturers specified in an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S4.2.5.6.1 of this standard. S4.2.6 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1997. Each truck, bus, and multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less, which is manufactured on or after September 1, 1997, shall comply with the requirements of S4.1.5.1 of this standard (as specified for passenger cars), except that walk-in van-type trucks and vehicles designed to be sold exclusively to the U.S. Postal Service may meet the requirements of S4.2.1.1 or S4.2.1.2 of this standard instead of the requirements of S4.1.5.1. S4.2.6.1 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manu- factured on or after September 1, 1997 and before September 1, 1998. S4.2.6.1.1 The amount of trucks, buses, and multipurpose passenger vehicles complying with the requirements of S4.1.5.1(a)(1) of this standard by means of an inflatable restraint system shall be not less than 80 percent of the manufacturer's total combined production of subject vehicles manufactured on or after September 1, 1997 and before September 1, 1998. Each truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1997 and before September 1, 1998, whose driver's seating position complies with S4.1.5.1(a)(1) by means of an inflatable restraint system and whose right front passenger's seating position is equipped with a manual Type 2 seat belt assembly that complies with S5.1 of this standard, with the seat belt assembly adjusted in accordance with S7.4.2 of this standard, shall be counted as a vehicle complying with S4.1.5.1(a)(1) by means of an inflatable restraint system. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard. S4.2.6.1.2 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less produced by more than one manufacturer. S4.2.6.1.2.1 For the purpose of calculating the production by each manufacturer during the period specified in S4.2.6.1.1, a truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S4.2.6.1.2.2: (a) A vehicle that is imported into the United States shall be attributed to the importer. (b) A vehicle manufactured within the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle. S4.2.6.1.2.2 A truck, bus, or multipurpose passenger vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle's manufacturers, as specified in an express written contract, reported to the National Highway Traffic Safety Administration pursuant to part 585 of this chapter, between the manufacturer so specified and the manufacturer to which the vehicle otherwise would be attributed, pursuant to S4.2.6.1.2.1. S4.2.6.2 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1998. Each truck, bus, or multipurpose vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1998 shall comply with the requirement of S4.1.5.1(a)(1) by means of an inflatable restraint system at the driver's and right front passenger's position. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard. S4.3 Trucks and multipurpose passenger vehicles, with GVWR of more than 10,000 pounds. S4.3.1 Trucks and multipurpose passenger vehicles with a GVWR of more than 10,000 pounds, manufactured in or after January 1, 1972 and before September 1, 1990. Each truck and multipurpose passenger vehicle with a gross vehicle weight rating of more than 10,000 pounds, manufactured on or after January 1, 1972 and before September 1, 1990, shall meet the requirements of S4.3.1.1 or S4.3.1.2. A protection system that meets the requirements of Š4.3.1.1 may be installed at one or more designated seating positions of a vehicle that otherwise meets the requirements of S4.3.1.2. S4.3.1.1 First option—complete passenger protection system. The vehicle shall meet the crash protection requirements of S5 by means that require no action by vehicle occupants. S4.3.1.2 Second option—belt system. The vehicle shall, at each designated seating position, have either a Type 1 or a Type 2 seat belt assembly that conforms to S571.209. S4.3.2 Trucks and multipurpose passenger vehicles with a GVWR of more than 10,000 pounds, manufactured on or after September 1, 1990. Each truck and multipurpose passenger vehicle with a gross vehicle weight rating of more than 10,000 pounds, manufactured on or after September 1, 1990, shall meet the requirements of S4.3.2.1 or S4.3.2.2. A protection system that meets the requirements of S4.3.2.1 may be installed at one or more designated seating positions of a vehicle that otherwise meets the requirements of S4.3.2.2. S4.3.2.1 First option—complete passenger protection system. The vehicle shall meet the crash protection requirements of S5 by means that require no action by vehicle occupants. S4.3.2.2 Second option—belt system. The vehicle shall, at each designated seating position, have either a Type 1 or a Type 2 seat belt assembly that conforms to §571.209 of this part and S7.2 of this Standard. A Type 1 belt assembly or the pelvic portion of a dual retractor Type 2 belt assembly installed at a front outboard seating position shall include either an emergency locking retractor or an automatic locking retractor. If a seat belt assembly installed at a front outboard seating position includes an automatic locking retractor for the lap belt or the lap belt portion, that seat belt assembly shall comply with the following: (a) An automatic locking retractor used at a front outboard seating position that has some type of suspension system for the seat shall be attached to the seat structure that moves as the suspension system functions. (b) The lap belt or lap belt portion of a seat belt assembly equipped with an automatic locking retractor that is installed at a front outboard seating
position must allow at least ¾ inch, but less than 3 inches, of webbing movement before retracting webbing to the next locking position. (c) Compliance with S4.3.2.2(b) of this standard is determined as follows: (1) The seat belt assembly is buckled and the retractor end of the seat belt assembly is anchored to a horizontal surface. The webbing for the lap belt or lap belt portion of the seat belt assembly is extended to 75 percent of its length and the retractor is locked after the initial adjustment. - (2) A load of 20 pounds is applied to the free end of the lap belt or the lap belt portion of the belt assembly (i.e., the end that is not anchored to the horizontal surface) in the direction away from the retractor. The position of the free end of the belt assembly is recorded. - (3) Within a 30 second period, the 20 pound load is slowly decreased, until the retractor moves to the next locking position. The position of the free end of the belt assembly is recorded again. - (4) The difference between the two positions recorded for the free end of the belt assembly shall be at least ¾ inch but less than 3 inches. S4.4 Buses. S4.4.1 Buses manufactured on or after January 1, 1972 and before September 1, 1990. Each bus manufactured on or after January 1, 1972 and before September 1, 1990, shall meet the requirements of S4.4.1.1 or S4.4.1.2. S4.4.1.1 First option—complete passenger protection system—driver only. The vehicle shall meet the crash protection requirements of S5, with respect to an anthropomorphic test dummy in the driver's designated seating position, by means that require no action by vehicle occupants. S4.4.1.2 Second option—belt system—driver only. The vehicle shall, at the driver's designated seating position, have either a Type 1 or a Type 2 seat belt assembly that conforms to S571.209. S4.4.2 Buses manufactured on or after September 1, 1990. Each bus manufactured on or after September 1, 1990, shall meet the requirements of S4.4.2.1 or S4.4.2.2. S4.4.2.1 First option—complete passenger protection system—driver only. The vehicle shall meet the crash protection requirements of S5, with respect to an anthropomorphic test dummy in the driver's designated seating position, by means that require no action by vehicle occupants. S4.4.2.2 Second option—belt system driver only. The vehicle shall, at the driver's designated seating position, have either a Type 1 or a Type 2 seat belt assembly that conforms to §571.209 of this part and S7.2 of this Standard. A Type 1 belt assembly or the pelvic portion of a dual retractor Type 2 belt assembly installed at the driver's seating position shall include either an emergency locking retractor or an automatic locking retractor. If a seat belt assembly installed at the driver's seating position includes an automatic locking retractor for the lap belt or the lap belt portion, that seat belt assembly shall comply with the following: (a) An automatic locking retractor used at a driver's seating position that has some type of suspension system for the seat shall be attached to the seat structure that moves as the suspension system functions. (b) The lap belt or lap belt portion of a seat belt assembly equipped with an automatic locking retractor that is installed at the driver's seating position must allow at least ¾ inch, but less than 3 inches, of webbing movement before retracting webbing to the next locking position. (c) Compliance with S4.4.2.2(b) of this standard is determined as follows: - (1) The seat belt assembly is buckled and the retractor end of the seat belt assembly is anchored to a horizontal surface. The webbing for the lap belt or lap belt portion of the seat belt assembly is extended to 75 percent of its length and the retractor is locked after the initial adjustment. - (2) A load of 20 pounds is applied to the free end of the lap belt or the lap belt portion of the belt assembly (i.e., the end that is not anchored to the horizontal surface) in the direction away from the retractor. The position of the free end of the belt assembly is recorded. - (3) Within a 30 second period, the 20 pound load is slowly decreased, until the retractor moves to the next locking position. The position of the free end of the belt assembly is recorded again. - (4) The difference between the two positions recorded for the free end of the belt assembly shall be at least ¾ inch but less than 3 inches. S4.4.3 Buses manufactured on or after September 1, 1991. \$4.4.3.1 Each bus with a gross vehicle weight rating of more than 10,000 pounds shall comply with the requirements \$4.4.2.1 or \$4.4.2.2. S4.4.3.2 Except as provided S4.4.3.2.2 and S4.4.3.2.3, each bus with a gross vehicle weight rating of 10,000 pounds or less, except a school bus, shall be equipped with an integral Type 2 seat belt assembly at the driver's designated seating position and at the front and every rear forward-facing outboard designated seating position, and with a Type 1 or Type 2 seat belt assembly at all other designated seating positions. Type 2 seat asemblies installed in compliance with this requirement shall comply with Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard. If a Type 2 seat belt assembly installed in compliance with this requirement incorporates any webbing tension-relieving device, the vehicle owner's manual shall include the information specified in S7.4.2(b) of this standard for the tension relieving device, and the vehicle shall comply with S7.4.2(c) of this standard. S4.4.3.2.1 As used in this section, a "rear outboard designated position" means any "outboard designated seating position" (as that term is defined at 49 CFR 571.3) that is rearward of the front seat(s), except any designated seating positions adjacent to a walkway located between the seat and the side of the vehicle, which walkway is designed to allow access to more rearward seating positions. S4.4.3.2.2 Any rear outboard designated seating position with a seat that can be adjusted to be forward-facing and to face some other direction shall either: - (i) Meet the requirements of S4.4.3.2 with the seat in any position in which it can be occupied while the vehicle is in motion; or - (ii) When the seat is in its forward-facing position, have a Type 2 seat belt assembly with an upper torso restraint that conforms to S7.1 and S7.2 of this standard and that adjusts by means of an emergency locking retractor that conforms with Standard No. 209 (49 CFR 571.209), which upper torso re- straint may be detachable at the buckle, and, when the seat is in any position in which it can be occupied while the vehicle is in motion, have a Type 1 seat belt or the pelvic portion of a Type 2 seat belt assembly that conforms to S7.1 and S7.2 of this standard. S4.4.3.2.3 Any rear outboard designated seating position on a readily removable seat (that is, a seat designed to be easily removed and replaced by means installed by the manufacturer for that purpose) in a vehicle manufactured on or after September 1, 1992 shall meet the requirements of S4.4.3.2 and may use an upper torso belt that detaches at either its upper or lower anchorage point, but not both anchorage points, to meet those requirements. The means for detaching the upper torso belt may use a pushbutton action. S4.4.3.3 Each school bus with a gross vehicle weight rating of 10,000 pounds or less shall be equipped with an integral Type 2 seat belt assembly at the driver's designated seating position and at the right front passenger's designated seating position (if any), and with a Type 1 or Type 2 seat belt assembly at all other designated seating positions. Type 2 seat belt assemblies installed in compliance with this requirement shall comply with Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard. The lap belt portion of a Type 2 seat belt assembly installed at the driver's designated seating position and at the right front passenger's designated seating position (if any) shall include either an emergency locking retractor or an automatic locking retractor, which retractor shall not retract webbing to the next locking position until at least 3/4 inch of webbing has moved into the retractor. In determining whether an automatic locking retractor complies with this requirement, the webbing is extended to 75 percent of its length and the retractor is locked after the initial adjustment. If a Type 2 seat belt assembly installed in compliance with this requirement incorporates any webbing tension-relieving device, the vehicle owner's manual shall include the information specified in S7.4.2(b) of this standard for the tension-relieving device, and the vehicle shall comply with S7.4.2(c) of this standard. S4.4.4 Buses with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1994. Each bus with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1984 shall comply with the requirements of S4.2.5 and S4.2.6 of this standard, as applicable, for front seating positions, and with the requirements of S4.4.3.2 or S4.4.3.3 of this standard, as applicable, for all rear seating positions. S4.5 Other general requirements. S4.5.1 Labeling and owner's manual information. The labels specified in S4.5.1 (b), (c), and (e) of this standard are not required for vehicles that have a smart passenger air bag meeting the criteria specified in S4.5.5 of this standard. (a) Air bag maintenance or replacement information. If the vehicle manufacturer recommends periodic maintenance or replacement of an inflatable restraint system, as that term is defined in S4.1.5.1(b) of this standard, installed in a vehicle, that vehicle shall be labeled with the recommended schedule for maintenance or replacement. The schedule shall be specified by month and year, or in terms of vehicle mileage, or by intervals measured from the date
appearing on the vehicle certification label provided pursuant to 49 CFR part 567. The label shall be permanently affixed to the vehicle within the passenger compartment and lettered in English in block capital and numerals not less than three thirtyseconds of an inch high. This label may be combined with the label required by S4.5.1(b) of this standard to appear on the sun visor. If some regular maintenance or replacement of the inflatable restraint system(s) in a vehicle is recommended by the vehicle manufacturer, the owner's manual shall also set forth the recommended schedule for maintenance or replacement. (b) Sun visor warning label. (1) Vehicles manufactured before February 25, 1997. Each vehicle shall comply with either S4.5.1(b)(1)(i) or S4.5.1(b)(1)(ii), and with S4.5.1(b)(1)(iii). At the manufacturer's option, the vehicle may comply with the requirements of S4.5.1(b)(2), instead of the requirements of S4.5.1(b)(1). (i) Each front outboard seating position that provides an inflatable restraint shall have a label permanently affixed to the sun visor for that seating position on either side of the sun visor, at the manufacturer's option. Except as provided in S4.5.1(b)(1)(v), this label shall read: CAUTION—TO AVOID SERIOUS IN-JURY: For maximum safety protection in all types of crashes, you must always wear your safety belt. Do not install rearward-facing child seats in any front passenger seat posi- Do not sit or lean unnecessarily close to the air bag. Do not place any objects over the air bag or between the air bag and yourself. See the owner's manual for further information and explanations. (ii) If the vehicle is equipped with a cutoff device permitted by S4.5.4 of this standard, each front outboard seating position that provides an inflatable restraint shall have a label permanently affixed to the sun visor for such seating position on either side of the sun visor, at the manufacturer's option. Except as provided in S4.5.1(b)(1)(v), this label shall read: CAUTION—TO AVOID SERIOUS INJURY: For maximum safety protection in all types of crashes, you must always wear your safety belt. Do not install rearward-facing child seats in any front passenger seat position, unless the air bag is off. Do not sit or lean unnecessarily close to the air bag. Do not place any objects over the air bag or between the air bag and yourself. See the owner's manual for further information and explanations. - (iii) The coloring of the label shall contrast with the background of the label. - (iv) If the vehicle does not have an inflatable restraint at any front seating position other than that for the driver, the statement "Do not install rearward-facing child seats in any front passenger seat position" may be omitted from the label. - (v) At the manufacturer's option, the word "warning" may replace the word "caution" in the labels specified in S4.5.1(b)(1)(i) and S4.5.1(b)(1)(ii). - (2) Vehicles manufactured on or after February 25, 1997. Each vehicle shall have a label permanently affixed to either side of the sun visor, at the manufacturer's option, at each front outboard seating position that is equipped with an inflatable restraint. The label shall conform in content to the label shown in either Figure 6a or 6b of this standard, as appropriate, and shall comply with the requirements of S4.5.1(b)(2)(i) through S4.5.1(b)(2)(v). - (i) The heading area shall be yellow with the word "warning" and the alert symbol in black. - (ii) The message area shall be white with black text. The message area shall be no less than 30 square cm. - (iii) The pictogram shall be black with a red circle and slash on a white background. The pictogram shall be no less than 30 mm in diameter. - (iv) If the vehicle does not have an inflatable restraint at any front seating position other than that for the driver, the label shown in Figure 6a may be modified by omitting the pictogram and changing the message text to read: DEATH or SERIOUS INJURY can occur. - Sit as far back as possible from the air bag. - ALWAYS use SEAT BELTS and CHILD RESTRAINTS. - The BACK SEAT is the SAFEST place for children. - (v) If the vehicle does not have a back seat, the label shown in Figure 6a or 6b may be modified by omitting the statement: "The BACK SEAT is the SAFEST place for children." - (3) Except for the information on an air bag maintenance label placed on the visor pursuant to S4.5.1(a) of this standard, no other information shall appear on the same side of the sun visor to which the sun visor warning label is affixed. Except for the information in an air bag alert label placed on the visor pursuant to S4.5.1(c) of this standard, or in a utility vehicle label that contains the language required by 49 CFR 575.105(c)(1), no other information about air bags or the need to wear seat belts shall appear anywhere on the sun visor. - (c) Air bag alert label—(1) Vehicles manufactured before February 25, 1997. If the label required by S4.5.1(b)(1) for a sun visor (other than the sun visor for the driver seating position) is not visible when the sun visor is in the stowed position, an air bag alert label shall be permanently affixed either to that visor so that the label is visible when the visor is in that position or to the cover of the air bag for that seating position, at the option of the manufacturer. An air bag alert label affixed to an air bag cover pursuant to this paragraph shall read "Air Bag. See Sun Visor." An air bag alert label affixed to a sun visor pursuant to this paragraph shall read "Air Bag. See Other Side." The color of the label shall contrast with the background of the label. If a manufacturer chooses to comply with the requirements of S4.5.1(b)(2) rather than the requirements of S4.5.1(b)(1), the air bag alert label shall comply with the requirements of S4.5.1(c)(2). - (2) Vehicles manufactured on or after February 25, 1997. If the label required by S4.5.1(b)(2) is not visible when the sun visor is in the stowed position, an air bag alert label shall be permanently affixed to that visor so that the label is visible when the visor is in that position. The label shall conform in content to the sun visor label shown in figure 6c of this standard, and shall comply with the requirements of S4.5.1(c)(2)(i) through S4.5.1(c)(2)(iii). - (i) The message area shall be black with yellow text. The message area shall be no less than 20 square cm. - (ii) The pictogram shall be black with a red circle and slash on a white background. The pictogram shall be no less than 20 mm in diameter. - (iii) If the vehicle does not have an inflatable restraint at any front seating position other than that for the driver, the pictogram may be omitted from the label shown in Figure 6c. - (d) At the option of the manufacturer, the requirements in S4.5.1(b) and S4.5.1(c) for labels that are permanently affixed to specified parts of the vehicle may instead be met by permanent marking or molding of the required information. (e) Label on the dash. Each vehicle manufactured on or after February 25, 1997 that is equipped with an inflatable restraint for the passenger position shall have a label attached to a location on the dashboard or the steering wheel hub that is clearly visible from all front seating positions. The label need not be permanently affixed to the vehicle. This label shall conform in content to the label shown in Figure 7 of this standard, and shall comply with the requirements of S4.5.1(e)(2)(i) through S4.5.1(e)(2)(iv). (i) The heading area shall be yellow with the word "warning" and the alert symbol in black. (ii) The message area shall be white with black text. The message area shall be no less than 30 square cm. (iii) If the vehicle does not have a back seat, the label shown in Figure 7 may be modified by omitting the statement: "The back seat is the safest place for children 12 and under." (iv) For vehicles manufactured before September 1, 1997, the label shown in Figure 7 may be modified by replacing the word "can" with the word "may" in the statement: "Children can be killed or injured by passenger air bag." (f) Information to appear in owner's manual. The owner's manual for any vehicle equipped with an inflatable restraint system shall include a description of the vehicle's air bag system in an easily understandable format. The owner's manual shall include a statement to the effect that the vehicle is equipped with an air bag and a lap/ shoulder belt at one or both front outboard seating positions, and that the air bag is a supplemental restraint at those seating positions. The information shall emphasize that all occupants, including the driver, should always wear their seat belts whether or not an air bag is also provided at their seating position to minimize the risk of severe injury or death in the event of a crash. The owner's manual shall also provide any necessary precautions regarding the proper positioning of occupants, including children, at seating positions equipped with air bags to ensure maximum safety protection for those occupants. The owner's manual shall also explain that no objects should be placed over or near the air bag on the steering wheel or on the instrument panel, because any such objects could cause harm if the vehicle is in a crash severe enough to cause the air bag to inflate. S4.5.2 Readiness indicator. An occupant protection system that deploys in the event of a crash shall have a monitoring system with a readiness indicator. The indicator shall monitor its own readiness and shall be clearly visible from the driver's designated seating position. If the vehicle is equipped with a single readiness indicator for both a driver and passenger air bag, and if the vehicle is equipped with an on-off switch permitted by S4.5.4 of this standard, the readiness indicator shall monitor the readiness of the driver air bag when the passenger air bag has been deactivated by means of the onoff switch, and shall not illuminate solely because
the passenger air bag has been deactivated by the manual onoff switch. A list of the elements of the system being monitored by the indicator shall be included with the information furnished in accordance with S4.5.1 but need not be included on the label. S4.5.3 Automatic belts. Except as provided in S4.5.3.1, a seat belt assembly that requires no action by vehicle occupants (hereinafter referred to as an "automatic belt") may be used to meet the crash protection requirements of any option under S4. and in place of any seat belt assembly otherwise required by that option. S4.5.3.1. An automatic belt that provides only pelvic restraint may not be used pursuant to S4.5.3 to meet the requirements of an option that requires a Type 2 seat belt assembly. An automatic belt may not be used pursuant to S4.5.3 to meet the requirements of S4.1.5.1(a)(3) for a Type 2 seat belt assembly at any seating position equipped with an inflatable restraint system pursuant to S4.1.5.2, S4.1.5.3, S4.2.6.1, or S4.2.6.2 of this standard. S4.5.3.2 An automatic belt, furnished pursuant to S4.5.3, that provides both pelvic and upper torso restraint may have either a detachable or nondetachable upper torso portion, notwithstanding provisions of the option under which it is furnished. S4.5.3.3 An automatic belt furnished pursuant to S4.5.3 shall: - (a) Conform to S7.1 and have a single emergency release mechanism whose components are readily accessible to a seated occupant. - (b) In place of a warning system that conforms to S7.3 of this standard, be equipped with the following warning system: At the left front designated seating position (driver's position), a warning system that activates a continuous or intermittent audible signal for a period of not less than 4 seconds and not more than 8 seconds and that activates a continuous or flashing warning light visible to the driver for not less than 60 seconds (beginning when the vehicle ignition switch is moved to the "on" or the "start" position) when condition (A) exists simultaneously with condition (B), and that activates a continuous or flashing warning light, visible to the driver, displaying the identifying symbol for the seat belt telltale shown in Table 2 of Standard No. 101 (49 CFR 571.101), or, at the option of the manufacturer if permitted by Standard No. 101, displaying the words "Fasten Seat Belts" or "Fasten Belts," for as long as condition (A) exists simultaneously with condition (C). - (A) The vehicle's ignition switch is moved to the "on" position or to the "start" position. - (B) The driver's automatic belt is not in use, as determined by the belt latch mechanism not being fastened, or, if the automatic belt is non-detachable, by the emergency release mechanism being in the released position. In the case of motorized automatic belts, the determination of use shall be made once the belt webbing is in its locked protective mode at the anchorage point. - (C) The belt webbing of a motorized automatic belt system is not in its locked, protective mode at the anchorage point. - S4.5.3.4 An automatic belt furnished pursuant to S4.5.3 that is not required to meet the perpendicular frontal crash protection requirements of S5.1 shall conform to the webbing, attachment hardware, and assembly performance requirements of Standard No. 209. \$4.5.3.5 A replacement automatic belt shall meet the requirements of \$4.1(k) of Standard No. 209. S4.5.4 Passenger Air Bag Manual On-Off Switch. Passenger cars, trucks, buses, and multipurpose passenger vehicles manufactured before September 1, 2000 may be equipped with a device that deactivates the air bag installed at the right front passenger position in the vehicle, if all the conditions in S4.5.4.1 through 4.5.4.4 are satisfied. S4.5.4.1 The vehicle complies with either S4.5.4.1(a) or S4.5.4.1(b). - (a) The vehicle has no forward-facing designated seating positions to the rear of the front seating positions. - (b) With the seats and seat backs adjusted as specified in S8.1.2 and S8.1.3, the distance, measured along a longitudinal horizontal line tangent to the highest point of the rear seat bottom in the longitudinal vertical plane described in either S4.5.4.1(b)(1) or S4.5.4.1(b)(2), between the rearward surface of the front seat back and the forward surface of the rear seat back is less than 720 millimeters. - (1) In a vehicle equipped with front bucket seats, the vertical plane at the centerline of the driver's seat cushion. - (2) In a vehicle equipped with front bench seating, the vertical plane which passes through the center of the steering wheel rim. - \$4.5.4.2 The device is operable by means of the ignition key for the vehicle. The device shall be separate from the ignition switch for the vehicle, so that the driver must take some action with the ignition key other than inserting it or turning it in the ignition switch to deactivate the passenger air bag. Once deactivated, the passenger air bag shall remain deactivated until it is reactivated by means of the device. - S4.5.4.3 A telltale light on the dashboard shall be clearly visible from all front seating positions and shall be illuminated whenever the passenger air bag is deactivated. The telltale: - (a) Shall be yellow; - (b) Shall have the identifying words "AIR BAG OFF" on the telltale or within 25 millimeters of the telltale; - (c) Shall remain illuminated for the entire time that the passenger air bag is deactivated; - (d) Shall not be illuminated at any time when the passenger air bag is not deactivated; and, - (e) Shall not be combined with the readiness indicator required by S4.5.2 of this standard. - S4.5.4.4 The vehicle owner's manual shall provide, in a readily understandable format: - (a) Complete instructions on the operation of the on-off switch; - (b) A statement that the on-off switch should only be used when a member of a passenger risk group identified in the request form in Appendix B to part 595 of this chapter is occupying the right front passenger seating position; and, - (c) A warning about the safety consequences of using the on-off switch at other times. - S4.5.5 Smart passenger air bags. For purposes of this standard, a smart passenger air bag is a passenger air bag that: - (a) Provides an automatic means to ensure that the air bag does not deploy when a child seat or child with a total mass of 30 kg or less is present on the front outboard passenger seat, or - (b) Incorporates sensors, other than or in addition to weight sensors, which automatically prevent the air bag from deploying in situations in which it might have an adverse effect on infants in rear-facing child seats, and unbelted or improperly belted children, or - (c) Is designed to deploy in a manner that does not create a risk of serious injury to infants in rear-facing child seats, and unbelted or improperly belted children. - S4.6 Dynamic testing of manual belt systems. - S4.6.1 Each truck and multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded weight of less than 5,500 pounds that is manufactured on or after September 1, 1991, and is equipped with a Type 2 seat belt assembly at a front outboard designated seating position pursuant to S4.1.2.3 shall meet the frontal crash protection requirements of S5.1 at those designated seating positions with a test dummy restrained by a Type 2 seat belt assembly that has been adjusted in accordance with S7.4.2. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard. S4.6.2 Any manual seat belt assembly subject to the requirements of S5.1 of this standard by virtue of any provision of this standard other than S4.1.2.1(c)(2) does not have to meet the requirements of S4.2(a)–(f) and S4.4 of Standard No. 209 (§571.209). S4.6.3 Any manual seat belt assembly subject to the requirements of S5.1 of this standard by virtue of S4.1.2.1(c)(2) does not have to meet the elongation requirements of S4.2(c), S4.4(a)(2), S4.4(b)(4), and S4.4(b)(5) of Standard No. 209 (§571.209). S5. Occupant crash protection requirements. S5.1 Frontal barrier crash test. Impact a vehicle traveling longitudinally forward at any speed, up to and including 30 mph, into a fixed collision barrier that is perpendicular to the line of travel of the vehicle, or at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle under the applicable conditions of S8. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2, S6.3, S6.4, and S6.5 of this standard. S5.2 Lateral moving barrier crash test. Impact a vehicle laterally on either side by a barrier moving at 20 mph under the applicable conditions of S8. The test dummy specified in S8.1.8 positioned in the front outboard designated seating position adjacent to the impacted side shall meet the injury criteria of S6.2 and S6.3 of this standard. S5.3 Rollover. Subject a vehicle to a rollover test in either lateral direction at 30 mph under the applicable conditions of S8 of this standard with a test dummy specified in S8.1.8 placed in the front outboard designated seating position on the vehicle's lower side as mounted on the test platform. The test dummy shall meet the injury criteria of S6.1 of this standard. S6 Injury criteria for the part 572, subpart E, Hybrid III test dummy. S6.1 All portions of the test dummy shall be contained within the outer surfaces of the vehicle passenger compartment throughout the test. S6.2 The resultant acceleration at the center of gravity of the head shall be such that the expression: HIC = $$\left[\frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} adt\right]^{2.5} (t_2 - t_1)$$ shall not exceed 1,000 where a is the resultant acceleration expressed as a multiple of g (the acceleration
of gravity), and t_1 and t_2 are any two points in time during the crash of the vehicle which are separated by not more than a 36 millisecond time interval. S6.3 The resultant acceleration calculated from the output of the thoracic instrumentation shown in drawing 78051.218, revision R incorporated by reference in part 572, subpart E of this chapter shall not exceed 60 g's, except for intervals whose cumulative duration is not more than 3 milliseconds. S6.4 Compression deflection of the sternum relative to the spine, as determined by instrumentation shown in drawing 78051–317, revision A incorporated by reference in part 572, subpart E of this chapter, shall not exceed 3 inches. S6.5 The force transmitted axially through each upper leg shall not exceed 2250 pounds. S7. Seat belt assembly requirements. As used in this section, a law enforcement vehicle means any vehicle manufactured primarily for use by the United States or by a State or local government for police or other law enforcement purposes. S7.1 Adjustment. S7.1.1 Except as specified in S7.1.1.1 and S7.1.1.2, the lap belt of any seat belt assembly furnished in accordance with S4.1.2 shall adjust by means of any emergency-locking or automatic-locking retractor that conforms to \$571.209 to fit persons whose dimensions range from those of a 50th percentile 6-year-old child to those of a 95th percentile adult male and the upper torso restraint shall adjust by means of an emergency-locking retrac- tor or a manual adjusting device that conforms to §571.209 to fit persons whose dimensions range from those of a 5th percentile adult female to those of a 95th percentile adult male, with the seat in any position, the seat back in the manufacturer's nominal design riding position, and any adjustable anchorages adjusted to the manufacturer's nominal design position for a 50th percentile adult male occupant. However, an upper torso restraint furnished in accordance with S4.1.2.3.1(a) shall adjust by means of an emergency-locking retractor that conforms to §571.209. S7.1.1.1 A seat belt assembly installed at the driver's seating position shall adjust to fit persons whose dimensions range from those of a 5th-percentile adult female to those of a 95th-percentile adult male. S7.1.1.2 (a) A seat belt assembly installed in a motor vehicle other than a forward control vehicle at any designated seating position other than the outboard positions of the front and second seats shall adjust either by a retractor as specified in S7.1.1 or by a manual adjusting device that conforms to §571.209. (b) A seat belt assembly installed in a forward control vehicle at any designated seating position other than the front outboard seating positions shall adjust either by a retractor as specified in S7.1.1 or by a manual adjusting device that conforms to §571.209. (c) A seat belt assembly installed in a forward-facing rear outboard seating position in a law enforcement vehicle shall adjust either by a retractor as secified in S7.1.1 or by a manual adjusting device that conforms to §571.209. S7.1.1.3 A Type 1 lap belt or the lap belt portion of any Type 2 seat belt assembly installed at any forward-facing outboard designated seating position of a vehicle with a gross vehicle weight rating of 10,000 pounds or less to comply with a requirement of this standard, except walk-in van-type vehicles and school buses, and except in rear seating positions in law enforcement vehicles, shall meet the requirements of S7.1 by means of an emergency locking retractor that conforms to Standard No. 209 (49 CFR 571.209). - S7.1.1.4 Notwithstanding the other provisions of S7.1—S7.1.1.3, emergency-locking retractors on belt assemblies located in positions other than front outboard designated seating postions may be equipped with a manual webbing adjustment device capable of causing the retractor that adjusts the lap belt to lock when the belt is buckled. - S7.1.1.5 Passenger cars, and trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less manufactured on or after September 1, 1995 shall meet the requirements of S7.1.1.5(a), S7.1.1.5(b) and S7.1.1.5(c). - (a) Each designated seating position, except the driver's position, and except any right front seating position that is equipped with an automatic belt, that is in any motor vehicle, except walk-in van-type vehicles and vehicles manufactured to be sold exclusively to the U.S. Postal Service, and that is forward-facing or can be adjusted to be forward-facing, shall have a seat belt assembly whose lap belt portion is lockable so that the seat belt assembly can be used to tightly secure a child restraint system. The means provided to lock the lap belt or lap belt portion of the seat belt assembly shall not consist of any device that must be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. Additionally, the means provided to lock the lap belt or lap belt portion of the seat belt assembly shall not require any inverting, twisting or otherwise deforming of the belt webbing. - (b) If the means provided pursuant to S7.1.1.5(a) to lock the lap belt or lap belt portion of any seat belt assembly makes it necessary for the vehicle user to take some action to activate the locking feature, the vehicle owner's manual shall include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. - (c) Except for seat belt assemblies that have no retractor or that are equipped with an automatic locking retractor, compliance with S7.1.1.5(a) is - demonstrated by the following procedure: - (1) With the seat in any adjustment position, buckle the seat belt assembly. Complete any procedures recommended in the vehicle owner's manual, pursuant to S7.1.1.5(b), to activate any locking feature for the seat belt assembly. - (2) Locate a reference point A on the safety belt buckle. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. Adjust the lap belt or lap belt portion of the seat belt assembly pursuant to S7.1.1.5(c)(1) as necessary so that the webbing between points A and B is at the maximum length allowed by the belt system. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. - (3) Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. - (4) Apply a pre-load of 10 pounds, using the webbing tension pull device described in Figure 5 of this standard, to the lap belt or lap belt portion of the seat belt assembly in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position whose belt system is being tested. Apply the pre-load in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. Measure and record the length of belt between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly while the preload is being applied. - (5) Apply a load of 50 pounds, using the webbing tension pull device described in Figure 5 of this standard, to the lap belt or lap belt portion of the seat belt assembly in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position whose belt system is being tested. The load is applied in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal at an onset rate of not more than 50 pounds per second. Attain the 50 pound load in not more than 5 seconds. If webbing sensitive emergency locking retroactive are installed as part of the lap belt assembly or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer. Maintain the 50 pound load for at least 5 seconds before the measurements specified in S7.1.1.5(c)(6)are obtained and recorded. (6) Measure and record the length of belt between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (7) The difference between the measurements recorded under S7.1.1.5(c) (6) and (4) shall not exceed 2 inches. (8) The difference between the measurements recorded under S7.1.1.5(c) (6) and (2) shall be 3 inches or more. S7.1.2 Except as provided in S7.1.2.1, S7.1.2.2, and S7.1.2.3, for each Type 2 seat belt assembly which is required by Standard No. 208 (49 CFR 571.208), the upper anchorage, or the lower anchorage nearest the intersection of the torso belt and the lap belt, shall include a movable component which has a minimum of two adjustment positions. The distance between the geometric center of the movable component at the two extreme adjustment positions shall be not less than five centimeters, measured linearly. If the component required by this paragraph must be manually moved between adjustment positions, information shall be provided in the owner's manual to explain how to adjust the seat belt and warn that misadjustment could reduce the effectiveness of the safety belt in a crash. S7.1.2.1 As an alternative to meeting the requirement of S7.1.2, a Type 2 seat belt assembly shall provide a means of automatically moving the webbing in relation to either the upper anchorage, or the lower anchorage nearest the intersection of the torso belt and the
lap belt. The distance between the midpoint of the webbing at the contact point of the webbing and the anchorage at the extreme adjustment positions shall be not less than five centimeters, measured linearly. S7.1.2.2 The requirements of S7.1.2 do not apply the anchorages of a Type 2 seat belt assembly installed: (a) At a seat which is adjustable fore and aft while the vehicle is in motion and whose seat frame above the foreand-aft adjuster is part of each of the assembly's seat belt anchorages, as defined in S3 of Standard No. 210 (49 CFR 571.210). (b) At a seat that is not adjustable fore and aft while the vehicle is in motion. S7.1.2.3 The requirements of S7.1.2 do not apply to any truck with a gross vehicle weight rating of more than 8,500 pounds manufactured before January 1, 1998. S7.1.3 The intersection of the upper torso belt with the lap belt in any Type 2 seat belt assembly furnished in accordance with S4.1.1 or S4.1.2, with the upper torso manual adjusting device, if provided, adjusted in accordance with the manufacturer's instructions, shall be at least 6 inches from the front vertical centerline of a 50th-percentile adult male occupant, measured along the centerline of the lap belt, with the seat in its rearmost and lowest adjustable position and with the seat back in the manufacturer's nominal design riding position. S7.1.4 The weights and dimensions of the vehicle occupants referred to in this standard are as follows: | | 50th-percentile 6-
year old child | 5th-percentile adult female | 50th-percentile adult male | 95th-percentile adult male | |--------|--------------------------------------|-----------------------------|----------------------------|--| | Weight | 25.4 inches | 30.9 inches | 14.7 inches±.7 | 16.5 inches.
47.2 inches.
42.5 inches. | | | 50th-percentile 6-
year old child | 5th-percentile adult female | 50th-percentile adult male | 95th-percentile adult male | |----------------|--------------------------------------|-----------------------------|----------------------------|----------------------------| | (upper)(lower) | | 29.8 inches | | 44.5 inches. | - S7.2 Latch mechanism. Except as provided in S7.2(e), each seat belt assembly installed in any vehicle shall have a latch mechanism that complies with the requirements specified in S7.2(a) through (d). - (a) The components of the latch mechanism shall be accessible to a seated occupant in both the stowed and operational positions; - (b) The latch mechanism shall release both the upper torso restraint and the lap belt simultaneously, if the assembly has a lap belt and an upper torso restraint that require unlatching for release of the occupant; - (c) The latch mechanism shall release at a single point; and; - (d) The latch mechanism shall release by a pushbutton action. - (e) The requirements of S7.2 do not apply to any automatic belt assembly. The requirements specified in S7.2(a) through (c) do not apply to any safety belt assembly installed at a forward-facing rear outboard seating position in a law enforcement vehicle. - S7.3 (a) A seat belt assembly provided at the driver's seating position shall be equipped with a warning system that, at the option of the manufacturer, either— - (1) Activates a continuous or intermittent audible signal for a period of not less than 4 seconds and not more than 8 seconds and that activates a continuous or flashing warning light visible to the driver displaying the identifying symbol for the seat belt telltale shown in Table 2 of FMVSS 101 or, at the option of the manufacturer if permitted by FMVSS 101, displaying the words "Fasten Seat Belts" or "Fasten Belts", for not less than 60 seconds (beginning when the vehicle ignition switch is moved to the "on" or the "start" position) when condition (b) exists simultaneously with condition (c), or that - (2) Activates, for a period of not less than 4 seconds and not more than 8 seconds (beginning when the vehicle ignition switch is moved to the "on" or the - "start" position), a continuous or flashing warning light visible to the driver, displaying the identifying symbol of the seat belt telltale shown in Table 2 of FMVSS 101 or, at the option of the manufacturer if permitted by FMVSS 101, displaying the words "Fasten Seat Belts" or "Fasten Belts", when condition (b) exists, and a continuous or intermittent audible signal when condition (b) exists simultaneously with condition (c). - (b) The vehicle's ignition switch is moved to the "on" position or to the "start" position. - (c) The driver's lap belt is not in use, as determined, at the option of the manufacturer, either by the belt latch mechanism not being fastened, or by the belt not being extended at least 4 inches from its stowed position. - S7.4 Seat belt comfort and convenience. - (a) Automatic seat belts. Automatic seat belts installed in any vehicle, other than walk-in van-type vehicles, which has a gross vehicle weight rating of 10,000 pounds or less, and which is manufactured on or after September 1, 1986, shall meet the requirements of S7.4.1, S7.4.2, and S7.4.3. - (b) Manual seat belts. - (1) Vehicles manufactured after September 1, 1986. Manual seat belts installed in any vehicle, other than manual Type 2 belt systems installed in the front outboard seating positions in passenger cars or manual belts in walk-in vantype vehicles, which have a gross vehicle weight rating of 10,000 pounds or less, shall meet the requirements of S7.4.3, S7.4.4, S7.4.5, and S7.4.6. - (2) Vehicles manufactured after September 1, 1989. - (i) If the automatic restraint requirement of S4.1.4 is rescinded pursuant to S4.1.5, then manual seat belts installed in a passenger car shall meet the requirements of S7.1.1.3(a), S7.4.2, S7.4.3, S7.4.4, S7.4.5, and S7.4.6. - (ii) Manual seat belts installed in a bus, multipurpose passenger vehicle and truck with a gross vehicle weight rating of 10,000 pounds or less, except for walk-in van-type vehicles, shall meet the requirements of S7.4.3, S7.4.4, S7.4.5, and S7.4.6. S7.4.1 Convenience hooks. Any manual convenience hook or other device that is provided to stow seat belt webbing to facilitate entering or exiting the vehicle shall automatically release the webbing when the automatic belt system is otherwise operational and shall remain in the released mode for as long as (a) exists simultaneously with (b), or, at the manufacturer's option, for as long as (a) exists simultaneously with (c)— - (a) The vehicle ignition switch is moved to the "on" or "start" position; (b) The vehicle's drive train is on - (b) The vehicle's drive train is engaged; - (c) The vehicle's parking brake is in the released mode (nonengaged). S7.4.2 Webbing tension-relieving device. Each vehicle with an automatic seat belt assembly or with a Type 2 manual seat belt assembly that must meet the occupant crash protection requirements of S5.1 of this standard installed at a front outboard designated seating position, and each vehicle with a Type 2 manual seat belt assembly installed at a rear outboard designated seating position in compliance with a requirement of this standard, that has either automatic or manual tension-relieving devices permitting the introduction of slack in the webbing of the shoulder belt (e.g., "comfort clips" or "window-shade" devices) shall: (a) Comply with the requirements of S5.1 with the shoulder belt webbing adjusted to introduce the maximum amount of slack recommended by the vehicle manufacturer pursuant to S7.4.2(b). (b) Have a section in the vehicle owner's manual that explains how the tension-relieving device works and specifies the maximum amount of slack (in inches) recommended by the vehicle manufacturer to be introduced into the shoulder belt under normal use conditions. The explanation shall also warn that introducing slack beyond the amount specified by the manufacturer could significantly reduce the effectiveness of the shoulder belt in a crash; and (c) Have, except for open-body vehicles with no doors, an automatic means to cancel any shoulder belt slack introduced into the belt system by a tension-relieving device. In the case of an automatic safety belt system, cancellation of the tension-relieving device shall occur each time the adjacent vehicle door is opened. In the case of a manual seat belt required to meet S5.1, cancellation of the tension-relieving device shall occur, at the manufacturer's option, either each time the adjacent door is opened or each time the latchplate is released from the buckle. In the case of a Type 2 manual seat belt assembly installed at a rear outboard designated seating position, cancellation of the tension-relieving device shall occur, at the manufacturer's option either each time the door designed to allow the occupant of that seating position entry and egress of the vehicle is opened or each time the latchplate is released from the buckle. In the case of open-body vehicles with no doors, cancellation of the tensionrelieving device may be done by a manual means. S7.4.3 Belt contact force. Except for manual or automatic seat belt assemblies that incorporate a webbing tension-relieving device, the upper torso webbing of any seat belt assembly shall not exert more than 0.7 pounds of contact force when measured normal to and one inch from the chest of an anthropomorphic test dummy, positioned in accordance with S10 of this standard in the seating position for which that seat belt assembly is provided, at the point where the centerline the torso belt crosses midsagittal line on the dummy's chest. S7.4.4 Latchplate access. Any seat belt assembly latchplate that is located outboard of a front outboard seating position in accordance with S4.1.2 shall also be located within the outboard reach envelope of either the outboard arm or the inboard arm described in S10.7 and Figure 3 of this standard, when the latchplate is in its normal stowed position and any adjustable anchorages are
adjusted to the manufacturer's nominal design position for a 50th percentile adult male occupant. There shall be sufficient clearance between the vehicle seat and the side of the vehicle interior to allow the test block defined in Figure 4 of this standard unhindered transit to the latchplate or buckle. S7.4.5 Retraction. When tested under the conditions of S8.1.2 and S8.1.3, with anthropomorphic dummies whose arms have been removed and which are positioned in accordance with S10 of this standard in the front outboard seating positions and restrained by the belt systems for those positions, the torso and lap belt webbing of any of those seat belt systems shall automatically retract to a stowed position either when the adjacent vehicle door is in the open position and the seat belt latchplate is released, or, at the option the manufacturer, when latchplate is released. That stowed position shall prevent any part of the webbing or hardware from being pinched when the adjacent vehicle door is closed. A belt system with a tensionrelieving device in an open-bodied vehicle with no doors shall fully retract when the tension-relieving device is deactivated. For the purposes of these retraction requirements, outboard armrests, which are capable of being stowed, on vehicle seats shall be placed in their stowed position. S7.4.6 Seat belt guides and hardware. S7.4.6.1 (a) Any manual seat belt assembly whose webbing is designed to pass through the seat cushion or between the seat cushion and seat back shall be designed to maintain one of the following three seat belt parts (the seat belt latchplate, the buckle, or the seat belt webbing) on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant). In addition, the remaining two seat belt parts must be accessible under normal conditions. (b) The requirements of S7.4.6.1(a) do not apply to: (1) seats whose seat cushions are movable so that the seat back serves a function other than seating, (2) seats which are removable, or (3) seats which are movable so that the space formerly occupied by the seat can be used for a secondary function. S7.4.6.2 The buckle and latchplate of a manual seat belt assembly subject to S7.4.6.1 shall not pass through the guides or conduits provided for in S7.4.6.1 and fall behind the seat when the events listed below occur in the order specified: (a) The belt is completely retracted or, if the belt is nonretractable, the belt is unlatched; (b) the seat is moved to any position to which it is designed to be adjusted; and (c) the seat back, if foldable, is folded forward as far as possible and then moved backward into position. The inboard receptacle end of a seat belt assembly installed at a front outboard designated seating position shall be accessible with the center arm rest in any position to which it can be adjusted (without having to move the armrest). S8. Test conditions. S8.1 General conditions. The following conditions apply to the frontal, lateral, and rollover tests. Except for S8.1.1(d), the following conditions apply to the alternative unbelted sled test set forth in S13 from March 19, 1997 until September 1, 2001. S8.1.1 Except as provided in paragraph (c) of S8.1.1, the vehicle, including test devices and instrumentation, is loaded as follows: (a) Passenger cars. A passenger car is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus the weight of the necessary anthropomorphic test devices. (b) Multipurpose passenger vehicles, trucks, and buses. A multipurpose passenger vehicle, truck, or bus is loaded to its unloaded vehicle weight plus 300 pounds or its rated cargo and luggage capacity weight, whichever is less, secured in the load carrying area and distributed as nearly as possible in proportion to its gross axle weight ratings, plus the weight of the necessary anthropomorphic test devices. For the purposes of §8.1.1, unloaded vehicle weight does not include the weight of work-performing accessories. Vehicles are tested to a maximum unloaded vehicle weight of 5,500 pounds. (c) Fuel system capacity. With the test vehicle on a level surface, pump the fuel from the vehicle's fuel tank and then operate the engine until it stops. Then, add Stoddard solvent to the test vehicle's fuel tank in an amount which is equal to not less than 92 and not more than 94 percent of the fuel tank's usable capacity stated by the vehicle's manufacturer. In addition, add the amount of Stoddard solvent needed to fill the entire fuel system from the fuel tank through the engine's induction system. (d) Vehicle test attitude. Determine the distance between a level surface and a standard reference point on the test vehicle's body, directly above each wheel opening, when the vehicle is in its "as delivered" condition. The "as delivered" condition is the vehicle as received at the test site, with 100 percent of all fluid capacities and all tires inflated to the manufacturer's specifications as listed on the vehicle's tire placard. Determine the distance between the same level surface and the same standard reference points in the vehicle's "fully loaded condition." The "fully loaded condition" is the test vehicle loaded in accordance with S8.1.1 (a) or (b), as applicable. The load placed in the cargo area shall be center over the longitudinal centerline of the vehicle. The pretest vehicle attitude shall be equal to either the as delivered or fully loaded attitude or between the as delivered attitude and the fully loaded attitude. S8.1.2 Adjustable seats are in the adjustment position midway between the forwardmost and rearmost positions, and if separately adjustable in a vertical direction, are at the lowest position. If an adjustment position does not exist midway between the forwardmost and rearmost positions, the closest adjustment position to the rear of the midpoint is used. S8.1.3 Place adjustable seat backs in the manufacturer's nominal design riding position in the manner specified by the manufacturer. Place any adjustable anchorages at the manufacturer's nominal design position for a 50th percentile adult male occupant. Place each adjustable head restraint in its highest adjustment position. Adjustable lumbar supports are positioned so that the lumbar support is in its lowest adjustment position. S8.1.4 Adjustable steering controls are adjusted so that the steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions. S8.1.5 Movable vehicle windows and vents are, at the manufacturer's option, placed in the fully closed position. S8.1.6 Convertibles and open-body type vehicles have the top, if any, in place in the closed passenger compartment configuration. S8.1.7 Doors are fully closed and latched but not locked. S8.1.8 Anthropomorphic test dummies. S8.1.8.1 The anthropomorphic test dummies used for evaluation of occupant protection systems manufactured pursuant to applicable portions of S4.1.2, S4.1.3, and S4.1.4 of this standard shall conform to the requirements of subpart E of part 572 of this chapter. S8.1.8.2 Each test dummy is clothed in formfitting cotton stretch garments with short sleeves and midcalf length pants specified in drawings 78051-292 and 78051-293 incorporated by reference in part 572, subpart E of this chapter, respectively or their equivalents. A size 11EE shoe specified in drawings 78051-294 (left) and 78051-295 (right) incorporated by reference in part 572, subpart E of this chapter, or its equivalent is placed on each foot of the test dummy. S8.1.8.3 Limb joints are set at 1g, barely restraining the weight of the limb when extended horizontally. Leg joints are adjusted with the torso in the supine position. S8.1.8.4 Instrumentation does not affect the motion of the dummies during impact or rollover. S8.1.8.5 The stabilized test temperature of the test dummy is at any temperature level between 69 degrees F and 72 degrees F, inclusive. S8.2 Lateral moving barrier crash test conditions. The following conditions apply to the lateral moving barrier crash test. S8.2.1 The moving barrier, including the impact surface, supporting structure, and carriage, weighs 4,000 pounds. S8.2.2 The impact surface of the barrier is a vertical, rigid, flat rectangle, 78 inches wide and 60 inches high, perpendicular to its direction of movement, with its lower edge horizontal and 5 inches above the ground surface. S8.2.3 During the entire impact sequence the barrier undergoes no significant amount of dynamic or static deformation, and absorbs no significant portion of the energy resulting from the impact, except for energy that results in translational rebound movement of the barrier. S8.2.4 During the entire impact sequence the barrier is guided so that it travels in a straight line, with no significant lateral, vertical or rotational movement. S8.2.5 The concrete surface upon which the vehicle is tested is level, rigid and of uniform construction, with a skidnumber of 75 when measured in accordance with American Society for Testing and Materials Method E-274-65T at 40 m.p.h., omitting water delivery as specified in paragraph 7.1 of that method. S8.2.6 The tested vehicle's brakes are disengaged and the transmission is in neutral. S8.2.7 The barrier and the test vehicle are positioned so that at impact— (a) The vehicle is at rest in its normal attitude; (b) The barrier is traveling in a direction perpendicular to the longitudinal axis of the vehicle at 20 m.p.h.; and (c) A vertical plane through the geometric center of the barrier impact surface and perpendicular to that sur- face passes through the driver's seating reference point in the tested vehicle. S8.3 *Rollover test conditions.* The following conditions apply to the rollover test. S8.3.1 The tested vehicle's brakes are disengaged and the transmission
is in neutral. S8.3.2 The concrete surface on which the test is conducted is level, rigid, of uniform construction, and of a sufficient size that the vehicle remains on it throughout the entire rollover cycle. It has a skid number of 75 when measured in accordance with American Society for Testing and Materials Method E-274-65T at 40 m.p.h. omitting water delivery as specified in paragraph 7.1 of that method. S8.3.3 The vehicle is placed on a device, similar to that illustrated in Figure 2, having a platform in the form of a flat, rigid plane at an angle of 23° from the horizontal. At the lower edge of the platform is an unyielding flange, perpendicular to the platform with a height of 4 inches and a length sufficient to hold in place the tires that rest against it. The intersection of the inner face of the flange with the upper face of the platform is 9 inches above the rollover surface. No other restraints are used to hold the vehicle in position during the deceleration of the platform and the departure of the vehi- FIGURE 2 - TYPICAL DEVICE FOR ROLLOVER TEST S8.3.4 With the vehicle on the test platform, the test devices remain as nearly as possible in the posture specified in S8.1. S8.3.5 Before the deceleration pulse, the platform is moving horizontally, and perpendicularly to the longitudinal axis of the vehicle, at a constant speed of 30 m.p.h. for a sufficient period of time for the vehicle to become motionless relative to the platform. S8.3.6 The platform is decelerated from 30 to 0 m.p.h. in a distance of not more than 3 feet, without change of direction and without transverse or rotational movement during the deceleration of the platform and the departure of the vehicle. The deceleration rate is at least 20g for a minimum of 0.04 seconds. S8.4 Frontal test condition. If the vehicle is equipped with a cutoff device permitted by S4.5.4 of this standard, the device is deactivated. S9. Pressure vessels and explosive devices. S9.1 Pressure vessels. A pressure vessel that is continuously pressurized shall conform to the requirements of §§ 178.65–2, 178.65–6(b), 178.65–7, 178.65–9 (a) and (b), and 178.65-10 of this title. It shall not leak or evidence visible distortion when tested in accordance with §178.65-11(a) of this title and shall not fail in any of the ways enumerated in § 178.65–11(b) of this title when hydrostatically tested to destruction. It shall not crack when flattened in accordance with §178.65-12(a) of this title to the limit specified in §178.65-12(a)(4) of this title. S9.2 Explosive devices. An explosive device shall not exhibit any of the characteristics prohibited by §173.51 of this title. All explosive material shall be enclosed in a structure that is capable of containing the explosive energy without sudden release of pressure except through overpressure relief devices or parts designed to release the pressure during actuation. S10. Test dummy positioning procedures. S10.1 *Head.* The transverse instrumentation platform of the head shall be level within ½ degree. To level the head of the test dummy, the following sequences must be followed. First, adjust the position of the H point within the limits set forth in S10.4.2.1 to level the transverse instrumentation platform of the head of the test dummy. If the transverse instrumentation platform of the head is still not level, then adjust the pelvic angle of the test dummy within the limits specified in S10.4.2.2 of this standard. If the transverse instrumentation platform of the head is still not level, then adjust the neck bracket of the dummy the minimum amount necessary from the nonadjusted "0" setting to ensure that the transverse instrumentation platform of the head is horizontal within ½ degree. The test dummy shall remain within the limits specified in S10.4.2.1 and S10.4.2.2. after any adjustment of the neck bracket. S10.2 Upper Arms. S10.2.1 The driver's upper arms shall be adjacent to the torso with the centerlines as close to a vertical plane as possible. S10.2.2 The passenger's upper arms shall be in contact with the seat back and the sides of the torso. S10.3 Hands. S10.3.1 The palms of the drivers test dummy shall be in contact with the outer part of the steering wheel rim at the rim's horizontal centerline. The thumbs shall be over the steering wheel rim and shall be lightly taped to the steering wheel rim so that if the hand of the test dummy is pushed upward by a force of not less than 2 pounds and not more than 5 pounds, the tape shall release the hand from the steering wheel rim. S10.3.2 The palms of the passenger test dummy shall be in contact with the outside of the thigh. The little finger shall be in contact with the seat cushion. S10.4 Torso. S10.4.1 Upper Torso. S10.4.1.1 In vehicles equipped with bench seats, the upper torso of the driver and passenger test dummies shall rest against the seat back. The midsagittal plane of the driver dummy shall be vertical and parallel to the vehicle's longitudinal centerline, and pass through the center of the steering wheel rim. The midsagittal plane of the passenger dummy shall be vertical and parallel to the vehicle's longitudinal centerline and the same distance from the vehicle's longitudinal centerline as the midsagittal plane of the driver dummy. S10.4.1.2 In vehicles equipped with bucket seats, the upper torso of the driver and passenger test dummies shall rest against the seat back. The midsagittal plane of the driver and the passenger dummy shall be vertical and shall coincide with the longitudinal centerline of the bucket seat. S10.4.2 Lower Torso. S10.4.2.1 *H-point*. The H-points of the driver and passenger test dummies shall coincide within ½ inch in the vertical dimension and ½ inch in the horizontal dimension of a point ¼ inch below the position of the H-point determined by using the equipment and procedures specified in SAE J826 (APR 1980) except that the length of the lower leg and thigh segments of the H-point machine shall be adjusted to 16.3 and 15.8 inches, respectively, instead of the 50th percentile values specified in Table 1 of SAE J826. S10.4.2.2 Pelvic angle. As determined using the pelvic angle gage (GM drawing 78051-532, incorporated by reference in part 572, subpart E of this chapter) which is inserted into the H-point gaging hole of the dummy, the angle measured from the horizontal on the three inch flat surface of the gage shall be 22½ degrees plus or minus 2½ degrees. S10.5 Legs. The upper legs of the driver and passenger test dummies shall rest against the seat cushion to the extent permitted by placement of the feet. The initial distance between the outboard knee clevis flange surfaces shall be 10.6 inches. To the extent practicable, the left leg of the driver dummy and both legs of the passenger dummy shall be in vertical longitudinal planes. To the extent practicable, the right leg of the driver dummy shall be in a vertical plane. Final adjustment to accommodate the placement of feet in accordance with S10.6 for various passenger compartment configurations is permitted. S10.6 Feet. S10.6.1 Driver's position. S10.6.1.1 Rest the right foot of the test dummy on the undepressed accelerator pedal with the rearmost point of the heel on the floor pan in the plane of the pedal. If the foot cannot be placed on the accelerator pedal, set it initially perpendicular to the lower leg and place it as far forward as possible in the direction of the pedal centerline with the rearmost point of the heel resting on the floor pan. S10.6.1.2 Place the left foot on the toeboard with the rearmost point of the heel resting on the floor pan as close as possible to the point of intersection of the planes described by the toeboard and the floor pan and not on the wheelwell projection. If the foot cannot be positioned on the toeboard, set it initially perpendicular to the lower leg and place it as far forward as possible with the heel resting on the floor pan. If necessary to avoid contact with the vehicle's brake or clutch pedal, rotate the test dummy's left foot about the lower leg. If there is still pedal interference, rotate the left leg outboard about the hip the minimum distance necessary to avoid the pedal interference. For vehicles with a foot rest that does not elevate the left foot above the level of the right foot, place the left foot on the foot rest so that the upper and lower leg centerlines fall in a vertical plane. S10.6.2 Passenger's position. S10.6.2.1 Vehicles with a flat floor pan/ toeboard. Place the right and left feet on the vehicle's toeboard with the heels resting on the floor pan as close as possible to the intersection point with the toeboard. If the feet cannot be placed flat on the toeboard, set them perpendicular to the lower leg centerlines and place them as far forward as possible with the heels resting on the floor pan. S10.6.2.2 Vehicles with wheelhouse projections in passenger compartment. Place the right and left feet in the well of the floor pan/toeboard and not on the wheelhouse projection. If the feet cannot be placed flat on the toeboard, initially set them perpendicular to the lower leg centerlines and then place them as far forward as possible with the heels resting on the floor pan. S10.7 Test dummy positioning for latchplate access. The reach envelopes specified in S7.4.4 of this standard are obtained by positioning a test dummy in the driver's or passenger's seating position and adjusting that seating position to its forwardmost adjustment position. Attach the lines for the inboard and outboard arms to the test dummy as described in Figure 3 of this standard. Extend each line backward and outboard to generate the compliance arcs of the outboard reach envelope of the test dummy's arms. S10.8 Test dummy positioning for belt contact force. To determine compliance with S7.4.3 of this standard, position the test dummy in the vehicle in accordance with S10.1 through S10.6 of this standard and adjust the seating position in
accordance with S8.1.2 and S8.1.3 of this standard. Pull the belt webbing three inches from the test dummy's chest and release until the webbing is within one inch of the test dummy's chest and measure the belt contact force. S10.9 Manual belt adjustment for dynamic testing. With the test dummy po- sitioned in accordance with S10.1 through S10.6 of this standard and the seating position adjusted in accordance with S8.1.2 and S8.1.3 of this standard, place the Type 2 manual belt around the test dummy and fasten the latch. Remove all slack from the lap belt portion. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. Apply a 2 to 4 pound tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle's owner's manual. If the belt system is not equipped with a tension-relieving device, allow the excess webbing in the upper torso belt to be retracted by the retractive force of the retractor. Figure 3. Location of Anchoring Points for Latchplate Reach Limiting Chains or Strings to Test for Latchplate Accessibility Using Subpart E Test Device Figure 4—USE OF CLEARANCE TEST BLOCK TO DETERMINE HAND/ARM ACCESS ## S11. [Reserved] S12. Temporary Exemption from Requirement for Inflatable Restraint System. S12.1 *Scope.* This section establishes procedures for filing and processing applications for temporary exemption from the requirements in this standard that vehicles be equipped with inflatable restraint systems. ## S12.2 Definitions. Line means a name that a manufacturer applies to a group of motor vehicles of the same make which have the same body or chassis, or otherwise are similar in construction or design. A line may, for example, include 2-door, 4- door, station wagon, and hatchback vehicles of the same make. S12.3 Standard of review. In order to receive a temporary exemption from the inflatable restraint requirement, a vehicle manufacturer must demonstrate in its application that there has been a disruption in the supply of one or more inflatable restraint system components, or a disruption in the use and installation by the manufacturer of any such component due to unavoidable events not under the control of the manufacturer, which will prevent a manufacturer from meeting its anticipated production volume of vehicles with inflatable restraint systems. - S12.4 Exemption applications—General requirements. Each application for a temporary exemption from the inflatable restraint requirements must— - (a) Be written in the English language; - (b) Be submitted in three copies to: Administrator, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 20590; - (c) State the full name and address of the manufacturer, the nature of its organization (individual, partnership, corporation, etc.), and the name of the State or country under the laws of which it is organized; - (d) Identify the motor vehicle line or lines for which the temporary exemption is being sought; - (e) Set forth in full the data, views, and arguments of the manufacturer that would support granting the temporary exemption, including the specific information required by S12.5; and - (f) Specify and segregate any part of the information and data submitted in the application that should be withheld from public disclosure in accordance with part 512 of this chapter. - S12.5 Exemption applications—Specific content requirements. Each application for a temporary exemption from the inflatable restraint requirement must include: - (a) A clear and specific identification of any component in the inflatable restraint system that has become unavailable due to circumstances beyond the manufacturer's control, and a diagram showing the location of such component within the restraint system and within the vehicle; - (b) A clear and specific explanation of the cause or causes of the disruption in the supply of the component, and a showing that such disruption is beyond the control of the manufacturer; - (c) An estimate of the length of time that will be needed to correct the disruption and again incorporate the subject components into current production, or an explanation of why it is not possible to provide such an estimate; - (d) A complete statement of the bases for the manufacturer's belief that NHTSA should grant a temporary ex- emption in response to this application; - (e) An unconditional statement by the manufacturer that it will recall every vehicle for which a temporary exemption is requested in the application, to install all missing inflatable restraint systems; - (f) A plan setting forth steps the manufacturer will take to ensure that as many exempted vehicles as possible will be returned for installation of missing inflatable restraint systems; - (g) A proposed reasonable period of time after the disruption in the supply of inflatable restraint system components is corrected that the manufacturer estimates will ensure a sufficient quantity of components for both anticipated production and retrofit of those vehicles for which a temporary exemption is requested in the application, so that the vehicle manufacturer can recall those vehicles for which a temporary exemption is requested and install inflatable restraint systems in them, together with a demonstration of why the manufacturer believes this proposed period of time is reasonable for completing this recall, or an explanation of why it is not possible to provide such an estimate; - (h) A proposed date for termination of the exemption; - (i) A proposed date by which all exempted vehicles will have been recalled and had inflatable restraints installed (assuming owners returned their vehicles in a timely matter in response to a first notice by the manufacturer), or an explanation of why it is not possible to provide such an estimate. - S12.6 Processing an application for a temporary exemption. (a) NHTSA will process any application for temporary exemption that contains the information specified in S12.4 and S12.5. If an application fails to provide the information specified in S12.4 and S12.5, NHTSA will not process the application, but will advise the manufacturer of the information that must be provided if the agency is to process the application. - (b) Notice of each application for temporary exemption shall be published in the FEDERAL REGISTER. - (c) NHTSA will issue its decision to grant or deny the requested temporary exemption not later than 15 days after the agency receives a complete petition, as defined in paragraph (a). However, a failure to issue a decision within this time does not result in a grant of the petition. - (d) Notice of each decision to grant or deny a temporary exemption, and the reasons for granting or denying it, will be published in the FEDERAL REG- - (e) The Administrator may attach such conditions as he or she deems appropriate to a temporary exemption, including but not limited to requiring manufacturers to provide progress reports at specified times (including, as appropriate and to the extent possible, estimate of dates and times concerning when a supply disruption will be corrected and when recall will take place) and requiring manufacturers to take specific steps to ensure that as many exempted vehicles as possible will be returned for installation of missing inflatable restraint systems. - (f) Unless a later effective date is specified in a notice announcing an agency decision to grant a temporary exemption, a temporary exemption from the inflatable restraint requirement will become effective upon the date the decision is issued. S12.7 Labels and written notice announcing temporary exemption. S12.7.1 It shall be a condition of every temporary exemption from the inflatable restraint requirement that the manufacturer of exempted vehicles comply with the provisions of S12.7.2 and S12.7.3. S12.7.2 (a) The manufacturer of any vehicle granted a temporary exemption from the inflatable restraint requirement shall affix a label within the passenger compartment of such vehicle. The label shall set forth the following information in block capital letters and numerals not less than three thirty-seconds of an inch high: THIS VEHICLE DOES NOT CONTAIN AN AIR BAG IN CONFORMANCE WITH THE FEDERAL MOTOR VEHICLE SAFETY STANDARD FOR OCCUPANT CRASH PROTECTION. IT WAS EXEMPTED PURSUANT TO NHTSA EXEMPTION NO. (insert number assigned by NHTSA). (b) This label shall not be removed until after the vehicle manufacturer has recalled the vehicle and installed an inflatable restraint system at those seating positions for which it was granted an exemption. S12.7.3 The manufacturer of any vehicle that is delivered without an inflatable restraint system, pursuant to a temporary exemption granted under this section, shall, at the time of delivery of the vehicle, provide a written notice to the dealer to whom the vehicle is delivered. The manufacturer shall also provide a written notice by registered mail to the first purchaser of the vehicle for purposes other than resale, within two weeks after purchase. Unless otherwise provided for by the Administrator in the exemption, such notice shall provide the following information: (a) This vehicle does not conform to Federal Motor Vehicle Safety Standard No. 208, because it is not equipped with an inflatable restraint at (insert the affected seating positions). (b) The vehicle was allowed to be sold pursuant to NHTSA Exemption No. (insert appropriate exemption number). - (c) The reason this vehicle was exempted from the requirement for an inflatable restraint was because of factors beyond the manufacturer's control. - (d) The manufacturer will recall this vehicle not later than (insert the time set forth in the exemption) and install the missing inflatable restraint at no charge. - (e) If the reader has any questions or would
like some further information, he or she may contact the manufacturer at (insert an address and telephone number). - S13. Alternative unbelted test for vehicles manufactured before September 1, 2001. - S13.1 Instrumentation Impact Test—Part 1—Electronic Instrumentation. Under the applicable conditions of S8, mount the vehicle on a dynamic test platform at the vehicle attitude set forth in S13.3, so that the longitudinal center line of the vehicle is parallel to the direction of the test platform travel and so that movement between the base of the vehicle and the test platform is prevented. The test platform is instrumented with an accelerometer and data processing system having a frequency response of 60 channel class as specified in Society of Automotive Engineers (SAE) Recommended Practice J211/1 MAR 95, Instrumentation for Impact Test—Part 1—Electronic Instrumentation. SAE J211/1 MAR 95 is incorporated by reference and thereby is made part of this standard. The Director of the Federal Register approved the material incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. A copy may be obtained from SAE at Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA 15096. A copy of the material may be inspected at NHTSA's Docket Section, 400 Seventh Street, S.W., room 5109, Washington, DC, or at the Office of the Federal Register, 800 North Capitol Street, N.W., Suite 700, Washington, DC. The accelerometer sensitive axis is parallel to the direction of test platform travel. The test is conducted at a velocity change approximating 30 mph with acceleration of the test platform such that all points on the crash pulse curve within the corridor identified in Figure 6 are covered. An inflatable restraint is to be activated at 20 ms +/-2 ms from the time that 0.5 g is measured on the dynamic test platform. The test dummy specified in S8.1.8.2, placed in each front outboard designated seating position as specified in S11, shall meet the injury criteria of S6.1, S6.2, S6.3, S6.4, S6.5, and S13.2 of this standard. S13.2 Neck injury criteria. A vehicle certified to this alternative test requirement shall, in addition to meeting the criteria specified in S13.1, meet the following injury criteria for the neck, measured with the six axis load cell (ref. Denton drawing C-1709) that is mounted between the bottom of the skull and the top of the neck as shown in drawing 78051-218, in the unbelted sled test: - (a) Flexion Bending Moment—190 Nm. SAE Class 600. - (b) Extension Bending Moment—57 Nm. SAE Class 600. - (c) Axial Tension—3300 peak N. SAE Class 1000. - (d) Axial Compression—4000 peak N. SAE Class 1000. - (e) Fore-and-Aft Shear—3100 peak N. SAE Class 1000. S13.3 Vehicle test attitude. When the vehicle is in its "as delivered" condition, measure the angle between the driver's door sill and the horizontal. Mark where the angle is taken on the door sill. The "as delivered" condition is the vehicle as received at the test site, with 100 percent of all fluid capacities and all tires inflated to the manufacturer's specifications as listed on the vehicle's tire placard. When the vehicle is in its "fully loaded" condition, measure the angle between the driver's door sill and the horizontal, at the same place the "as delivered" angle was measured. The "fully loaded" condition is the test vehicle loaded in accordance with S8.1.1(a) or (b) of Standard No. 208, as applicable. The load placed in the cargo area shall be centered over the longitudinal centerline of the vehicle. The pretest door sill angle, when the vehicle is on the sled, (measured at the same location as the as delivered and fully loaded condition) shall be equal to or between the as delivered and fully loaded door sill angle measurements. S13.4 *Tires and wheels.* Remove the tires and wheels. Dimension A - Width of Webbing Plus 1/2 Inch Dimension B - 1/2 of Dimension A Figure 5. - Webbing Tension Pull Device Sled pulse acceleration, expressed in G's = 17.2 Sin(Π t/125) for delta V = 30(+0,-2) mph | Reference | t | Acceleration | | |-----------|------|--------------|--| | point | (ms) | (G) | | | А | 0 | -2 | | | В | 40 | -18.2 | | | С | 85 | -18.2 | | | D | 130 | 0 | | | E | 5 | 0 | | | F | 55 | -16 | | | G | 70 | -16 | | | Н | 120 | 0.00 | | Figure 6 - Sled Pulse and Coordinates Label Outline, Vertical and Horizontal Line Black **Figure 6a.** Sun Visor Label Visible When Visor is in Down Position. Label Outline, Vertical and Horizontal Line Black **Figure 6b.** Sun Visor Label Visible When Visor is in Down Position. **Figure 6c.** Sun Visor Label Visible When Visor is in Up Position. Figure 7. Removable Label on Dash. [36 FR 22902, Dec. 2, 1971] EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §571.208, see the List of CFR Sections Affected in the Finding Aids section of this volume. ## §571.209 Standard No. 209; Seat belt assemblies. - S1. *Purpose and scope.* This standard specifies requirements for seat belt assemblies. - S2. Application. This standard applies to seat belt assemblies for use in passenger cars, multipurpose passenger vehicles, trucks, and buses. - S3. Definitions. Adjustment hardware means any or all hardware designed for adjusting the size of a seat belt assembly to fit the user, including such hardware that may be integral with a buckle, attachment hardware, or retractor. Attachment hardware means any or all hardware designed for securing the webbing of a seat belt assembly to a motor vehicle. Automatic-locking retractor means a retractor incorporating adjustment hardware by means of a positive self-locking mechanism which is capable when locked of withstanding restraint forces *Buckle* means a quick release connector which fastens a person in a seat belt assembly. Emergency-locking retractor means a retractor incorporating adjustment hardware by means of a locking mechanism that is activated by vehicle acceleration, webbing movement relative to the vehicle, or other automatic action during an emergency and is capable when locked of withstanding restraint forces. *Hardware* means any metal or rigid plastic part of a seat belt assembly. Load-limiter means a seat belt assembly component or feature that controls tension on the seat belt to modulate the forces that are imparted to occupants restrained by the belt assembly during a crash. Nonlocking retractor means a retractor from which the webbing is extended to essentially its full length by a small external force, which provides no adjustment for assembly length, and which may or may not be capable of sustaining restraint forces at maximum webbing extension. Pelvic restraint means a seat belt assembly or portion thereof intended to restrain movement of the pelvis. *Retractor* means a device for storing part or all of the webbing in a seat belt assembly. Seat back retainer means the portion of some seat belt assemblies designed to restrict forward movement of a seat back. Seat belt assembly means any strap, webbing, or similar device designed to secure a person in a motor vehicle in order to mitigate the results of any accident, including all necessary buckles and other fasteners, and all hardware designed for installing such seat belt assembly in a motor vehicle. *Strap* means a narrow nonwoven material used in a seat belt assembly in place of webbing. Type 1 seat belt assembly is a lap belt for pelvic restraint. Type 2 seat belt assembly is a combination of pelvic and upper torso restraints. *Type 2a shoulder belt* is an upper torso restraint for use only in conjunction with a lap belt as a Type 2 seat belt assembly. *Upper torso restraint* means a portion of a seat belt assembly intended to restrain movement of the chest and shoulder regions. Webbing means a narrow fabric woven with continuous filling yarns and finished selvages. S4. Requirements. S4.1 (a) *Single occupancy.* A seat belt assembly shall be designed for use by one, and only one, person at any one time. (b) Pelvic restraint. A seat belt assembly shall provide pelvic restraint whether or not upper torso restraint is provided, and the pelvic restraint shall be designed to remain on the pelvis under all conditions, including collision or roll-over of the motor vehicle. Pelvic restraint of a Type 2 seat belt assembly that can be used without upper torso restraint shall comply with requirement for Type 1 seat belt assembly in S4.1 to S4.4. (c) *Upper torso restraint*. A Type 2 seat belt assembly shall provide upper torso restraint without shifting the pelvic restraint into the abdominal region. An upper torso restraint shall be designed to minimize vertical forces on the shoulders and spine. Hardware for upper torso restraint shall be so designed and located in the seat belt assembly that the possibility of injury to the occupant is minimized. A Type 2a shoulder belt shall comply with applicable requirements for a Type 2 seat belt assembly in S4.1 to S4.4, inclusive. (d) *Hardware*. All hardware parts which contact under normal usage a person, clothing, or webbing shall be free from burrs and sharp edges. (e) Release. A Type 1 or Type 2 seat belt assembly shall be provided with a buckle or buckles readily accessible to the occupant to permit his easy and rapid removal from the assembly. Buckle release mechanism shall be designed to minimize the possibility of accidental release. A buckle with release mechanism in the latched position shall have only one opening in which the tongue can be inserted on the end of the buckle designed to receive and latch the tongue. (f) Attachment hardware. A seat belt assembly shall include all hardware necessary for installation in a motor vehicle in accordance with Society of Automotive Engineers Recommended Practice J800c, "Motor Vehicle Seat Belt Installation," November 1973. However, seat belt assemblies designed for installation in motor vehicles equipped with seat belt assembly anchorages that do not require anchorage nuts, plates, or
washers, need not have such hardware, but shall have 7/16-20 UNF-2A or ½-13UNC-2A attachment bolts or equivalent metric hardware. The hardware shall be designed to prevent attachment bolts and other parts from becoming disengaged from the vehicle while in service. Reinforcing plates or washers furnished for universal floor, installations shall be of steel, free from burrs and sharp edges on the peripheral edges adjacent to the vehicle, at least 1.5 mm in thickness and at least 2580 mm² in projected area. The distance between any edge of the plate and the edge of the bolt hole shall be at least 15 mm. Any corner shall be rounded to a radius of not less than 6 mm or cut so that no corner angle is less than 135° and no side is less than 6 mm in length. - (g) Adjustment. (1) A Type 1 or Type 2 seat belt assembly shall be capable of adjustment to fit occupants whose dimensions and weight range from those of a 5th-percentile adult female to those of a 95th-percentile adult male. The seat belt assembly shall have either an automatic-locking retractor, an emergency-locking retractor, or an adjusting device that is within the reach of the occupant. - (2) A Type 1 or Type 2 seat belt assembly for use in a vehicle having seats that are adjustable shall conform to the requirements of S4.1(g)(1) regardless of seat position. However, if a seat has a back that is separately adjustable, the requirements of S4.1(g)(1) need be met only with the seat back in the manufacturer's nominal design riding position. - (3) The adult occupants referred to in S4.1(g)(1) shall have the following measurements: | | 5th percen- tile adult female | 95th percentile adult male | | | | | |-----------------------------------|-------------------------------|----------------------------|--|--|--|--| | Weight | 46.3 kg | 97.5 kg. | | | | | | Erect sitting height | 785 mm | 965 mm. | | | | | | Hip breadth (sitting) | 325 mm | 419 mm. | | | | | | Hip circumference (sit-
ting). | 925 mm | 1199 mm. | | | | | | Waist circumference (sitting). | 599 mm | 1080 mm. | | | | | | Chest depthChest circumference: | 190 mm | 267 mm. | | | | | | Nipple | 775 mm | 1130 mm. | | | | | | Upper | 757 mm | 1130 mm. | | | | | | Lower | 676 mm | 1130 mm. | | | | | (h) Webbing. The ends of webbing in a seat belt assembly shall be protected or treated to prevent raveling. The end of webbing in a seat belt assembly having a metal-to-metal buckle that is used by the occupant to adjust the size of the assembly shall not pull out of the adjustment hardware at maximum size adjustment. Provision shall be made for essentially unimpeded movement of webbing routed between a seat back and seat cushion and attached to a retractor located behind the seat. - (i) Strap. A strap used in a seat belt assembly to sustain restraint forces shall comply with the requirements for webbing in S4.2, and if the strap is made from a rigid material, it shall comply with applicable requirements in S4.2, S4.3, and S4.4. - (j) Marking. Each seat belt assembly shall be permanently and legibly marked or labeled with year of manufacture, model, and name or trademark of manufacturer or distributor, or of importer if manufactured outside the United States. A model shall consist of a single combination of webbing having a specific type of fiber weave and construction, and hardware having a specific design. Webbings of various colors may be included under the same model, but webbing of each color shall comply with the requirements for webbing in S4.2. - (k) Installation instructions. A seat belt assembly, other than a seat belt assembly installed in a motor vehicle by an automobile manufacturer, shall be accompanied by an instruction sheet providing sufficient information for installing the assembly in a motor vehicle. The installation instructions shall state whether the assembly is for universal installation or for installation only in specifically stated motor vehicles, and shall include at least those items specified in SAE Recommended Practice J800c, "Motor Vehicle Seat Belt Installations," November 1973. If the assembly is for use only in specifically stated motor vehicles, the assembly shall either be permanently and legibly marked or labeled with the following statement, or the instruction sheet shall include the following statement: This seat belt assembly is for use only in [insert specific seating position(s), e.g., "front right"] in [insert specific vehicle make(s) and model(s)]. (l) Usage and maintenance instructions. A seat belt assembly or retractor shall be accompanied by written instructions for the proper use of the assembly, stressing particularly the importance of wearing the assembly snugly and properly located on the body, and on the maintenance of the assembly and periodic inspection of all components. The instructions shall show the proper manner of threading webbing in the hardware of seat belt assemblies in which the webbing is not permanently fastened. Instructions for a nonlocking retractor shall include a caution that the webbing must be fully extended from the retractor during use of the seat belt assembly unless the retractor is attached to the free end of webbing which is not subjected to any tension during restraint of an occupant by the assembly. Instructions for Type 2a shoulder belt shall include a warning that the shoulder belt is not to be used without a lap belt. (m) Workmanship. Seat belt assemblies shall have good workmanship in accordance with good commercial practice S4.2 Requirements for webbing. - (a) Width. The width of the webbing in a seat belt assembly shall be not less than 46 mm, except for portions that do not touch a 95th percentile adult male with the seat in any adjustment position and the seat back in the manufacturer's nominal design riding position when measured under the conditions prescribed in S5.1(a). - (b) Breaking strength. The webbing in a seat belt assembly shall have not less than the following breaking strength when tested by the procedures specified in S5.1(b): Type 1 seat belt assembly—26,689 N; Type 2 seat belt assembly—22,241 N for webbing in pelvic restraint and 17,793 N for webbing in upper torso restraint. - (c) *Elongation*. Except as provided in S4.5, the webbing in a seat belt assembly shall not extend to more than the following elongation when subjected to the specified forces in accordance with the procedure specified in S5.1(c): Type 1 seat belt assembly—20 percent at 11,120 N; Type 2 seat belt assembly 30 percent at 11,120 N for webbing in pelvic restraint and 40 percent at 11,120 N for webbing in upper torso restraint. - (d) Resistance to abrasion. The webbing of a seat belt assembly, after being subjected to abrasion as specified in S5.1(d) or S5.3(c), shall have a breaking strength of not less than 75 percent of the breaking strength listed in S4.2(b) for that type of belt assembly. - (e) Resistance to light. The webbing in a seat belt assembly after exposure to the light of a carbon are and tested by the procedure specified in S5.1(e) shall have a breaking strength not less than 60 percent of the strength before exposure to the carbon arc and shall have a color retention not less than No. 2 on the Geometric Gray Scale published by the American Association of Textile Chemists and Colorists, Post Office Box 886, Durham, NC. (f) Resistance to micro-organisms. The webbing in a seat belt assembly after being subjected to micro-organisms and tested by the procedures specified in S5.1(f) shall have a breaking strength not less than 85 percent of the strength before subjection to micro-organisms. S4.3 Requirements for hardware. - (a) Corrosion resistance. (1) Attachment hardware of a seat belt assembly after being subjected to the conditions specified in S5.2(a) shall be free of ferrous corrosion on significant surfaces except for permissible ferrous corrosion at peripheral edges or edges of holes on underfloor reinforcing plates and washers. Alternatively, such hardware at or near the floor shall be protected against corrosion by at least an electrodeposited coating of nickel, or copper and nickel with at least a service condition number of SC2, and other attachment hardware shall be protected by an electrodeposited coating of nickel, or copper and nickel with a service condition number of SC1, in accordance with American Society for Testing and Materials B456-79, ''Štandard Specification for Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium," but such hardware shall not be racked for electroplating in locations subjected to maximum stress. - (2) Surfaces of buckles, retractors and metallic parts, other than attachment hardware, of a seat belt assembly after subjection to the conditions specified in S5.2(a) shall be free of ferrous or nonferrous corrosion which may be transferred, either directly or by means of the webbing, to the occupant or his clothing when the assembly is worn. After test, buckles shall conform to applicable requirements in paragraphs (d) to (g) of this section. (b) Temperature resistance. Plastic or other nonmetallic hardware parts of a seat belt assembly when subjected to the conditions specified in S5.2(b) shall not warp or otherwise deteriorate to cause the assembly to operate improperly or fail to comply with applicable requirements in this section and S4.4. - (c) Attachment hardware. (1) Eye bolts, shoulder bolts, or other bolt used to secure the pelvic restraint of seat belt assembly to a motor vehicle shall withstand a force of 40,034 N when tested by the procedure specified in S5.2(c)(1), except that attachment bolts of a seat belt assembly designed for installation in specific models of motor vehicles in which the ends of two or more seat belt assemblies cannot be attached to the vehicle by a single bolt shall have breaking strength of not less than 22.241 N. - (2) Other attachment hardware designed to receive the ends of two seat belt assemblies shall withstand a
tensile force of at least 26,689 N without fracture of a section when tested by the procedure specified in S5.2(c)(2). - (3) A seat belt assembly having single attachment hooks of the quick-disconnect type for connecting webbing to an eye bolt shall be provided with a retaining latch or keeper which shall not move more than 2 mm in either the vertical or horizontal direction when tested by the procedure specified in S5.2(c)(3). - (d) *Buckle release.* (1) The buckle of a Type 1 or Type 2 seat belt assembly shall release when a force of not more than 133 N is applied. - (2) A buckle designed for pushbutton application of buckle release force shall have a minimum area of 452 mm² with a minimum linear dimension of 10 mm for applying the release force, or a buckle designed for lever application of buckle release force shall permit the insertion of a cylinder 10 mm in diameter and 38 mm in length to at least the midpoint of the cylinder along the cylinder's entire length in the actuation portion of the buckle release. A buckle having other design for release shall have adequate access for two or more fingers to actuate release. - (3) The buckle of a Type 1 or Type 2 seat belt assembly shall not release under a compressive force of 1779 N applied as prescribed in paragraph S5.2(d)(3). The buckle shall be operable and shall meet the applicable require- ment of paragraph S4.4 after the compressive force has been removed. - (e) Adjustment force. The force required to decrease the size of a seat belt assembly shall not exceed 49 N when measured by the procedure specified in S5.2(e). - (f) Tilt-lock adjustment. The buckle of a seat belt assembly having tilt-lock adjustment shall lock the webbing when tested by the procedure specified in S5.2(f) at an angle of not less than 30 degrees between the base of the buckle and the anchor webbing. - (g) Buckle latch. The buckle latch of a seat belt assembly when tested by the procedure specified in S5.2(g) shall not fail, nor gall or wear to an extent that normal latching and unlatching is impaired, and a metal-to-metal buckle shall separate when in any position of partial engagement by a force of not more than 22 N. - (h) Nonlocking retractor. The webbing of a seat belt assembly shall extend from a nonlocking retractor within 6 mm of maximum length when a tension is applied as prescribed in S5.2(h). A nonlocking retractor on upper torso restraint shall be attached to the nonadjustable end of the assembly, the reel of the retractor shall be easily visible to an occupant while wearing the assembly, and the maximum retraction force shall not exceed 5 N in any strap or webbing that contacts the shoulder when measured by the procedure specified in S5.2(h), unless the retractor is attached to the free end of webbing which is not subjected to any tension during restraint of an occupant by the assembly. - (i) Automatic-locking retractor. The webbing of a seat belt assembly equipped with an automatic locking retractor, when tested by the procedure specified in S5.2(i), shall not move more than 25 mm between locking positions of the retractor, and shall be retracted with a force under zero acceleration of not less than 3 N when attached to pelvic restraint, and not less that 2 N nor more than 5 N in any strap or webbing that contacts the shoulders of an occupant when the retractor is attached to upper torso restraint. An automatic locking retractor attached to upper torso restraint shall not increase the restraint on the occupant of the seat belt assembly during use in a vehicle traveling over rough roads as prescribed in S5.2(i). - (j) Emergency-locking retractor. An emergency-locking retractor of a Type 1 or Type 2 seat belt assembly, when tested in accordance with the procedures specified in paragraph S5.2(j)— - (1) Shall lock before the webbing extends 25 mm when the retractor is subjected to an acceleration of 7 m/s² (0.7 g); - (2) Shall not lock, if the retractor is sensitive to webbing withdrawal, before the webbing extends 51 mm when the retractor is subjected to an acceleration of 3 m/s 2 (0.3 g) or less. - (3) Shall not lock, if the retractor is sensitive to vehicle acceleration, when the retractor is rotated in any direction to any angle of 15° or less from its orientation in the vehicle; - (4) Shall exert a retractive force of at least 3 N under zero acceleration when attached only to the pelvic restraint; - (5) Shall exert a retractive force of not less than 1 N and not more than 5 N under zero acceleration when attached only to an upper torso restraint: - (6) Shall exert a retractive force of not less than 1 N and not more than 7 N under zero acceleration when attached to a strap or webbing that restrains both the upper torso and the pelvis. - (k) Performance of retractor. A retractor used on a seat belt assembly after subjection to the tests specified in S5.2(k) shall comply with applicable requirements in paragraphs (h) to (j) of this section and S4.4, except that the retraction force shall be not less than 50 percent of its original retraction force. - S4.4 Requirements for assembly performance. - (a) *Type I seat belt assembly*. Except as provided in S4.5, the complete seat belt assembly including webbing, straps, buckles, adjustment and attachment hardware, and retractors shall comply with the following requirements when tested by the procedures specified in S5.3(a): - (1) The assembly loop shall withstand a force of not less than 22,241 N; that is, each structural component of the as- sembly shall withstand a force of not less than 11,120 N. - (2) The assembly loop shall extend not more than 7 inches or 178 mm when subjected to a force of 22,241 N; that is, the length of the assembly between anchorages shall not increase more than 356 mm. - (3) Any webbing cut by the hardware during test shall have a breaking strength at the cut of not less than 18.683 N. - (4) Complete fracture through any solid section of metal attachment hardware shall not occur during test. - (b) Type 2 seat belt assembly. Except as provided in S4.5, the components of a Type 2 seat belt assembly including webbing, straps, buckles, adjustment and attachment hardware, and retractors shall comply with the following requirements when tested by the procedure specified in S5.3(b): - (1) The structural components in the pelvic restraint shall withstand a force of not less than 11,120 N. - (2) The structural components in the upper torso restraint shall withstand a force of not less than 6,672 N. - (3) The structural components in the assembly that are common to pelvic and upper torso restraints shall withstand a force of not less than 13,345 N. - (4) The length of the pelvic restraint between anchorages shall not increase more than 508 mm when subjected to a force of 11,120 N. - (5) The length of the upper torso restraint between anchorages shall not increase more than $508~\rm mm$ when subjected to a force of $6,672~\rm N.$ - (6) Any webbing cut by the hardware during test shall have a breaking strength of not less than 15,569 N at a cut in webbing of the pelvic restraint, or not less than 12,455 N at a cut in webbing of the upper torso restraint. - (7) Complete fracture through any solid section of metal attachment hardware shall not occur during test. - S4.5 Load-limiter. (a) A Type I or Type 2 seat belt assembly that includes a load-limiter is not required to comply with the elongation requirements of S4.2(c), S4.4(a)(2), S4.4(b)(4) or S4.4(b)(5). - (b) A seat belt assembly that includes a load limiter and that does not comply with the elongation requirements of this standard may be installed in motor vehicles at any designated seating position that is subject to the requirements of S5.1 of Standard No. 208 (§ 571.208). S4.6 Manual belts subject to crash protection requirements of Standard No. 208. (a)(1) A manual seat belt assembly, which is subject to the requirements of S5.1 of Standard No. 208 (49 CFR 571.208) by virtue of any provision of Standard No. 208 other than S4.1.2.1(c)(2) of that standard, does not have to meet the requirements of S4.2(a)-(f) and S4.4 of this standard. (2) A manual seat belt assembly subject to the requirements of S5.1 of Standard No. 208 (49 CFR 571.208) by virtue of S4.1.2.1(c)(2) of Standard No. 208 does not have to meet the elongation requirements of S4.2(c), S4.4(a)(2), S4.4(b)(4), and S4.4(b)(5) of this standard. S5. Demonstration procedures. S5.1 Webbing—(a) Width. The width of webbing from three seat belt assemblies shall be measured after conditioning for at least 24 hours in an atmosphere having relative humidity between 48 and 67 percent and a temperature of 23° ±2°C. The tension during measurement of width shall be not more than 22 N on webbing from a Type 1 seat belt assembly, and 9786 N ± 450 N on webbing from a Type 2 seat belt assembly. The width of webbing from a Type 2 seat belt assembly may be measured during the breaking strength test described in paragraph (b) of this section. (b) Breaking strength. Webbing from three seat belt assemblies shall be conditioned in accordance with paragraph (a) of this section and tested for breaking strength in a testing machine of capacity verified to have an error of not more than one percent in the range of the breaking strength of the webbing in accordance with American Society Testing and Materials E4-79 "Standard Methods of Load Verification of Testing Machines." The machine shall be equipped with split drum grips illustrated in Figure 1, having a diameter between 51 and 102 mm. The rate of grip separation shall be between 51 and 102 mm per minute. The distance between the centers of the grips at the start of the test shall be between 102 and 254 mm. After placing the specimen in the grips, the webbing shall be stretched continuously at a uniform rate to failure. Each value shall be not less than the applicable breaking strength requirement in S4.2(b), but the median value shall be used for determining the
retention of breaking strength in paragraphs (d), (e) and (f) of this section. (c) Elongation. Elongation shall be measured during the breaking strength test described in paragraph (b) of this section by the following procedure: A preload between 196 N and 245 N shall be placed on the webbing mounted in the grips of the testing machine and the needle points of an extensometer, in which the points remain parallel during test, are inserted in the center of the specimen. Initially the points shall be set at a known distance apart between 102 and 203 mm. When the force on the webbing reaches the value specified in S4.2(c), the increase in separation of the points of the extensometer shall be measured and the percent elongation shall be calculated to the nearest 0.5 percent. Each value shall be not more than the appropriate elongation requirement in S4.2(c). (d) Resistance to abrasion. The webbing from three seat belt assemblies shall be tested for resistance to abrasion by rubbing over the hexagon bar prescribed in Figure 2 in the following manner: The webbing shall be mounted in the apparatus shown schematically in Figure 2. One end of the webbing (A) shall be attached to a mass (B) of 2.35 kg ± .05 kg, except that a mass of 1.5 kg ± .05 kg shall be used for webbing in pelvic and upper torso restraints of a belt assembly used in a child restraint system. The webbing shall be passed over the two new abrading edges of the hexagon bar (C) and the other end attached to an oscillating drum (D) which has a stroke of 330 mm. Suitable guides shall be used to prevent movement of the webbing along the axis of hexagonal bar C. Drum D shall be oscillated for 5,000 strokes or 2,500 cycles at a rate of 60 ± 2 strokes per minute or 30± 1 cycles per minute. The abraded webbing shall be conditioned as prescribed in paragraph (a) of this section and tested for breaking strength by the procedure described in paragraph (b) of this section. The median values for the breaking strengths determined on abraded and unabraded specimens shall be used to calculate the percentage of breaking strength retained. (e) Resistance to light. Webbing at least 508 mm in length from three seat belt assemblies shall be suspended vertically on the inside of the specimen track in a Type E carbon-arc light exposure apparatus described in Standard Practice for Generating Light-Exposure Apparatus (Carbon-Arc Type) With and Without Water for Exposure of Nonmetallic Materials, ASTM Designation: G23 81, published by the American Society for Testing and Materials, except that the filter used for 100 percent polyester yarns shall be strengthened soda-lime chemically glass with a transmittance of less than 5 percent for wave lengths equal to or less than 305 nanometers and 90 percent or greater transmittance for wave lengths of 375 to 800 nanometers. The apparatus shall be operated without water spray at an air temperature of $60^{\circ} \pm 2^{\circ}$ Celsius (°C) measured at a point 25 ± 5 mm outside the specimen rack and midway in height. The temperature sensing element shall be shielded from radiation. The specimens shall be exposed to light from the carbon-arc for 100 hours and then conditioned as prescribed in paragraph (a) of this section. The colorfastness of the exposed and conditioned specimens shall be determined on the Geometric Gray Scale issued by the American Association of Textile Chemists and Colorists. The breaking strength of the specimens shall be determined by the procedure prescribed in paragraph (b) of this section. The median values for the breaking strengths determined on exposed and unexposed specimens shall be used to calculate the percentage of breaking strength retained. (f) Resistance to micro-organisms. Webbing at least 508 millimeters (mm) in length from three seat belt assemblies shall first be preconditioned in accordance with Appendix A(1) and (2) of American Association of Textile Chemists and Colorists Test Method 381, "Fungicides Evaluation on Textiles; Mildew and Rot Resistance of Textiles," and then subjected to Test I, "Soil Burial Test" of that test method. After soil-burial for a period of 2 weeks, the specimen shall be washed in water, dried and conditioned as prescribed in paragraph (a) of this section. The breaking strengths of the specimens shall be determined by the procedure prescribed in paragraph (b) of this section. The median values for the breaking strengths determined on exposed and unexposed specimens shall be used to calculate the percentage of breaking strength retained. NOTE: This test shall not be required on webbing made from material which is inherently resistant to micro-organisms. S5.2 Hardware. (a) Corrosion resistance. Three seat belt assemblies shall be tested in accordance with American Society for Testing and Materials B11773, "Standard Method of Salt Spray (Fog) Test-'' Any surface coating or material not intended for permanent retention on the metal parts during service life shall be removed prior to preparation of the test specimens for testing. The period of test shall be 50 hours for all attachment hardware at or near the floor, consisting of two periods of 24 hours exposure to salt spray followed by 1 hour drying and 25 hours for all other hardware, consisting of one period of 24 hours exposure to salt spray followed by 1 hour drying. In the salt spray test chamber, the parts from the three assemblies shall be oriented differently, selecting those orientations most likely to develop corrosion on the larger areas. At the end of test, the seat belt assembly shall be washed thoroughly with water to remove the salt. After drying for at least 24 hours under standard laboratory conditions specified in S5.1(a) attachment hardware shall be examined for ferrous corrosion on significant surfaces, that is, all surfaces that can be contacted by a sphere 19 mm in diameter, and other hardware shall be examined for ferrous and nonferrous corrosion which may be transferred, either directly or by means of the webbing, to a person or his clothing during use of a seat belt assembly incorporating the hardware. Note: When attachment and other hardware are permanently fastened, by sewing or other means, to the same piece of webbing, separate assemblies shall be used to test the two types of hardware. The test for corrosion resistance shall not be required for attachment hardware made from corrosion-resistant steel containing at least 11.5 percent chromium or for attachment hardware protected with an electrodeposited coating of nickel, or copper and nickel, as prescribed in S4.3(a). The assembly that has been used to test the corrosion resistance of the buckle shall be used to measure adjustment force, tilt-lock adjustment, and buckle latch in paragraphs (e), (f), and (g), respectively, of this section, assembly performance in S5.3 and buckle release force in paragraph (d) of this section. (b) Temperature resistance. Three seat belt assemblies having plastic or nonmetallic hardware or having retractors shall be subjected to the conditions prescribed in Procedure D of American Society for Testing and Materials D756-78, "Standard Practice for Determination of Weight and Shape Changes of Plastics under Accelerated Service Conditions." The dimension and weight measurement shall be omitted. Buckles shall be unlatched and retractors shall be fully retracted during conditioning. The hardware parts after conditioning shall be used for all applicable tests in S4.3 and S4.4. (c) Attachment hardware. (1) Attachment bolts used to secure the pelvic restraint of a seat belt assembly to a motor vehicle shall be tested in a manner similar to that shown in Figure 3. The load shall be applied at an angle of 45° to the axis of the bolt through attachment hardware from the seat belt assembly, or through a special fixture which simulates the loading applied by the attachment hardware. The attachment hardware or simulated fixture shall be fastened by the bolt to the anchorage shown in Figure 3, which has a standard 7/16-20UNF-2B or 1/2-UNF-2B or metric equivalent threaded hole in a hardened steel plate at least 10 mm in thickness. The bolt shall be installed with two full threads exposed from the fully seated position. The appropriate force required by S4.3(c) shall be applied. A bolt from each of three seat belt assemblies shall be tested. (2) Attachment hardware, other than bolts, designed to receive the ends of two seat belt assemblies shall be subjected to a tensile force of 26,689 N in a manner simulating use. The hardware shall be examined for fracture after the force is released. Attachment hardware from three seat belt assemblies shall be tested. (3) Single attachment hook for connecting webbing to any eye bolt shall be tested in the following manner: The hook shall be held rigidly so that the retainer latch or keeper, with cotter pin or other locking device in place, is in a horizontal position as shown in Figure 4. A force of 667 N \pm 9 N shall be applied vertically as near as possible to the free end of the retainer latch, and the movement of the latch by this force at the point of application shall be measured. The vertical force shall be released, and a force of 667 N \pm 9 N shall be applied horizontally as near as possible to the free end of the retainer latch. The movement of the latch by this force at the point of load application shall be measured. Alternatively, the hook may be held in other positions, provided the forces are applied and the movements of the latch are measured at the points indicated in Figure 4. A single attachment hook from each of three seat belt assemblies shall be tested. (d) Buckle release. (1) Three seat belt assemblies shall be tested to determine compliance with the maximum buckle release force requirements, following the assembly test in S5.3. After subjection to the force applicable for the assembly being tested, the force shall be reduced and maintained at 667 N on the
assembly loop of a Type 1 seat belt assembly, 334 N on the components of a Type 2 seat belt assembly. The buckle release force shall be measured by applying a force on the buckle in a manner and direction typical of those which would be employed by a seat belt occupant. For push button-release buckles, the force shall be applied at least 3 mm from the edge of the push button access opening of the buckle in a direction that produces maximum releasing effect. For lever-release buckles, the force shall be applied on the centerline of the buckle lever or finger tab in a direction that produces maximum releasing effect. (2) The area for application of release force on pushbutton actuated buckle shall be measured to the nearest 30 mm^2 . The cylinder specified in S4.3(d) shall be inserted in the actuation portion of a lever released buckle for determination of compliance with the requirement. A buckle with other release actuation shall be examined for access of release by fingers. (3) The buckle of a Type 1 or Type 2 seat belt assembly shall be subjected to a compressive force of 1779 N applied anywhere on a test line that is coincident with the center line of the belt extended through the buckle or on any line that extends over the center of the release mechanism and intersects the extended centerline of the belt at an angle of 60°. The load shall be applied by using a curved cylindrical bar having a cross section diameter of 19 mm and a radius of curvature of 152 mm, placed with its longitudinal center line along the test line and its center directly above the point or the buckle to which the load will be applied. The buckle shall be latched, and a tensile force of 334 N shall be applied to the connected webbing during the application of the compressive force. Buckles from three seat belt assemblies shall be tested to determine compliance with paragraph S4.3(d)(3). (e) Adjustment Force. Three seat belt assemblies shall be tested for adjustment force on the webbing at the buckle, or other manual adjusting device normally used to adjust the size of the assembly. With no load on the anchor end, the webbing shall be drawn through the adjusting device at a rate of 508 mm ±50 mm per minute and the maximum force shall be measured to the nearest 1 N after the first 25 mm of webbing movement. The webbing shall be precycled 10 times prior to measure- ment. (f) Tilt-lock adjustment. This test shall be made on buckles or other manual adjusting devices having tilt-lock adjustment normally used to adjust the size of the assembly. Three buckles or devices shall be tested. The base of the adjustment mechanism and the anchor end of the webbing shall be oriented in planes normal to each other. The webbing shall be drawn through the adjustment mechanism in a direction to increase belt length at a rate of 508 mm ±50 mm per minute while the plane of the base is slowly rotated in a direction to lock the webbing. Rotation shall be stopped when the webbing locks, but the pull on the webbing shall be continued until there is a resistance of at least 89 N. The locking angle between the anchor end of the webbing and the base of the adjustment mechanism shall be measured to the nearest degree. The webbing shall be precycled 10 times prior to measurement. (g) Buckle latch. The buckles from three seat belt assemblies shall be opened fully and closed at least 10 times. Then the buckles shall be clamped or firmly held against a flat surface so as to permit normal movement of buckle part, but with the metal mating plate (metal-to-metal buckles) or of webbing end (metal-towebbing buckles) withdrawn from the buckle. The release mechanism shall be moved 200 times through the maximum possible travel against its stop with a force of 133 N ±13 N at a rate not to exceed 30 cycles per minute. The buckle shall be examined to determine compliance with the performance requirements of S4.3(g). A metal-to-metal buckle shall be examined to determine whether partial engagement is possible by means of any technique representative of actual use. If partial engagement is possible, the maximum force of separation when in such partial engagement shall be determined. (h) Nonlocking retractor. After the retractor is cycled 10 times by full extension and retraction of the webbing, the retractor and webbing shall be suspended vertically and a force of 18 N shall be applied to extend the webbing from the retractor. The force shall be reduced to 13 N when attached to a pelvic restraint, or to 5 N per strap or webbing that contacts the shoulder of an occupant when retractor is attached to an upper torso restraint. The residual extension of the webbing shall be measured by manual rotation of the retractor drum or by disengaging the retraction mechanism. Measurements shall be made on three retractors. The location of the retractor attached to upper torso restraint shall be examined for visibility of reel during use of seat belt assembly in a vehicle. NOTE: This test shall not be required on a nonlocking retractor attached to the free end of webbing which is not subjected to any tension during restraint of an occupant by the assembly. (i) Automatic-locking retractor. Three retractors shall be tested in a manner to permit the retraction force to be determined exclusive of the gravitational forces on hardware or webbing being retracted. The webbing shall be fully extended from the retractor. While the webbing is being retracted, the average force or retraction within plus or minus 51 mm of 75 percent extension (25 percent retraction) shall be determined and the webbing movement between adjacent locking segments shall be measured in the same region of extension. A seat belt assembly with automatic locking retractor in upper torso restraint shall be tested in a vehicle in a manner prescribed by the installation and usage instructions. The retraction force on the occupant of the seat belt assembly shall be determined before and after traveling for 10 minutes at a speed of 24 kilometers per hour (km/h) or more over a rough road (e.g., Belgian block road) where the occupant is subjected to displacement with respect to the vehicle in both horizontal and vertical directions. Measurements shall be made with the vehicle stopped and the occupant in the normal seated position. (j) Emergency-locking retractor. A retractor shall be tested in a manner that permits the retraction force to be determined exclusive of the gravitational forces on hardware or webbing being retracted. The webbing shall be fully extended from the retractor, passing over or through any hardware or other material specified in the installation instructions. While the webbing is being retracted, the lowest force of retraction within plus or minus 51 mm of 75 percent extension shall be determined. A retractor that is sensitive to webbing withdrawal shall be subjected to an acceleration of 3 m/s² (0.3 g) within a period of 50 milliseconds (ms) while the webbing is at 75 percent extension, to determine compliance with S4.3(j)(2). The retractor shall be subjected to an acceleration of 7 m/s² (0.7 g) within a period of 50 milliseconds (ms), while the webbing is at 75 percent extension, and the webbing movement before locking shall be measured under the following conditions: For a retractor sensitive to webbing withdrawal, the retractor shall be accelerated in the direction of webbing retraction while the retractor drum's central axis is oriented horizontally and at angles of 45° , 90° , 135° , and 180° to the horizontal plane. For a retractor sensitive to vehicle acceleration, the retractor shall be: - (1) Accelerated in the horizontal plane in two directions normal to each other, while the retractor drum's central axis is oriented at the angle at which it is installed in the vehicle; and, - (2) Accelerated in three directions normal to each other while the retractor drum's central axis is oriented at angles of 45° , 90° , 135° , and 180° from the angle at which it is installed in the vehicle, unless the retractor locks by gravitational force when tilted in any direction to any angle greater than 45° from the angle at which it is installed in the vehicle. - (k) Performance of retractor. After completion of the corrosion-resistance test described in paragraph (a) of this section, the webbing shall be fully extended and allowed to dry for at least 24 hours under standard laboratory conditions specified in S5.1(a). The retractor shall be examined for ferrous and nonferrous corrosion which may be transferred, either directly or by means of the webbing, to a person or his clothing during use of a seat belt assembly incorporating the retractor, and for ferrous corrosion on significant surfaces if the retractor is part of the attachment hardware. The webbing shall be withdrawn manually and allowed to retract for 25 cycles. The retractor shall be mounted in an apparatus capable of extending the webbing fully, applying a force of 89 N at full extension, and allowing the webbing to retract freely and completely. The webbing shall be withdrawn from the retractor and allowed to retract repeatedly in this apparatus until 2,500 cycles are completed. The retractor and webbing shall then be subjected to the temperature resistance test prescribed in paragraph (b) of this section. The retractor shall be subjected to 2,500 additional cycles of webbing withdrawal and retraction. Then, the retractor and webbing shall be subjected to dust in a chamber similar to one illustrated in Figure 8 containing about 0.9 kg of coarse grade dust conforming to the specification given in Society of Automotive Engineering Recommended Practice J726, "Air Cleaner Test Code" Sept. 1979. The dust shall be agitated every 20 minutes for 5 seconds by compressed air, free of oil and moisture, at a gage pressure of 550 ± 55 kPa entering through an orifice 1.5 ± 0.1 mm in
diameter. The webbing shall be extended to the top of the chamber and kept extended at all times except that the webbing shall be subjected to 10 cycles of complete retraction and extension within 1 to 2 minutes after each agitation of the dust. At the end of 5 hours, the assembly shall be removed from the chamber. The webbing shall be fully withdrawn from the retractor manually and allowed to retract completely for 25 cycles. An automaticlocking retractor or a nonlocking retractor attached to pelvic restraint shall be subjected to 5,000 additional cycles of webbing withdrawal and retraction. An emergency locking retractor or a nonlocking retractor attached to upper torso restraint shall be subjected to 45,000 additional cycles of webbing withdrawal and retraction between 50 and 100 per cent extension. The locking mechanism of an emergency locking retractor shall be actuated at least 10,000 times within 50 to 100 percent extension of webbing during the 50,000 cycles. At the end of test, compliance of the retractors with applicable requirements in S4.3 (h), (i), and (j) shall be determined. Three retractors shall be tested for performance. S5.3 Assembly performance—(a) Type 1 seat belt assembly. Three complete seat belt assemblies, including webbing, straps, buckles, adjustment and attachment hardware, and retractors, arranged in the form of a loop as shown in Figure 5, shall be tested in the following manner: (1) The testing machine shall conform to the requirements specified in S5.1(b). A double-roller block shall be attached to one head of the testing machine. This block shall consist of two rollers 102 mm in diameter and sufficiently long so that no part of the seat belt assembly touches parts of the block other than the rollers during test. The rollers shall be mounted on antifriction bearings and spaced 305 mm between centers, and shall have sufficient capacity so that there is no brinelling, bending or other distortion of parts which may affect the results. An anchorage bar shall be fastened to the other head of the testing machine. (2) The attachment hardware furnished with the seat belt assembly shall be attached to the anchorage bar. The anchor points shall be spaced so that the webbing is parallel in the two sides of the loop. The attaching bolts shall be parallel to, or at an angle of 45° or 90° to the webbing, whichever results in an angle nearest to 90° between webbing and attachment hardware except that eye bolts shall be vertical, and attaching bolts or nonthreaded anchorages of a seat belt assembly designed for use in specific models of motor vehicles shall be installed to produce the maximum angle in use indicated by the installation instructions, utilizing special fixtures if necessary to simulate installation in the motor vehicle. Rigid adapters between anchorage bar and attachment hardware shall be used if necessary to locate and orient the adjustment hardware. The adapters shall have a flat support face perpendicular to the threaded hole for the attaching bolt and adequate in area to provide full support for the base of the attachment hardware connected to the webbing. If necessary, a washer shall be used under a swivel plate or other attachment hardware to prevent the webbing from being damaged as the attaching bolt is tightened. (3) The length of the assembly loop from attaching bolt to attaching bolt shall be adjusted to about 1295 mm, or as near thereto as possible. A force of 245 N shall be applied to the loop to remove any slack in webbing at hardware. The force shall be removed and the heads of the testing machine shall be adjusted for an assembly loop between 1220 and 1270 mm in length. The length of the assembly loop shall then be adjusted by applying a force between 89 and 98 N to the free end of the webbing at the buckle, or by the retraction force of an automatic-locking or emergency-locking retractor. A seat belt assembly that cannot be adjusted to this length shall be adjusted as closely as possible. An automatic-locking or emergency locking retractor when included in a seat belt assembly shall be locked at the start of the test with a tension on the webbing slightly in excess of the retractive force in order to keep the retractive force in order to keep the retractor locked. The buckle shall be in a location so that it does not touch the rollers during test, but to facilitate making the buckle release test in S5.2(d) the buckle should be between the rollers or near a roller in one leg. - (4) The heads of the testing machine shall be separated at a rate between 51 and 102 mm per minute until a force of 22,241 ± 222 N is applied to the assembly loop. The extension of the loop shall be determined from measurements of head separation before and after the force is applied. The force shall be decreased to 667 ± 45 N and the buckle release force measured as prescribed in S5.2(d). - (5) After the buckle is released, the webbing shall be examined for cutting by the hardware. If the yarns are partially or completely severed in a line for a distance of 10 percent or more of the webbing width, the cut webbing shall be tested for breaking strength as specified in S5.1(b) locating the cut in the free length between grips. If there is insufficient webbing on either side of the cut to make such a test for breaking strength, another seat belt assembly shall be used with the webbing repositioned in the hardware. A tensile force of 11,120 ± 111 N shall be applied to the components or a force of 22.241 ± 222 N shall be applied to the assembly loop. After the force is removed, the breaking strength of the cut webbing shall be determined as prescribed above. - (6) If a Type 1 seat belt assembly includes an automatic-locking retractor or an emergency-locking retractor, the webbing and retractor shall be subjected to a tensile force of $11,120\pm111$ N with the webbing fully extended from the retractor. - (7) If a seat belt assembly has a buckle in which the tongue is capable of inverted insertion, one of the three assemblies shall be tested with the tongue inverted. - (b) Type 2 seat belt assembly. Components of three seat belt assemblies shall be tested in the following manner: - (1) The pelvic restraint between anchorages shall be adjusted to a length between 1220 and 1270 mm, or as near this length as possible if the design of the pelvic restraint does not permit its adjustment to this length. An automatic-locking or emergency-locking retractor when included in a seat belt assembly shall be locked at the start of the test with a tension on the webbing slightly in excess of the retractive force in order to keep the retractor locked. The attachment hardware shall be oriented to the webbing as specified in paragraph (a)(2) of this section and illustrated in Figure 5. A tensile force 11.120 ± 111 N shall be applied on the components in any convenient manner and the extension between anchorages under this force shall be measured. The force shall be reduced to 334 \pm 22 N and the buckle release force measured as prescribed in S5.2(d). - (2) The components of the upper torso restraint shall be subjected to a tensile force of $6,672 \pm 67$ N following the procedure prescribed above for testing pelvic restraint and the extension between anchorages under this force shall be measured. If the testing apparatus permits, the pelvic and upper torso restraints may be tested simultaneously. The force shall be reduced to 334 ± 22 N and the buckle release force measured as prescribed in S5.2(d). - (3) Any component of the seat belt assembly common to both pelvic and upper torso restraint shall be subjected to a tensile force of $13,344 \pm 134$ N. - (4) After the buckle is released in tests of pelvic and upper torso restraints, the webbing shall be examined for cutting by the hardware. If the yarns are partially or completely severed in a line for a distance of 10 percent or more of the webbing width, the cut webbing shall be tested for breaking strength as specified in S5.1(b) locating the cut in the free length between grips. If there is insufficient webbing on either side of the cut to make such a test for breaking strength, another seat belt assembly shall be used with the webbing repositioned in the hardware. The force applied shall be 11,120 \pm 111 N for components of pelvic restraint, and 6,672 \pm 67 N for components of upper torso restraint. After the force is removed, the breaking strength of the cut webbing shall be determined as prescribed above. - (5) If a Type 2 seat belt assembly includes an automatic-locking retractor or an emergency-locking retractor the webbing and retractor shall be subjected to a tensile force of $11,120\pm111$ N with the webbing fully extended from the retractor, or to a tensile force of $6,672\pm67$ N with the webbing fully extended from the retractor if the design of the assembly permits only upper torso restraint forces on the retractor. - (6) If a seat belt assembly has a buckle in which the tongue is capable of inverted insertion, one of the three assemblies shall be tested with the tongue inverted. (c) Resistance to buckle abrasion. Seat belt assemblies shall be tested for resistance to abrasion by each buckle or manual adjusting device normally used to adjust the size of the assembly. The webbing of the assembly to be used in this test shall be exposed for 4 hours to an atmosphere having relative humidity of 65 per cent and temperature of 18° C. The webbing shall be pulled back and forth through the buckle or manual adjusting device as shown schematically in Figure 7. The anchor end of the webbing (A) shall be attached to a mass (B) of 1.4 kg. The webbing shall pass through the buckle (C), and the other end (D) shall be attached to a reciprocating device so that the webbing forms an angle of 8° with the hinge stop (E). The reciprocating device shall be operated for 2,500 cycles at a rate of 18 cycles per minute with a stroke length of 203 mm. The
abraded webbing shall be tested for breaking strength by the procedure described in paragraph A 1 TO 2 INCHES OR 2.5 TO 5 CENTIMETERS B A MINUS 0.06 INCH OR 0.15 CENTIMETER FIGURE 1 - A WEBBING - B WEIGHT - B WEIGHT C HEXAGONAL ROD STEEL- SAE 51416 ROCKWELL HARDNESS B-97 TO B-101 SURFACE COLD DRAWN FINISH SIZE- 0.250 ± 0.001 INCH OR 6.35 ± 0.03 MILLIMETER RADIUS ON EDGES 0.020 ± 0.004 INCH OR 0.5 ± 0.1 MILLIMETER D DRUM DIAMETER 16 INCHES OR 40 CENTIMETERS - E CRANK - F CRANK ARM - G ANGLE BETWEEN WEBBING 85 ± 2 DEGS. FIGURE 2 [44 FR 72139, Dec. 13, 1979, as amended at 45 FR 29048, May 1, 1980; 46 FR 2620, Jan. 12, 1981; 48 FR 30140, June 30, 1983; 49 FR 36508, Sept. 18, 1984; 51 FR 9813, Mar. 21, 1986; 51 FR 31774, Sept. 5, 1986; 52 FR 44912, Nov. 23, 1987; 56 FR 15299, Apr. 16, 1991; 56 FR 56325, Nov. 4, 1991; 59 #### § 571.209, Nt. FR 17994, Apr. 15, 1994; 61 FR 20171, May 6, 1996; 63 FR 28936, May 27, 1998; 63 FR 51003, Sept. 24, 1998] EFFECTIVE DATE NOTE: At 63 FR 28936, May 27, 1998, §571.209 was amended by revising in S4.1, paragraphs (f) and (g)(3); revising in S4.2, paragraphs (a), (b) and (c); revising in S4.3, paragraphs (c), (d), (e), (g), (h), (i), and (j); revising \$4.4; revising in \$5.1, paragraphs (a), (b), (c), (d), (e), and (f); revising in S5.2, paragraph (a) except for the NOTE, and paragraphs (c), (d), (e), (f), (g), (h), (i), (j), and (k); and revising in S5.3, paragraphs (a), (b), and (c). At 63 FR 51003, Sept. 24, 1998, §571.209 was amended by revising in S4.2, paragraph(b); revising in S4.3(j), paragraphs (1) and (2); revising in S4.4, paragraph (a)(1); and revising in S5.2, the second sentence in paragraph (d)(1); the second sentence in paragraph (e), and the fourth and fifth sentences in paragraph (j). All of the above amendments are effective May 27, 1999. For the convenience of the user, the superseded text follows: ### § 571.209 Standard No. 209, Seat belt assemblies. * * * * * * S4.1 (a)* * * (f) Attachment hardware. A seat belt assembly shall include all hardware necessary for installation in a motor vehicle in accordance with Society of Automotive Engineers Recommended Practice J800c, "Motor Vehicle Seat Belt Installation," November 1973. However, seat belt assemblies designed for installation in motor vehicles equipped with seat belt assembly anchorages that do not require anchorage nuts, plates, or washers, need not have such hardware, but shall have 7/16-20 UNF-2A or 1/2-13UNC-2A attachment bolts or equivalent hardware. The hardware shall be designed to prevent attachment bolts and other parts from becoming disengaged from the vehicle while in service. Reinforcing plates or washers furnished for universal floor installations shall be of steel, free from burrs and sharp edges on the peripheral edges adjacent to the vehicle, at least 0.06 inch in thickness and at least 4 square inches in projected area. The distance between any edge of the plate and the edge of the bolt hole shall be at least 0.6 inch. Any corner shall be rounded to a radius of not less than 0.25 inch or cut so that no corner angle is less than 135° and no side is less than 0.25inch in length. (3) The adult occupants referred to in S4.1(g)(1) shall have the following measurements: | | 5th percent-
ile adult fe-
male | 95th per-
centile adult
male | |-------------------------------|---------------------------------------|------------------------------------| | Weight | 102 lbs | 215 lbs. | | Erect sitting height | 30.9 in | 38 in. | | Hip breadth (sitting) | 12.8 in | 16.5 in. | | Hip circumference (sitting) | 36.4 in | 47.2 in. | | Waist circumference (sitting) | 23.6 in | 42.5 in. | | Chest depth | 7.5 in | 10.5 in. | | Nipple | 30.5 in | 44.5 in. | | Upper | 29.8 in | 44.5 in. | | Lower | 26.6 in | 44.5 in. | S4.2 Requirements for webbing. (a) Width. The width of the webbing in a seat belt assembly shall be not less than 1.8 inches, except for portions that do not touch a 95th percentile adult male with the seat in any adjustment position and the seat back in the manufacturer's nominal design riding position when measured under the conditions prescribed in S5.1(a). (b) Breaking strength. The webbing in a seat belt assembly shall have not less than the following breaking strength when tested by the procedures specified in S5.1(b): Type 1 seat belt assembly—6,000 pounds or 2,720 kilograms; Type 2 seat belt assembly—5,000 pounds or 2,270 kilograms for webbing pelvic restraint and 4,000 pounds or 1,810 kilograms for webbing in upper torso restraint. (c) Elongation. Except as provided in S4.5, the webbing in a seat belt assembly shall not extend to more than the following elongation when subjected to the specified forces in accordance with the procedure specified in S5.1(c): Type 1 seat belt assembly—20 percent at 2,500 pounds or 1,130 kilograms; Type 2 seat belt assembly—30 percent at 2,500 pounds or 1,130 kilograms for webbing in pelvic restraint and 40 percent at 2,500 pounds or 1,130 kilograms for webbing in upper torso restraint. S.4.3 Requirements for hardware. * * * * * (c) Attachment hardware. (1) Eye bolts, shoulder bolts, or other bolts used to secure the pelvic restraint of a seat belt assembly to a motor vehicle shall withstand a force of 9,000 pounds or 4,080 kilograms when tested by the procedure specified in S5.2(c)(1), except that attachment bolts of a seat belt assembly designed for installation in specific models of motor vehicles in which the ends of two or more seat belt assemblies cannot be attached to the vehicle by a single bolt shall have a breaking strength of not less than 5,000 pounds or 2,270 kilograms. - (2) Other attachment hardware designed to receive the ends of two seat belt assemblies shall withstand a tensile force of at least 6,000 pounds or 2,720 kilograms without fracture of any section when tested by the procedure specified in S5.2(c)(2). - (3) Å seat belt assembly having single attachment hooks of the quick-disconnect type for connecting webbing to an eye bolt shall be provided with a retaining latch or keeper which shall not move more than 0.08 inch or 2 millimeters in either the vertical or horizontal direction when tested by the procedure specified in S5.2(c)(3). (d) Buckle release. (1) The buckle of a Type 1 or Type 2 seat belt assembly shall release when a force of not more than 30 pounds or 14 kilograms is applied. - (2) A buckle designed for pushbutton application of buckle release force shall have a minimum area of 0.7 square inch or 4.5 square centimeters with a minimum linear dimension of 0.4 inch or 10 millimeters for applying the release force, or a buckle designed for lever application of buckle release force shall permit the insertion of a cylinder 0.4 inch or 10 millimeters in diameter and 1.5 inches or 38 millimeters in length to at least the midpoint of the cylinder along the cylinder's entire length in the actuation portion of the buckle release. A buckle having other design for release shall have adequate access for two or more fingers to actuate release. - (3) The buckle of a Type 1 or Type 2 seat belt assembly shall not release under a compressive force of 400 pounds applied as prescribed in paragraph S5.2(d)(3). The buckle shall be operable and shall meet the applicable requirement of paragraph S4.4 after the compressive force has been removed. - (e) Adjustment force. The force required to decrease the size of a seat belt assembly shall not exceed 11 pounds or 5 kilograms when measured by the procedure specified in S5.2(e). * * * * * (g) Buckle latch. The buckle latch of a seat belt assembly when tested by the procedure specified in S5.2(g) shall not fail, nor gall or wear to an extent that normal latching and unlatching is impaired, and a metal-to-metal buckle shall separate when in any position of partial engagement by a force of not more than 5 pounds or 2.3 kilograms. (h) Nonlocking retractor. The webbing of a seat belt assembly shall extend from a nonlocking retractor within 0.25 inch or 6 millimeters of maximum length when a tension is applied as prescribed in S5.2(h). A nonlocking retractor on upper torso restraint shall be attached to the nonadjustable end of the assembly, the reel of the retractor shall be easily visible to an occupant while wearing the assembly, and the maximum retraction force shall not exceed 1.1 pounds or 0.5 kilogram in any strap or webbing that contacts the shoulder when measured by the procedure specified in S5.2(h), unless the retractor is attached to the free end of webbing which is not subjected to any tension during restraint of an occupant by the assembly. - (i) Automatic-locking retractor. The webbing of a seat belt assembly equipped with an automatic locking retractor, when tested by the procedure specified in S5.2(i), shall not move more than 1 inch or 25 millimeters between locking positions of the retractor, and shall be retracted with a force under zero acceleration of not less than 0.6 pound or 0.27 kilogram when attached to pelvic restraint, and not less than 0.45 pound or 0.2 kilogram nor more than 1.1 pounds or 0.5 kilogram in any strap or webbing that contacts the shoulders of an occupant when the retractor is attached to upper torso restraint. An automatic locking retractor attached to upper torso restraint shall not increase the restraint on the occupant of the seat belt assembly during use in a vehicle traveling over rough roads as prescribed in S5.2(i) - (j) Emergency-locking retractor. An emergency-locking retractor of a Type 1 or Type 2 seat belt assembly, when tested in accordance with the procedures specified in paragraph S5.2(j)— - (1) Shall lock before the webbing extends 1 inch when the retractor is subjected to an acceleration of 0.7g; - (2) Shall not lock, if the retractor is sensitive to webbing withdrawal, before the webbing extends 2 inches when the retractor is subjected to an acceleration of 0.3g or less; - (3) Shall not lock, if the retractor is sensitive to
vehicle acceleration, when the retractor is rotated in any direction to any angle of 15° or less from its orientation in the vehicle; - (4) Shall exert a retractive force of at least 0.6 pound under zero acceleration when attached only to the pelvic restraint. - (5) Shall exert a retractive force of not less than 0.2 pound and not more than 1.1 pounds under zero acceleration when attached only to an upper torso restraint; - (6) Shall exert a retractive force of not less than 0.2 pound and not more than 1.5 pounds under zero acceleration when attached to a strap or webbing that restrains both the upper torso and the pelvis. * * * * * S4.4 Requirements for assembly performance. #### § 571.209, Nt. - (a) Type 1 seat belt assembly. Except as provided in S4.5, the complete seat belt assembly including webbing, straps, buckles, adjustment and attachment hardware, and retractors shall comply with the following requirements when tested by the procedures specified in S5.3(a): - (1) The assembly loop shall withstand a force of not less than 5,000 pounds or 2,270 kilograms; that is, each structural component of the assembly shall withstand a force of not less than 2,500 pounds or 1,130 kilograms. - (2) The assembly loop shall extend not more than 7 inches or 18 centimeters when subjected to a force of 5,000 pounds or 2,270 kilograms; that is, the length of the assembly between anchorages shall not increase more than 14 inches or 36 centimeters. - (3) Any webbing cut by the hardware during test shall have a breaking strength at the cut of not less than 4,200 pounds or 1,910 kilograms. - (4) Complete fracture through any solid section of metal attachment hardware shall not occur during test. - (b) Type 2 seat belt assembly. Except as provided in S4.5, the components of a Type 2 seat belt assembly including webbing, straps, buckles, adjustment and attachment hardware, and retractors shall comply with the following requirements when tested by the procedure specified in S5.3(b): - (1) The structural components in the pelvic restraint shall withstand a force of not less than 2,500 pounds or 1,139 kilograms. - (2) The structural components in the upper torso restraint shall withstand a force of not less than 1,500 pounds or 680 kilograms. - (3) The structural components in the assembly that are common to pelvic and upper torso restraints shall withstand a force of not less than 3,000 pounds or 1,360 kilograms. - (4) The length of the pelvic restraint between anchorages shall not increase more than 20 inches or 50 centimeters when subjected to a force of 2,500 pounds or 1,130 kilograms. - (5) The length of the upper torso restraint between anchorages shall not increase more than 20 inches or 50 centimeters when subjected to a force of 1,500 pounds or 680 kilograms. - (6) Any webbing cut by the hardware during test shall have a breaking strength of not less than 3,500 pounds or 1,590 kilograms at a cut in webbing of the pelvic restraint, or not less than 2,800 pounds or 1,270 kilograms at a cut in webbing of the upper torso restraint. - $\mbox{(7)}$ Complete fracture through any solid section of metal attachment hardware shall not occur during test. S5. Demonstration procedures. - S5.1 Webbing—(a) Width. The width of webbing from three seat belt assemblies shall be measured after conditioning for at least 24 hours in an atmosphere having relative humidity between 48 and 67 percent and a temperature of 23°±2° C. or 73.4±3.6° F. The tension during measurement of width shall be not more than 5 pounds or 2 kilograms on webbing from a Type 1 seat belt assembly, and 2.200±100 pounds or 1,000±50 kilograms on webbing from a Type 2 seat belt assembly. The width of webbing from a Type 2 seat belt assembly may be measured during the breaking strength test described in paragraph (b) of this section. - (b) Breaking strength. Webbing from three seat belt assemblies shall be conditioned in accordance with paragraph (a) of this section and tested for breaking strength in a testing machine of capacity verified to have an error of not more than one percent in the range of the breaking strength of the webbing in accordance with American Society for Testing and Materials E4-79, "Standard Methods of Load Verification of Testing Machines." The machine shall be equipped with split drum grips illustrated in Figure 1, having a diameter between 2 and 4 inches or 5 and 10 centimeters. The rate of grip separation shall be between 2 and 4 inches per minute or 5 and 10 centimeters per minute. The distance between the centers of the grips at the start of the test shall be between 4 and 10 inches or 10 and 25 centimeters. After placing the specimen in the grips, the webbing shall be stretched continuously at a uniform rate to failure. Each value shall be not less than the applicable breaking strength requirement in S4.2(b), but the median value shall be used for determining the retention of breaking strength in paragraphs (d), (e), and (f) of this section. - (c) Elongation. Elongation shall be measured during the breaking strength test described in paragraph (b) of this section by the following procedure: A preload between 44 and 55 pounds or 20 and 25 kilograms shall be placed on the webbing mounted in the grips of the testing machine and the needle points of an extensometer, in which the points remain parallel during test, are inserted in the center of the specimen. Initially the points shall be set at a known distance apart between 4 and 8 inches or 10 and 20 centimeters. When the force on the webbing reaches the value specified in S4.2(c), the increase in separation of the points of the extensometer shall be measured and the percent elongation shall be calculated to the nearest 0.5 percent. Each value shall be not more than the appropriate elongation requirement in S4.2(c). - (d) Resistance to abrasion. The webbing from three seat belt assemblies shall be tested for resistance to abrasion by rubbing over the hexagon bar prescribed in Figure 2 in the following manner: The webbing shall be mounted in the apparatus shown schematically in Figure 2. One end of the webbing (A) shall be attached to a weight (B) which has a mass of 5.2±0.1 pounds or 2.35± 0.05 kilograms, except that a mass of 3.3±.1 pounds (1.5±.05 kg) shall be used for webbing $\bar{\text{in}}$ pelvic and upper torso restraints of a belt assembly used in a child restraint system. The webbing shall be passed over the two new abrading edges of the hexagon bar (C) and the other end attached to an oscillating drum (D) which has a stroke of 13 inches or 33 centimeters. Suitable guides shall be used to prevent movement of the webbing along the axis of hexagonal bar C. Drum D shall be oscillated for 5,000 strokes or 2,500 cycles at a rate of 60 ± 2 strokes per minute or $30\pm\ 1$ cycles per minute. The abraded webbing shall be conditioned as prescribed in paragraph (a) of this section and tested for breaking strength by the procedure described in paragraph (b) of this section. The median values for the breaking strengths determined on abraded and unabraded specimens shall be used to strength retained. breaking of (e) Resistance to light. Webbing at least 20 inches or 50 centimeters in length from three seat belt assemblies shall be suspended vertically on the inside of the specimen rack in a Type E carbon-arc light-exposure apparatus described in Standard Practice for Operating Light-Exposure Apparatus (Carbon-Arc Type) With and Without Water for Exposure of Nonmetallic Materials, ASTM Designation: G23-81, published by the American Society for Testing and Materials, except that the filter used for 100 percent polyester yarns shall be chemically strengthened soda-lime glass with a transmittance of less than 5 percent for wave lengths equal to or less than 305 nanometers and 90 percent or greater transmittance for wave lengths of 375 to 800 nanometers. The apparatus shall be operated without water spray at an air temperature of 60± 2 degrees Celsius or 140± 3.6 degrees Fahrenheit measured at a point 1.0± 0.2 inch or 25± 5 millimeters outside the specimen rack and midway in height. The temperature sensing element shall be shielded from radiation. The specimens shall be exposed to light from the carbon-arc for 100 hours and then conditioned as prescribed in paragraph (a) of this section. The colorfastness of the exposed and conditioned specimens shall be determined on the Geometric Gray Scale issued by the American Association of Textile Chemists and Colorists. The breaking strength of the specimens shall be determined by the procedure prescribed in paragraph (b) of this section. The median values for the breaking strengths determined on exposed and unexposed specimens shall be used to calculate the percentage of breaking strength retained. (f) Resistance to microorganisms. Webbing at least 20 inches or 50 centimeters in length from three seat belt assemblies shall first be preconditioned in accordance with appendix A (1) and (2) of American Association of Textile Chemists and Colorists Test Method 30-81, "Fungicides Evaluation on Textiles; Mildew and Rot Resistance of Textiles," and then subjected to Test I, "Soil Burial Test" and of that test method. After soil-burial for a period of 2 weeks, the specimen shall be washed in water, dried and conditioned as prescribed in paragraph (a) of this section. The breaking strengths of the specimens shall be determined by the procedure prescribed in paragraph (b) of this section. median values for the breaking strengths determined on exposed and unexposed specimens shall be used to calculate the percentage of breaking strength retained. NOTE: This test shall not be required on webbing made from material which is inherently resistant to micro-organisms. S5.2 Hardware. (a) Corrosion resistance. Three seat belt assemblies shall be tested in accordance with American Society for Testing and Materials B117-73, "Standard Method of Salt Spray (Fog) Testing." Any
surface coating or material not intended for permanent retention on the metal parts during service life shall be removed prior to preparation of the test specimens for testing. The period of test shall be 50 hours for all attachment hardware at or near the floor, consisting of two periods of 24 hours exposure to salt spray followed by 1 hour drying and 25 hours for all other hardware, consisting of one period of 24 hours exposure to salt spray followed by 1 hour drying. In the salt spray test chamber, the parts from the three assemblies shall be oriented differently, selecting those orientations most likely to develop corrosion on the larger areas. At the end of test, the seat belt assembly shall be washed thoroughly with water to remove the salt. After drying for at least 24 hours under standard laboratory conditions specified in S5.1(a) attachment hardware shall be examined for ferrous corrosion on significant surfaces, that is, all surfaces that can be contacted by a sphere 0.75 inch or 2 centimeters in diameter, and other hardware shall be examined for ferrous and nonferrous corrosion which may be transferred, either directly or by means of the webbing, to a person or his clothing during use of a seat belt assembly incorporating the hardware. * * * * * (c) Attachment hardware. (1) Attachment bolts used to secure the pelvic restraint of a seat belt assembly to a motor vehicle shall be tested in a manner similar to that shown in Figure 3. The load shall be applied at an angle of 45° to the axis of the bolt through #### § 571.209, Nt. attachment hardware from the seat belt assembly, or through a special fixture which simulates the loading applied by the attachment hardware. The attachment hardware or simulated fixture shall be fastened by the bolt to the anchorage shown in Figure 3, which has a standard 1/16-20 -2B or 1/2-13 -2B threaded hole in a hardened steel plate at least 0.4 inch or 1 centimeter in thickness. The bolt shall be installed with two full threads exposed from the fully seated position. The appropriate force required by \$4.3(c) shall be applied. A bolt from each of three seat belt assemblies shall be tested. (2) Attachment hardware, other than bolts, designed to receive the ends of two seat belt assemblies shall be subjected to a tensile force of 6,000 pounds or 2,720 kilograms in a manner simulating use. The hardware shall be examined for fracture after the force is released. Attachment hardware from three seat belt assemblies shall be tested. (3) Single attachment hook for connecting webbing to any eye bolt shall be tested in the following manner: The hook shall be held rigidly so that the retainer latch or keeper, with cotter pin or other locking device in place, is in a horizontal position as shown in Figure 4. A force of 150±2 pounds or 68±1 kilograms shall be applied vertically as near as possible to the free end of the retainer latch, and the movement of the latch by this force at the point of application shall be measured. The vertical force shall be released, and a force of 150±2 pounds or 68±1 kilograms shall be applied horizontally as near as possible to the free end of the retainer latch. The movement of the latch by this force at the point of load application shall be measured. Alternatively, the hook may be held in other positions, provided the forces are applied and the movements of the latch are measured at the points indicated in Figure 4. A single attachment hook from each of three seat belt assemblies shall be tested. (d) Buckle release. (1) Three seatbelt assemblies shall be tested to determine compliance with the maximum buckle release force requirements, following the assembly test in \$5.3. After subjection to the force applicable for the assembly being tested, the force shall be reduced and maintained at 150 pounds on the assembly loop of a Type 1 seatbelt assembly, 75 pounds on the components of a Type 2 seatbelt assembly. The buckle release force shall be measured by applying a force on the buckle in a manner and direction typical of those which would be employed by a seatbelt occupant. For pushbutton-release buckles, the force shall be applied at least 0.125 inch from the edge of the pushbutton access opening of the buckle in a direction that produces maximum releasing effect. For lever-release buckles, the force shall be applied on the centerline of the buckle lever or finger tab in a direction that produces maximum releasing effect. (2) The area for application of release force on pushbutton actuated buckle shall be measured to the nearest 0.05 square inch or 0.3 square centimeter. The cylinder specified in S4.3(d) shall be inserted in the actuation portion of a lever released buckle for determination of compliance with the requirement. A buckle with other release actuation shall be examined for access of release by fingers. (3) The buckle of a Type 1 or Type 2 seatbelt assembly shall be subjected to a compressive force of 400 pounds applied anywhere on a test line that is coincident with the centerline of the belt extended through the buckle or on any line that extends over the center of the release mechanism and intersects the extended centerline of the belt at an angle of 60°. The load shall be applied by using a curved cylindrical bar having a cross section diameter of 0.75 inch and a radius of curvature of 6 inches, placed with its longitudinal centerline along the test line and its center directly above the point on the buckle to which the load will be applied. The buckle shall be latched, and a tensile force of 75 pounds shall be applied to the connected webbing during the application of the compressive force. Buckles from three seatbelt assemblies shall be tested to determine compliance with paragraph S4.3(d)(3). (e) Adjustment force. Three seat belt assemblies shall be tested for adjustment force on the webbing at the buckle, or other manual adjusting device normally used to adjust the size of the assembly. With no load on the anchor end, the webbing shall be drawn through the adjusting device at a rate of 20±2 inches per minute or 50±5 centimeters per minute and the maximum force shall be measured to the nearest 0.25 pound or 0.1 kilogram after the first 1 inch or 25 millimeters of webbing movement. The webbing shall be precycled 10 times prior to measurement. (f) Tilt-lock adjustment. This test shall be made on buckles or other manual adjusting devices having tilt-lock adjustment normally used to adjust the size of the assembly. Three buckles or devices shall be tested. The base of the adjustment mechanism and the anchor end of the webbing shall be oriented in planes normal to each other. The webbing shall be drawn through the adjustment mechanism in a direction to increase belt length at a rate of 20±2 inches per minute or 50±5 centimeters per minute while the plane of the base is slowly rotated in a direction to lock the webbing. Rotation shall be stopped when the webbing locks, but the pull on the webbing shall be continued until there is a resistance of at least 20 pounds or 9 kilograms. The locking angle between the anchor end of the webbing and the base of the adjustment mechanism shall be measured to the nearest degree. The webbing shall be precycled $10\ \mathrm{times}\ \mathrm{prior}\ \mathrm{to}\ \mathrm{measurement}.$ (g) Buckle latch. The buckles from three seat belt assemblies shall be opened fully and closed at least 10 times. Then the buckles shall be clamped or firmly held against a flat surface so as to permit normal movement of buckle part, but with the metal mating plate (metal-to-metal buckles) or of webbing end (metal-to-webbing buckles) withdrawn from the buckle. The release mechanism shall be moved 200 times through the maximum possible travel against its stop with a force of 30±3 pounds or 14±1 kilograms at a rate not to exceed 30 cycles per minute. The buckle shall be examined to determine compliance with the performance requirements of S4.3(g). A metal-to-metal buckle shall be examined to determine whether partial engagement is possible by means of any technique representative of actual use. If partial engagement is possible, the maximum force of separation when in such partial engagement shall be determined. (h) Nonlocking retractor. After the retractor is cycled 10 times by full extension and retraction of the webbing, the retractor and webbing shall be suspended vertically and a force of 4 pounds or 1.8 kilograms shall be applied to extend the webbing from the retractor. The force shall be reduced to 3 pounds or 1.4 kilograms when attached to a pelvic restraint, or to 1.1 pounds or 0.5 kilogram per strap or webbing that contacts the shoulder of an occupant when retractor is attached to an upper torso restraint. The residual extension of the webbing shall be measured by manual rotation of the retractor drum or by mechanism. disengaging the retraction Measurements shall be made on three retractors. The location of the retractor attached to upper torso restraint shall be examined for visibility of reel during use of seat belt assembly in a vehicle. NOTE: This test shall not be required on a nonlocking retractor attached to the free-end of webbing which is not subjected to any tension during restraint of an occupant by the assembly. (i) Automatic-locking retractor. Three retractors shall be tested in a manner to permit the retraction force to be determined exclusive of the gravitational forces on hardware or webbing being retracted. The webbing shall be fully extended from the retractor. While the webbing is being retracted, the average force or retraction within plus or minus 2 inches or 5 centimeters of 75 percent extension (25 percent retraction) shall be de-termined and the webbing movement between adjacent locking segments shall be measured in the same region of extension. A seat belt assembly with automatic locking retractor in upper torso restraint shall be tested in a vehicle in a manner prescribed by the installation
and usage instructions. The retraction force on the occupant of the seat belt assembly shall be determined before and after traveling for 10 minutes at a speed of 15 miles per hour or 24 kilometers per hour or more over a rough road (e.g., Belgian block road) where the occupant is subjected to displacement with respect to the vehicle in both horizontal and vertical directions. Measurements shall be made with the vehicle stopped and the occupant in the normal seated position. (j) Emergency-locking retractor. A retractor shall be tested in a manner that permits the retraction force to be determined exclusive of the gravitational forces on hardware or webbing being retracted. The webbing shall be fully extended from the retractor, passing over or through any hardware or other material specified in the installation instructions. While the webbing is being retracted, the lowest force of retraction within plus or minus 2 inches of 75 percent extension shall be determined. A retractor that is sensitive to webbing withdrawal shall be subjected to an acceleration of 0.3g within a period of 50 ms. while the webbing is at 75 percent extension, to determine compliance with S4.3(j)(2). The retractor shall be subjected to an acceleration of 0.7g within a period of 50 milliseconds, while the webbing is at 75 percent extension, and the webbing movement before locking shall be measured under the following conditions: For a retractor sensitive to webbing withdrawal, the retractor shall be accelerated in the direction of webbing retraction while the retractor drum's central axis is oriented horizontally and at angles of 45°, 90°, 135°, and 180° to the horizontal plane. For a retractor sensitive to vehicle acceleration, the retractor shall be: (1) Accelerated in the horizontal plane in two directions normal to each other, while the retractor drum's central axis is oriented at the angle at which it is installed in the vehicle; and, (2) Accelerated in three directions normal to each other while the retractor drum's central axis is oriented at angles of $45^\circ, 90^\circ, 135^\circ,$ and 180° from the angle at which it is installed in the vehicle, unless the retractor locks by gravitational force when tilted in any direction to any angle greater than 45° from the angle at which it is installed in the vehicle. (k) Performance of retractor. After completion of the corrosion-resistance test described in paragraph (a) of this section, the webbing shall be fully extended and allowed to dry for at least 24 hours under standard laboratory conditions specified in S5.1(a). The retractor shall be examined for ferrous and nonferrous corrosion which may be transferred, either directly or by means of the webbing, to a person or his clothing during use of a seat belt assembly incorporating the retractor, and for ferrous corrosion on significant surfaces if the retractor is part of the attachment hardware. The webbing shall #### § 571.209, Nt. be withdrawn manually and allowed to retract for 25 cycles. The retractor shall be mounted in an apparatus capable of extending the webbing fully, applying a force of $20\,$ pounds or 9 kilograms at full extension, and allowing the webbing to retract freely and completely. The webbing shall be withdrawn from the retractor and allowed to retract repeatedly in this apparatus until 2,500 cycles are completed. The retractor and webbing shall then be subjected to the temperature resistance test prescribed in paragraph (b) of this section. The retractor shall be subjected to 2,500 additional cycles of webbing withdrawal and retraction. Then, the retractor and webbing shall be subjected to dust in a chamber similar to one illustrated in Figure 8 containing about 2 pounds or 0.9 kilogram of coarse grade dust conforming to the specification given in Society of Automotive Engineering Recommended Practice J726, "Air Cleaner Test Code'' Sept. 1979. The dust shall be agitated every 20 minutes for 5 seconds by compressed air, free of oil and moisture, at a gage pressure of 80±8 pounds per square inch or 5.6±0.6 kilograms per square centimeter entering through an orifice 0.060±0.004 inch or 1.5±0.1 millimeters in diameter. The webbing shall be extended to the top of the chamber and kept extended at all times except that the webbing shall be subjected to 10 cycles of complete retraction and extension within 1 to 2 minutes after each agitation of the dust. At the end of 5 hours, the assembly shall be removed from the chamber. The webbing shall be fully withdrawn from the retractor manually and allowed to retract completely for 25 cycles. An automatic-locking retractor or a nonlocking retractor attached to pelvic restraint shall be subjected to 5,000 additional cycles of webbing withdrawal and retraction. An emergency-locking retractor or a nonlocking retractor attached to upper torso restraint shall be subjected to 45,000 additional cycles of webbing withdrawal and retraction between 50 and 100 percent extension. The locking mechanism of an emergency locking retractor shall be actuated at least 10,000 times within 50 to 100 percent extension of webbing during the 50,000 cycles. At the end of test, compliance of the retractors with applicable requirements in S4.3 (h), (i), and (j) shall be determined. Three retractors shall be tested for performance. S5.3 Assembly performance—(a) Type 1 seat belt assembly. Three complete seat belt assemblies, including webbing, straps, buckles, adjustment and attachment hardware, and retractors, arranged in the form of a loop as shown in Figure 5, shall be tested in the following manner: (1) The testing machine shall conform to the requirements specified in S5.1(b). A double-roller block shall be attached to one head of the testing machine. This block shall consist of two rollers 4 inches or 10 centimeters in diameter and sufficiently long so that no part of the seat belt assembly touches parts of the block other than the rollers during test. The rollers shall be mounted on antifriction bearings and spaced 12 inches or 30 centimeters between centers, and shall have sufficient capacity so that there is no brinelling, bending or other distortion of parts which may affect the results. An anchorage bar shall be fastened to the other head of the testing machine. (2) The attachment hardware furnished with the seat belt assembly shall be attached to the anchorage bar. The anchor points shall be spaced so that the webbing is parallel in the two sides of the loop. The attaching bolts shall be parallel to, or at an angle of 45° or 90° to the webbing, whichever results in an angle nearest to 90° between webbing and attachment hardware except that eye bolts shall be vertical, and attaching bolts or nonthreaded anchorages of a seat belt assembly designed for use in specific models of motor vehicles shall be installed to produce the maximum angle in use indicated by the installation instructions, utilizing special fixtures if necessary to simulate installation in the motor vehicle. Rigid adapters between anchorage bar and attachment hardware shall be used if necessary to locate and orient the adjustment hardware. The adapters shall have a flat support face perpendicular to the threaded hole for the attaching bolt and adequate in area to provide full support for the base of the attachment hardware connected to the webbing. If necessary, a washer shall be used under a swivel plate or other attachment hardware to prevent the webbing from being damaged as the attaching bolt is tightened. (3) The length of the assembly loop from attaching bolt to attaching bolt shall be adjusted to about 51 inches or 130 centimeters, or as near thereto as possible. A force of 55 pounds or 25 kilograms shall be applied to the loop to remove any slack in webbing at hardware. The force shall be removed and the heads of the testing machine shall be adjusted for an assembly loop between 48 and 50 inches or 122 and 127 centimeters in length. The length of the assembly loop shall then be adjusted by applying a force between 20 and 22 pounds or 9 and 10 kilograms to the free end of the webbing at the buckle, or by the retraction force of an automatic-locking or emergency-locking retractor. A seat belt assembly that cannot be adjusted to this length shall be adjusted as closely as possible. An automatic-locking or emergencylocking retractor when included in a seat belt assembly shall be locked at the start of the test with a tension on the webbing slightly in excess of the retractive force in order to keep the retractor locked. The buckle shall be in a location so that it does not touch the rollers during test, but to facilitate making the buckle release test in S5.2(d) the buckle should be between the rollers or near a roller in one leg. (4) The heads of the testing machine shall be separated at a rate between 2 and 4 inches per minute or 5 and 10 centimeters per minute until a force of 5,000±50 pounds or 2,270±20 kilograms is applied to the assembly loop. The extension of the loop shall be determined from measurements of head separation before and after the force is applied. The force shall be decreased to 150±10 pounds or 68±4 kilograms and the buckle release force measured as prescribed in S5.2(d). - (5) After the buckle is released, the webbing shall be examined for cutting by the hardware. If the yarns are partially or completely severed in a line for a distance of 10 percent or more of the webbing width, the cut webbing shall be tested for breaking strength as specified in S5.1(b) locating the cut in the free length between grips. If there is insufficient webbing on either side of the cut to make such a test for breaking strength, another seat belt assembly shall be used with the webbing repositioned in the hardware. A tensile force of 2,500±25 pounds or 1,135±10 kilograms shall be applied to the components or a force of 5,000±50 pounds or 2,270±20 kilograms shall be applied to an assembly loop. After the force
is removed, the breaking strength of the cut webbing shall be determined as prescribed above. - (6) If a Type 1 seat belt assembly includes an automatic-locking retractor or an emergency-locking retractor, the webbing and retractor shall be subjected to a tensile force of 2,500±25 pounds or 1,135±10 kilograms with the webbing fully extended from the retractor. - (7) If a seat belt assembly has a buckle in which the tongue is capable of inverted insertion, one of the three assemblies shall be tested with the tongue inverted. - (b) *Type 2 seat belt assembly.* Components of three seat belt assemblies shall be tested in the following manner: - (1) The pelvic restraint between anchorages shall be adjusted to a length between 48 and 50 inches or 122 and 127 centimeters, or as near this length as possible if the design of the pelvic restraint does not permit its adjustment to this length. An automatic-locking or emergency-locking retractor when included in a seat belt assembly shall be locked at the start of the test with a tension on the webbing slightly in excess of the retractive force in order to keep the retractor locked. The attachment hardware shall be oriented to the webbing as specified in paragraph (a)(2) of this section and illustrated in Figure 5. A tensile force of 2.500±25 pounds or 1,135±10 kilograms shall be applied on the components in any convenient manner and the extension between anchorages under this force shall be measured. The force shall be reduced to 75±5 pounds or 34±2 kilograms and the buckle release force measured as prescribed in S5.2(d). - (2) The components of the upper torso restraint shall be subjected to a tensile force of 1,500±15 pounds or 680±5 kilograms following the procedure prescribed above for testing pelvic restraint and the extension between anchorages under this force shall be measured. If the testing apparatus permits, the pelvic and upper torso restraints may be tested simultaneously. The force shall be reduced to 75±5 pounds or 34±2 kilograms and the buckle release force measured as prescribed in S5.2(d). - (3) Any component of the seat belt assembly common to both pelvic and upper torso restraint shall be subjected to a tensile force of 3,000±30 pounds or 1,360±15 kilograms. - (4) After the buckle is released in tests of pelvic and upper torso restraints, the webbing shall be examined for cutting by the hardware. If the yarns are partially or completely severed in a line for a distance of 10 percent or more of the webbing width the cut webbing shall be tested for breaking strength as specified in S5.1(b) locating the cut in the free length between grips. If there is insufficient webbing on either side of the cut to make such a test for breaking strength, another seat belt assembly shall be used with the webbing repositioned in the hardware. The force applied shall be 2,500±25 pounds or 1,135±10 kilograms for components of pelvic restraint, and 1,500±15 pounds or 680±5 kilograms for components of upper torso restraint. After the force is removed the breaking strength of the cut webbing shall be determined as prescribed above. - (5) If a Type 2 seat belt assembly includes an automatic-locking retractor or an emergency-locking retractor the webbing and retractor shall be subjected to a tensile force of 2,500±25 pounds or 1,135±10 kilograms with the webbing fully extended from the retractor, or to a tensile force of 1,500±15 pounds or 680±5 kilograms with the webbing fully extended from the retractor if the design of the assembly permits only upper torso restraint forces on the retractor. - (6) If a seat belt assembly has a buckle in which the tongue is capable of inverted insertion, one of the three assemblies shall be tested with the tongue inverted. - (c) Resistance to buckle abrasion. Seat belt assemblies shall be tested for resistance to abrasion by each buckle or manual adjusting device normally used to adjust the size of the assembly. The webbing of the assembly to be used in this test shall be exposed for 4 hours to an atmosphere having relative humidity of 65 percent and temperature of 70 °F. The webbing shall be pulled back and forth through the buckle or manual adjusting device as shown schematically in Figure 7. The anchor end of the webbing (A) shall be attached to a weight (B) of 3 pounds. The webbing shall pass through the buckle (C), and the other end (D) shall be attached to a reciprocating device so that the webbing forms an angle of 8° with the hinge stop (E). The reciprocating device shall be operated for 2,500 cycles at a rate of 18 cycles per minute with a stroke length of 8 inches. The abraded webbing shall be tested for breaking strength by the procedure described in paragraph S5.1(b). * * * * * # §571.210 Standard No. 210; Seat belt assembly anchorages. S1. Purpose and scope. This standard establishes requirements for seat belt assembly anchorages to insure their proper location for effective occupant restraint and to reduce the likelihood of their failure. S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses. S3. Definition. Seat belt anchorage means any component, other than the webbing or straps, involved in transferring seat belt loads to the vehicle structure, including, but not limited to, the attachment hardware, seat frames, seat pedestals, the vehicle structure itself, and any part of the vehicle whose failure causes separation of the belt from the vehicle structure. S4. Requirements. S4.1 Type. S4.1.1 Seat belt anchorages for a Type 1 or a Type 2 seat belt assembly shall be installed for each designated seating position for which a Type 1 or a Type 2 seat belt assembly is required by Standard No. 208 (49 CFR 571.208). Seat belt anchorages for a Type 2 seat belt assembly shall be installed for each designated seating position for which a Type 2 seat belt assembly is required by Standard No. 208 (49 CFR 571.208). S4.1.2 (a) Notwithstanding the requirement of S4.1.1, each vehicle manufactured on or after September 1, 1987 that is equipped with an automatic restraint at the front right outboard designated seating position, which automatic restraint cannot be used for securing a child restraint system or cannot be adjusted by the vehicle owner to secure a child restraint system solely through the use of attachment hardware installed as an item of original equipment by the vehicle manufacturer, shall have, at the manufactur er's option, either anchorages for a Type 1 seat belt assembly installed at that position or a Type 1 or Type 2 seat belt assembly installed at that position. If a manufacturer elects to install anchorages for a Type 1 seat belt assembly to comply with this requirement, those anchorages shall consist of, at a minimum, holes threaded to accept bolts that comply with S4.1(f) of Standard No. 209 (49 CFR 571.209). (b) The requirement in S4.1.1 of this standard that seat belt anchorages for a Type 1 or a Type 2 seat belt assembly shall be installed for certain designated seating positions does not apply to any such seating positions that are equipped with a seat belt assembly that meets the frontal crash protection requirements of S5.1 of Standard No. 208 (49 CFR 571.208). S4.2 Strength. S4.2.1 Except as provided in S4.2.5, and except for side-facing seats, the anchorages, attachment hardware, and attachment bolts for any of the following seat belt assemblies shall withstand a 5,000 pound force when tested in accordance with S5.1 of this standard: (a) Type 1 seat belt assembly; and (b) Lap belt portion of either a Type 2 or automatic seat belt assembly, if such seat belt assembly is equipped with a detachable upper torso belt. S4.2.2 Except as provided in S4.2.5, and except for side facing seats, the anchorages, attachment hardware, and attachment bolts for any of the following seat belt assemblies shall withstand a 3,000 pound force applied to the lap belt portion of the seat belt assembly simultaneously with a 3,000 pound force applied to the shoulder belt portion of the seat belt assembly, when tested in accordance with S5.2 of this standard: (a) Type 2 and automatic seat belt assemblies that are installed to comply with Standard No. 208 (49 CFR 571.208); and (b) Type 2 and automatic seat belt assemblies that are installed at a seating position required to have a Type 1 or Type 2 seat belt assembly by Standard No. 208 (49 CFR 571.208). S4.2.3 Permanent deformation or rupture of a seat belt anchorage or its surrounding area is not considered to be a failure, if the required force is sustained for the specified time. S4.2.4 Anchorages, attachment hardware, and attachment bolts shall be tested by simultaneously loading them in accordance with the applicable procedures set forth in S5 of this standard if the anchorages are either: (a) For designated seating positions that are common to the same occupant seat and that face in the same direction, or (b) For laterally adjacent designated seating positions that are not common to the same occupant seat, but that face in the same direction, if the vertical centerline of the bolt hole for at least one of the anchorages for one of those designated seating positions is within 305 mm of the vertical center line of the bolt hole for an anchorage for one of the adjacent seating positions. S4.2.5 The attachment hardware of a seat belt assembly, which is subject to the requirements of S5.1 of Standard No. 208 (49 CFR 571.208) by virtue of any provision of Standard No. 208 other than S4.1.2.1(c)(2) of that standard, does not have to meet the requirements of S4.2.1 and S4.2.2 of this standard. S4.3 Location. As used in this section, "forward" means the direction in which the seat faces, and other directional references are to be interpreted accordingly. Anchorages for seat belt assemblies that meet the frontal crash protection requirements of S5.1 of Standard No. 208 (49 CFR 571.208) are exempt from the location requirements of
this section. S4.3.1 Seat belt anchorages for Type 1 seat belt assemblies and the pelvic portion of Type 2 seat belt assemblies. S4.3.1.1 In an installation in which the seat belt does not bear upon the seat frame: (a) If the seat is a nonadjustable seat, then a line from the seating reference point to the nearest contact point of the belt with the anchorage shall extend forward from the anchorage at an angle with the horizontal of not less than 30 degrees and not more than 75 degrees. (b) If the seat is an adjustable seat, then a line from a point 64 mm forward of and 10 mm above the seating reference point to the nearest contact point of the belt with the anchorage shall extend forward from the anchorage at an angle with the horizontal of not less than 30 degrees and not more than 75 degrees. S4.3.1.2 In an installation in which the belt bears upon the seat frame, the seat belt anchorage, if not on the seat structure, shall be aft of the rearmost belt contact point on the seat frame with the seat in the rearmost position. The line from the seating reference point to the nearest belt contact point on the seat frame, with the seat positioned at the seating reference point, shall extend forward from that contact point at an angle with the horizontal of not less than 30 degrees and not more than 75 degrees. S4.3.1.3 In an installation in which the seat belt attaches to the seat structure, the line from the seating reference point to the nearest contact point of the belt with the hardware attaching it to the seat structure shall extend forward from that contact point at an angle with the horizontal of not less than 30 degrees and not more than 75 degrees. S4.3.1.4 Anchorages for an individual seat belt assembly shall be located at least 165 mm apart laterally, measured between the vertical center line of the bolt holes or, for designs using other means of attachment to the vehicle structure, between the centroid of such means. S4.3.1.5 Notwithstanding the provisions of S4.3.1.1 through S4.3.1.4, the lap belt angle for seats behind the front row of seats shall be between 20 degrees and 75 degrees for vehicles manufactured between September 1, 1992 and September 1, 1993. \$4.3.2 Seat belt anchorages for the upper torso portion of Type 2 seat belt assemblies. Adjust the seat to its full rearward and downward position and adjust the seat back to its most upright position. With the seat and seat back so positioned, as specified by subsection (a) or (b) of this section, the upper end of the upper torso restraint shall be located within the acceptable range shown in Figure 1, with reference to a two-dimensional drafting template described in SAE Recommended Practice J826 (May 1987). The template's "H" point shall be at the design "H" point of the seat for its full rearward and full downward position, as defined in SAE Recommended Practice J1100 (June 1984), and the template's torso line shall be at the same angle from the vertical as the seat back. (a) For fixed anchorages, compliance with this section shall be determined at the vertical centerline of the bolt holes or, for designs using another means of attachment to the vehicle structure, at the centroid of such means. (b) For adjustable anchorages, compliance with this section shall be determined at the midpoint of the range of all adjustment positions. S5. Test procedures. Each vehicle shall meet the requirements of S4.2 of this standard when tested according to the following procedures. Where a range of values is specified, the vehicle shall be able to meet the requirements at all points within the range. For the testing specified in these procedures, the anchorage shall be connected to material whose breaking strength is equal to or greater than the breaking strength of the webbing for the seat belt assembly installed as original equipment at that seating position. The geometry of the attachment duplicates the geometry, at the initiation of the test, of the attachment of the originally installed seat belt assembly. S5.1 Seats with Type 1 or Type 2 seat belt anchorages. With the seat in its rearmost position, apply a force of 22,241 N in the direction in which the seat faces to a pelvic body block as described in Figure 2A, in a plane parallel to the longitudinal centerline of the vehicle, with an initial force application angle of not less than 5 degrees or more than 15 degrees above the horizontal. Apply the force at the onset rate of not more than 222,411 N per second. Attain the 22,241 N force in not more than 30 seconds and maintain it for 10 seconds. At the manufacturer's option, the pelvic body block described in Figure 2B may be substituted for the pelvic body block described in Figure 2A to apply the specified force to the center set(s) of anchorages for any group of three or more sets of anchorages that are simultaneously loaded in accordance with S4.2.4 of this standard. S5.2 Seats with Type 2 or automatic seat belt anchorages. With the seat in its rearmost position, apply forces of 13,345 N in the direction in which the seat faces simultaneously to a pelvic body block, as described in Figure 2A, and an upper torso body block, as described in Figure 3, in a plane parallel to the longitudinal centerline of the vehicle, with an initial force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. Apply the forces at the onset rate of not more than 133,447 N per second. Attain the 13,345 N force in not more than 30 seconds and maintain it for 10 seconds. At the manufacturer's option, the pelvic body block described in Figure 2B may be substituted for the pelvic body block described in Figure 2A to apply the specified force to the center set(s) of anchorages for any group of three or more sets of anchorages that are simultaneously loaded in accordance with S4.2.4 of this standard. FIGURE 1 - LOCATION OF ANCHORAGE FOR UPPER TORSO RESTRAINT ### 49 CFR Ch. V (10-1-98 Edition) Figure 2A.—BODY BLOCK FOR LAP BELT ANCHORAGE Figure 2B.—OPTIONAL BODY BLOCK FOR CENTER SEATING POSITIONS Figure 3.—BODY BLOCK FOR COMBINATION SHOULDER AND LAP BELT ANCHORAGE All dimensions in millimeters (mm) S6. Owner's Manual Information. The owner's manual in each vehicle with a gross vehicle weight rating of 4,536 kg or less manufactured after September 1, 1987 shall include: (a) A section explaining that all child restraint systems are designed to be secured in vehicle seats by lap belts or the lap belt portion of a lap-shoulder belt. The section shall also explain that children could be endangered in a crash if their child restraints are not properly secured in the vehicle. (b) In a vehicle with rear designated seating positions, a statement alerting vehicle owners that, according to accident statistics, children are safer when properly restrained in the rear seating positions than in the front seating positions. [36 FR 22902, Dec. 2, 1971, as amended at 37 FR 9323, May 9, 1972; 43 FR 21892, May 22, 1978; 43 FR 53442, Nov. 16, 1978; 50 FR 41359, Oct. 10, 1985; 51 FR 9813, Mar. 21, 1986; 51 FR 29555, Aug. 19, 1986; 54 FR 25278, June 14, 1989; 54 FR 46268, Nov. 2, 1989; 55 FR 17983, Apr. 30, 1990; 55 FR 24241, June 15, 1990; 56 FR 63681, 63685, Dec. 5, 1991; 57 FR 32904, July 24, 1992; 60 FR 3775, Jan. 19, 1995; 61 FR 19561, May 2, 1996; 63 FR 28941, 28942, May 27, 1998; 63 FR 32143, June 12, 1998] EFFECTIVE DATE NOTE 1: At 63 FR 28941, 28942, May 27, 1998, §571.210 was amended by revising in S4.2.1 the introductory paragraph; revising S4.2.2, S4.2.4, S4.3.1.1, and S4.3.1.4; removing S4.3.1.5; revising S5.1, S5.2; and revising in S6, the introductory sentence; Figure 2 "Body Block for Lap Belt An- chorage" was removed; Figure 2A "Body Block for Lap Belt Anchorage," Figure 2B "Optional Body Block for Center Seating Positions," and Figure 3 "Body Block for Combination Shoulder and Lap Belt Anchorage" after S5.2, and preceding S6, were revised, effective May 27, 1999. For the convenience of the user, the superseded text follows: ### § 571.210 Standard No. 210, Seat belt assembly anchorages. * * * * * S4.2.1 Except as provided in S4.2.5, and except for side-facing seats, the anchorages, attachment hardware, and attachment bolts for any of the following seat belt assemblies shall withstand a 5,000-pound force when tested in accordance with S5.1 of this standard: * * * * * S4.2.2 Except as provided in S4.2.5, the anchorages, attachment hardware, and attachment bolts for all Type 2 and automatic seat belt assemblies that are installed to comply with Standard No. 208 (49 CFR 571.208) shall withstand 3,000-pound forces when tested in accordance with S5.2. * * * * * S4.2.4 Anchorages, attachment hardware, and attachment bolts shall be tested by simultaneously loading them in accordance with the applicable procedures set forth in S5 of this standard if the anchorages are either: #### § 571.210, Nt. (a) For designated seating positions that are common to the same occupant seat and that face in the same direction, or (b) For laterally adjacent designated seating positions that are not common to the same occupant seat, but that face in the same direction, if the vertical centerline of the bolt hole for at least one of the anchorages for one of those designated seating positions is within 12 inches of the vertical centerline of the bolt hole for an anchorage for one of the adjacent seating positions. * * * * * * S4.3.1.1 In an installation in which the seat belt does not bear upon the seat frame: (a) If the seat is a nonadjustable seat, then a line from the seating reference point to the nearest contact point of the belt with the anchorage shall extend forward from the anchorage at an angle with the horizontal of not less than 30 degrees and not more than 75 degrees (b) If the seat is an adjustable seat, then a line from a point 2.50 inches forward of and 0.375 inches above the seating reference point to the nearest contact point of the belt with the anchorage
shall extend forward from the anchorage at an angle with the horizontal of not less than 30 degrees and not more than 75 degrees. * * * * * S4.3.1.4 Anchorages for an individual seat belt assembly shall be located at least 6.50 inches apart laterally, measured between the vertical centerline of the bolt holes or, for designs using another means of attachment to the vehicle structure, between the centroid of such means. * * * * * S5.1 Seats with Type 1 or Type 2 seat belt anchorages. With the seat in its rearmost position, apply a force of 5,000 pounds in the direction in which the seat faces to a pelvic body block as described in Figure 2A, in a plane parallel to the longitudinal centerline of the vehicle, with an initial force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. Apply the force at the onset rate of not more than 50,000 pounds per second. Attain the 5,000 pound force in not more than 30 seconds and maintain it for 10 seconds. At the manufacturer's option, the pelvic body block described in Figure 2B may be substituted for the pelvic body block described in Figure 2A to apply the specified force to the center set(s) of anchorages for any group of three or more sets of anchorages that are simultaneously loaded in accordance with S4.2.4 of this standard. S5.2 Seats with Type 2 or automatic seat belt anchorages. With the seat in its rearmost position, apply forces of 3,000 pounds in the direction in which the seat faces simultaneously to a pelvic body block, as described in Figure 2A, and an upper torso body block, as described in Figure 3, in a plane parallel to the longitudinal centerline of the vehicle, with an initial force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. Apply the forces at the onset rate of not more than 30,000 pounds per second. Attain the 3,000 pound forces in not more than 30 seconds and maintain it for 10 seconds. At the manufacturer's option, the pelvic body block described in Figure 2B may be substituted for the pelvic body block described in Figure 2A to apply the specified force to the center set(s) of anchorages for any group of three or more sets of anchorages that are simultaneously loaded in accordance with S4.2.4 of this standard. * * * * * * Figure 2A Body Block for Lap Belt Anchorage Figure 2B Optional Body Block for Center Seating Positions FIGURE 2-BODY BLOCK FOR LAP BELT ANCHORAGE FIGURE 3 - BODY BLOCK FOR COMBINATION SHOULDER AND LAP BELT ANCHORAGE S6. Owner's Manual Information. The owner's manual in each vehicle with a GVWR of 10,000 pounds or less manufactured after September 1, 1987 shall include: EFFECTIVE DATE NOTE 2: At 63 FR 32143, June 12, 1998, $\S571.210$ was amended by revising S4.2.1 and S4.2.2, effective June 14, 1999. For the convenience of the user, the superseded text for S4.2.1 introductory text and S4.2.2 is set forth in Effective Date Note 1. The text in effect from May 27, 1999 until June 14, 1999, for S4.2.1 introductory text and S4.2.2 is set forth below. The remaining superseded text for S4.2.1 is set forth as follows: § 571.210 Standard No. 210, Seat Belt Assembly Anchorages. * * * * * - S4.2.1 Except as provided in S4.2.5, and except for side-facing seats, the anchorages, attachment hardware, and attachment bolts for any of the following seat belt assemblies shall withstand a 22,241 N force when tested in accordance with S5.1 of this standard: - (a) Type 1 seat belt assembly: - (b) Lap belt portion of either a Type 2 or automatic seat belt assembly, if such seat belt assembly is voluntarily installed at a seating position; and - (c) Lap belt portion of either a Type 2 or automatic seat belt assembly, if such seat belt assembly is equipped with a detachable upper torso belt. - S4.2.2 Except as provided in S4.2.5, the anchorages, attachment hardware, and attachment bolts for all Type 2 and automatic seat belt assemblies that are installed to comply with Standard No. 208 (49 CFR 571.208) shall withstand 13,345 N forces when tested in accordance with S5.2. * * * * * #### §571.211 [Reserved] # § 571.212 Standard No. 212; Windshield mounting. S1. *Scope.* This standard establishes windshield retention requirements for motor vehicles during crashes. S2. Purpose. The purpose of this standard is to reduce crash injuries and fatalities by providing for retention of the vehicle windshield during a crash, thereby utilizing fully the penetration resistance and injury-avoidance properties of the windshield glazing material and preventing the ejection of occupants from the vehicle. S3. Application. This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks, and buses having a gross vehicle weight rating of 4536 kilograms or less. However, it does not apply to forward control vehicles, walk-in van-type vehicles, or to openbody type vehicles with fold-down or removable windshields. S4. *Definition. Passive restraint system* means a system meeting the occupant crash protection requirements of S5. of Standard No. 208 by means that require no action by vehicle occupants. S5. Requirements. When the vehicle travelling longitudinally forward at any speed up to and including 48 kilometers per hour impacts a fixed collision barrier that is perpendicular to the line of travel of the vehicle, under the conditions of S6, the windshield mounting of the vehicle shall retain not less than the minimum portion of the windshield periphery specified in S5.1 and S5.2. S5.1 Vehicles equipped with passive restraints. Vehicles equipped with passive restraint systems shall retain not less than 50 percent of the portion of the windshield periphery on each side of the vehicle longitudinal centerline. S5.2 Vehicles not equipped with passive restraints. Vehicles not equipped with passive restraint systems shall retain not less than 75 percent of the windshield periphery. S6. *Test conditions*. The requirements of S5. shall be met under the following conditions: S6.1 The vehicle, including test devices and instrumentation, is loaded as follows: (a) Except as specified in S6.2, a passenger car is loaded to its unloaded vehicle weight plus its cargo and luggage capacity weight, secured in the luggage area, plus a 50th-percentile test dummy as specified in part 572 of this chapter at each front outboard designated seating position and at any other position whose protection system is required to be tested by a dummy under the provisions of Standard No. 208. Each dummy is restrained only by means that are installed for protection at its seating position. (b) Except as specified in S6.2, a multipurpose passenger vehicle, truck or bus is loaded to its unloaded vehicle weight, plus 136 kilograms or its rated cargo and luggage capacity, whichever is less, secured to the vehicle, plus a 50th-percentile test dummy as specified in part 572 of this chapter at each front outboard designated seating position and at any other position whose protection system is required to be tested by a dummy under the provisions of Standard No. 208. Each dummy is restrained only by means that are installed for protection at its seating position. The load is distributed so that the weight on each axle as measured at the tire-ground interface is in proportion to its GAWR. If the weight on any axle when the vehicle is loaded to its unloaded vehicle weight plus dummy weight exceeds the axle's proportional share of the test weight, the remaining weight is placed so that the weight on that axle remains the same. For the purposes of this section, unloaded vehicle weight does not include the weight of work-performing accessories. Vehicles are tested to a maximum unloaded vehicle weight of 2,495 kilograms. S6.2 The fuel tank is filled to any level from 90 to 95 percent of capacity. S6.3 The parking brake is disengaged and the transmission is in neutral. S6.4 Tires are inflated to the vehicle manufacturer's specifications. S6.5 The windshield mounting material and all vehicle components in direct contact with the mounting material are at any temperature between -9 degrees Celsius and +43 degrees Celsius [41 FR 36494, Aug. 30, 1976, as amended at 42 FR 34289, July 5, 1977; 45 FR 22046, Apr. 3, 1980; 60 FR 13647, Mar. 14, 1995] ## §571.213 Standard No. 213; Child restraint systems. S1. *Scope.* This standard specifies requirements for child restraint systems used in motor vehicles and aircraft. S2. *Purpose.* The purpose of this standard is to reduce the number of children killed or injured in motor vehicle crashes and in aircraft. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks and buses, and to child restraint systems for use in motor vehicles and aircraft. S4. Definitions. Add-on child restraint system means any portable child restraint system. Backless child restraint system means a child restraint, other than a belt-positioning seat, that consists of a seating platform that does not extend up to provide a cushion for the child's back or head and has a structural element designed to restrain forward motion of the child's torso in a forward impact. Belt-positioning seat means a child restraint system that positions a child on a vehicle seat to improve the fit of a vehicle Type II belt system on the child and that lacks any component, such as a belt system or a structural element, designed to restrain forward movement of the child's torso in a forward impact. Booster seat means either a backless child restraint system or a belt-positioning seat. Built-in child restraint system means a child restraint system that is designed to be an integral part of and permanently installed in a motor vehicle. Car bed means a child restraint system designed to restrain or position a child in the supine or prone position on a continuous flat surface. Child restraint system means any device except Type I or Type II seat belts, designed for use in a motor vehicle or
aircraft to restrain, seat, or position children who weigh 50 pounds or less. Contactable surface means any child restraint system surface (other than that of a belt, belt buckle, or belt adjustment hardware) that may contact any part of the head or torso of the appropriate test dummy, specified in S7, when a child restraint system is tested in accordance with S6.1. Factory-installed built-in child restraint system means a built-in child restraint system that has been or will be permanently installed in a motor vehicle before that vehicle is certified as a completed or altered vehicle in accordance with part 567 of this chapter. Rear-facing child restraint system means a child restraint system, except a car bed, that positions a child to face in the direction opposite to the normal direction of travel of the motor vehicle. Representative aircraft passenger seat means either a Federal Aviation Administration approved production aircraft passenger seat or a simulated aircraft passenger seat conforming to Figure 6. Seat orientation reference line or SORL means the horizontal line through Point Z as illustrated in Figure 1A. Specific vehicle shell means the actual vehicle model part into which the built-in child restraint system is or is intended to be fabricated, including the complete surroundings of the built-in system. If the built-in child restraint system is or is intended to be fabricated as part of any seat other than a front seat, these surroundings include the back of the seat in front, the interior rear side door panels and trim, the floor pan, adjacent pillars (e.g., the B and C pillars), and the ceiling. If the built-in system is or is intended to be fabricated as part of the front seat, these surroundings include the dashboard, the steering mechanism and its associated trim hardware, any levers and knobs installed on the floor or on a console, the interior front side door panels and trim, the front seat, the floor pan, the A pillars and the ceiling. Torso means the portion of the body of a seated anthropomorphic test dummy, excluding the thighs, that lies between the top of the child restraint system seating surface and the top of the shoulders of the test dummy. S5. Requirements. (a) Each motor vehicle with a built-in child restraint system shall meet the requirements in this section when, as specified, tested in accordance with S6.1 and this paragraph. - (b) Each child restraint system manufactured for use in motor vehicles shall meet the requirements in this section when, as specified, tested in accordance with S6.1 and this paragraph. Each add-on system shall meet the requirements at each of the restraint's seat back angle adjustment positions and restraint belt routing positions, when the restraint is oriented in the direction recommended by the manufacturer (e.g., forward, rearward or laterally) pursuant to S5.6, and tested with the test dummy specified in S7. - (c) Each child restraint system manufactured for use in aircraft shall meet the requirements in this section and the additional requirements in S8. S5.1 Dynamic performance. - S5.1.1 *Child restraint system integrity.* When tested in accordance with S6.1, each child restraint system shall meet the requirements of paragraphs (a) through (c) of this section. - (a) Exhibit no complete separation of any load bearing structural element and no partial separation exposing either surfaces with a radius of less than ¼ inch or surfaces with protrusions greater than ¾ inch above the immediate adjacent surrounding contactable surface of any structural element of the system. - (b)(1) If adjustable to different positions, remain in the same adjustment position during the testing that it was in immediately before the testing, ex- cept as otherwise specified in paragraph (b)(2). (2)(i) Subject to paragraph (b)(2)(ii), a rear-facing child restraint system may have a means for repositioning the seating surface of the system that allows the system's occupant to move from a reclined position to an upright position and back to a reclined position during testing. (ii) No opening that is exposed and is larger than ¼ inch before the testing shall become smaller during the testing as a result of the movement of the seating surface relative to the restraint system as a whole. (c) If a front facing child restraint system, not allow the angle between the system's back support surfaces for the child and the system's seating surface to be less than 45 degrees at the completion of the test. S5.1.2 *Injury criteria.* When tested in accordance with S6.1, each child restraint system that, in accordance with S5.5.2(f), is recommended for use by children whose masses are more than 10 kilograms (kg) shall— (a) Limit the resultant acceleration at the location of the accelerometer mounted in the test dummy head as specified in part 572 such that the expression: $$\left[\frac{1}{(t_2-t_1)}\int_{t_1}^{t_2}adt\right]^{2.5}(t_2-t_1)$$ shall not exceed 1,000, where a is the resultant acceleration expressed as a multiple of g (the acceleration of gravity), and t_1 and t_2 are any two moments during the impacts. (b) Limit the resultant acceleration at the location of the accelerometer mounted in the test dummy upper thorax as specified in part 572 to not more than 60 g's, except for intervals whose cumulative duration is not more than 3 milliseconds. S5.1.3 *Occupant excursion.* When tested in accordance with S6.1, each child restraint system shall meet the applicable excursion limit requirements specified in S5.1.3.1–S5.1.3.3. S5.1.3.1 Child restraint systems other than rear-facing ones and car beds. Each child restraint system, other than a rear-facing child restraint system or a car bed, shall retain the test dummy's torso within the system. (a) In the case of an add-on child restraint system, no portion of the test dummy's head shall pass through a vertical, transverse plane that is 813 mm forward of point Z on the standard seat assembly, measured along the center SORL (as illustrated in figure 1B), and neither knee pivot point shall pass through a vertical, transverse plane that is 915 mm forward of point Z on the standard seat assembly, measured along the center SORL. (b) In the case of a built-in child restraint system, neither knee pivot point shall, at any time during the dynamic test, pass through a vertical, transverse plane that is 305 mm forward of the initial pre-test position of the respective knee pivot point, measured along a horizontal line that passes through the knee pivot point and is parallel to the vertical plane that passes through the vehicle's longitunal centerline. S5.1.3.2 Rear-facing child restraint systems. In the case of each rear-facing child restraint system, all portions of the test dummy's torso shall be retained within the system and neither of the target points on either side of the dummy's head and on the transverse axis passing through the center of mass of the dummy's head and perpendicular to the head's midsagittal plane, shall pass through the transverse orthogonal planes whose intersection contains the forward-most and top-most points on the child restraint system surfaces (illustrated in Figure 1C). S5.1.3.3 *Car beds.* In the case of car beds, all portions of the test dummy's head and torso shall be retained within the confines of the car bed. S5.1.4 Back support angle. When a rear-facing child restraint system is tested in accordance with S6.1, the angle between the system's back support surface for the child and the vertical shall not exceed 70 degrees. S5.2 Force distribution. S5.2.1 Minimum head support surface—child restraints other than car beds. S5.2.1.1 Except as provided in S5.2.1.2, each child restraint system other than a car bed shall provide restraint against rearward movement of the head of the child (rearward in relation to the child) by means of a continuous seat back which is an integral part of the system and which— (a) Has a height, measured along the system seat back surface for the child in the vertical longitudinal plane passing through the longitudinal centerline of the child restraint systems from the lowest point on the system seating surface that is contacted by the buttocks of the seated dummy, as follows: | Weight ¹ (in pounds) | Height ² (in inches) | |--|---------------------------------| | Less than 20 lb | 18 | | 20 lb or more, but not more than 40 lb | 20 | | More than 40 lb | 22 | ¹ When a child restraint system is recommended under S5.5(f) for use by children of the above weights. ² The height of the portion of the system seat back providing head restraint shall not be less than the above. (b) Has a width of not less than 8 inches, measured in the horizontal plane at the height specified in paragraph (a) of this section. Except that a child restraint system with side supports extending at least 4 inches forward from the padded surface of the portion of the restraint system provided for support of the child's head may have a width of not less than 6 inches, measured in the horizontal plane at the height specified in paragraph (a) of this section. (c) Limits the rearward rotation of the test dummy head so that the angle between the head and torso of the dummy specified in S7. when tested in accordance with S6.1 is not more than 45 degrees greater than the angle between the head and torso after the dummy has been placed in the system in accordance with S6.1.2.3 and before the system is tested in accordance with S6.1. S5.2.1.2 The applicability of the requirements of S5.2.1.1 to a front-facing child restraint, and the conformance of any child restraint other than a car bed to those requirements is determined using the largest of the test dummies specified in S7.1 for use in testing that restraint; provided, that the 6-year-old dummy described in subpart I of part 572 of this title is not used to determine the applicability of or compliance with S5.2.1.1. A
front-facing child restraint system is not required to comply with S5.2.1.1 if the target point on either side of the dummy's head is below a horizontal plane tangent to the top of— - (a) The standard seat assembly, in the case of an add-on child restraint system, when the dummy is positioned in the system and the system is installed on the assembly in accordance with S6.1.2. - (b) The vehicle seat, in the case of a built-in child restraint system, when the system is activated and the dummy is positioned in the system in accordance with S6.1.2. - S5.2.2 *Torso impact protection.* Each child restraint system other than a car bed shall comply with the applicable requirements of S5.2.2.1 and S5.2.2.2. - \$5.2.2.1(a) The system surface provided for the support of the child's back shall be flat or concave and have a continuous surface area of not less than 85 square inches. - (b) Each system surface provided for support of the side of the child's torso shall be flat or concave and have a continuous surface of not less than 24 square inches for systems recommended for children weighing 20 pounds or more, or 48 square inches for systems recommended for children weighing less than 20 pounds. - (c) Each horizontal cross section of each system surface designed to restrain forward movement of the child's torso shall be flat or concave and each vertical longitudinal cross section shall be flat or convex with a radius of curvature of the underlying structure of not less than 2 inches. - S5.2.2.2 Each forward-facing child restraint system shall have no fixed or movable surface— - (a) Directly forward of the dummy and intersected by a horizontal line— - (1) Parallel to the SORL, in the case of the add-on child restraint system, or - (2) Parallel to a vertical plane through the longitudinal center line of the vehicle seat, in the case of a builtin child restraint system, and, - (b) Passing through any portion of the dummy, except for surfaces which restrain the dummy when the system is tested in accordance with S6.1.2(a)(2), so that the child restraint system shall conform to the requirements of S5.1.2 and S5.1.3.1. S5.2.3 Head impact protection. - S5.2.3.1 Each child restraint system, other than a child harness, which is recommended under S5.5.2(f) for children whose masses are less than 10 kg, shall comply with S5.2.3.2. - S5.2.3.2 Each system surface, except for protrusions that comply with S5.2.4, which is contactable by the dummy head when the system is tested in accordance with S6.1 shall be covered with slow recovery, energy absorbing material with the following characteristics: - (a) A 25 percent compression-deflection resistance of not less than 0.5 and not more than 10 pounds per square inch when tested in accordance with S6.3. - (b) A thickness of not less than ½ inch for materials having a 25 percent compression-deflection resistance of not less than 1.8 and not more than 10 pounds per square inch when tested in accordance with S6.3. Materials having a 25 percent compression-deflection resistance of less than 1.8 pounds per square inch shall have a thickness of not less than ¾ inch. - S5.2.4 Protrusion limitation. Any portion of a rigid structural component within or underlying a contactable surface, or any portion of a child restraint system surface that is subject to the requirements of S5.2.3 shall, with any padding or other flexible overlay material removed, have a height above any immediately adjacent restraint system surface of not more than 3% inch and no exposed edge with a radius of less than 1/4 inch. S5.3 Installation. - S5.3.1 Each add-on child restraint system shall have no means designed for attaching the system to a vehicle seat cushion or vehicle seat back and no component (except belts) that is designed to be inserted between the vehicle seat cushion and vehicle seat back. - S5.3.2 When installed on a vehicle seat, each add-on child restraint system, other than child harnesses and belt-positioning seats, shall be capable of being restrained against forward movement solely by means of a Type I seat belt assembly (defined in §571.208), or by means of a Type I seat belt assembly plus one additional anchorage strap that is supplied with the system and conforms to S5.4. Each belt-positioning seat shall be capable of being restrained against forward movement solely by means of a Type II seat belt assembly (defined in §571.209) that meets Standard No. 208 (§571.208). S5.3.3 *Car beds.* Each car bed shall be designed to be installed on a vehicle seat so that the car bed's longitudinal axis is perpendicular to a vertical longitudinal plane through the longitudinal axis of the vehicle. S5.4 Belts, belt buckles, and belt webbing. S5.4.1 *Performance requirements.* The webbing of belts provided with a child restrain system and used to attach the system to the vehicle or to restrain the child within the system shall— (a) After being subjected to abrasion as specified in S5.1(d) or S5.3(c) of FMVSS 209 (§571.209), have a breaking strength of not less than 75 percent of the strength of the unabraded webbing when tested in accordance with S5.1(b) of FMVSS 209. (b) Meet the requirements of S4.2 (e) and (f) of FMVSS No. 209 (§571.209); and (c) If contactable by the test dummy torso when the system is tested in accordance with S6.1, have a width of not less than $1\frac{1}{2}$ inches when measured in accordance with S5.4.1.1. S5.4.1.1 Width test procedure. Condition the webbing for 24 hours in an atmosphere of any relative humidity between 48 and 67 percent, and any ambient temperature between 70° and 77° F. Measure belt webbing width under a tension of 5 pounds applied lengthwise. S5.4.2 Belt buckles and belt adjustment hardware. Each belt buckle and item of belt adjustment hardware used in a child restraint system shall conform to the requirements of S4.3(a) and S4.3(b) of FMVSS No. 209 (§ 571.209). S5.4.3 Belt Restraint. S5.4.3.1 *General.* Each belt that is part of a child restraint system and that is designed to restrain a child using the system shall be adjustable to snugly fit any child whose height and weight are within the ranges recommended in accordance with S5.5.2(f) and who is positioned in the system in accordance with the instructions required by S5.6. S5.4.3.2 *Direct restraint.* Except for a child restraint system whose mass is less than 4.4 kg, each belt that is part of a child restraint system and that is designed to restrain a child using the system and to attach the system to the vehicle, and each Type I and lap portion of a Type II vehicle belt that is used to attach the system to the vehicle shall, when tested in accordance with S6.1, impose no loads on the child that result from the mass of the system, or (a) In the case of an add-on child restraint system, from the mass of the seat back of the standard seat assembly specified in S6.1, or (b) In the case of a built-in child restraint system, from the mass of any part of the vehicle into which the child restraint system is built. S5.4.3.3 Seating systems. Except for child restraint systems subject to S5.4.3.4, each child restraint system that is designed for use by a child in a seated position and that has belts designed to restrain the child, shall, with the test dummy specified in S7 positioned in the system in accordance with S10 provide: - (a) Upper torso restraint in the form of: - (i) Belts passing over each shoulder of the child, or - (ii) A fixed or movable surface that complies with S5.2.2.1(c), and - (b) Lower torso restraint in the form - (i) A lap belt assembly making an angle between 45° and 90° with the child restraint seating surface at the lap belt attachment points, or - (ii) A fixed or movable surface that complies with S5.2.2.1(c), and - (c) In the case of each seating system recommended for children whose masses are more than 10 kg, crotch restraint in the form of: - (i) A crotch belt connectable to the lap belt or other device used to restrain the lower torso, or - (ii) A fixed or movable surface that complies with S5.2.2.1(c). - S5.4.3.4 *Harnesses*. Each child harness shall: - (a) Provide upper torso restraint, including belts passing over each shoulder of the child: - (b) Provide lower torso restraint by means of lap and crotch belt; and - (c) Prevent a child of any height for which the restraint is recommended for use pursuant to S5.5.2(f) from standing upright on the vehicle seat when the child is placed in the device in accordance with the instructions required by - S5.4.3.5 *Buckle release*. Any buckle in a child restraint system belt assembly designed to restrain a child using the system shall: - (a) When tested in accordance with S6.2.1 prior to the dynamic test of S6.1, not release when a force of less than 40 newtons (N) is applied and shall release when a force of not more than 62 N is applied; - (b) After the dynamic test of S6.1, when tested in accordance with the appropriate sections of S6.2, release when a force of not more than 71 N is applied, provided, however, that the conformance of any child restraint to this requirement is determined using the largest of the test dummies specified in S7 for use in testing that restraint when the restraint is facing forward, rearward, and/or laterally; - Meet the requirements (c) S4.3(d)(2) of FMVSS No. 209 (§571.209), except that the minimum surface area for child restraint buckles designed for push button application shall be 0.6 square inch; - (d) Meet the requirements of S4.3(g) of FMVSS No. 209 (§571.209) when tested in accordance with S5.2(g) of FMVSS No. 209; and - (e) Not release during the testing specified in S6.1. S5.5 Labeling. - S5.5.1 Each add-on child restraint system shall be permanently labeled with the information specified in S5.5.2 (a) through (m). - S5.5.2 The information specified in paragraphs (a) through (m) of this section shall be stated in the English language and lettered in letters and numbers that are not smaller than
10 point type and are on a contrasting background. - (a) The model name or number of the system. - (b) The manufacturer's name. A distributor's name may be used instead if the distributor assumes responsibility for all duties and liabilities imposed on the manufacturer with respect to the - system by the National Traffic and - Motor Vehicle Safety Act, as amended. (c) The statement: "Manufactured in ____," inserting the month and year of manufacture. - (d) The place of manufacture (city and State, or foreign country). However, if the manufacturer uses the name of the distributor, then it shall state the location (city and State, or foreign country) of the principal offices of the distributor. - (e) The statement: "This child restraint system conforms to all applicable Federal motor vehicle safety standards.' - (f) One of the following statements, inserting the manufacturer's recommendations for the maximum mass and height of children who can safely occupy the system, except that booster seats shall not be recommended for children whose masses are less than 13.6 kg: - (1) This infant restraint is designed for use by children who weigh kg) or pounds (___ less and whose height is (insert values in English and metric units; use of word *''mass'' in label is optional*) or less; or - (2) This child restraint is designed for use only by children who weigh between and pounds (insert appropriate metric values; use of word "mass" is optional) and whose height is (insert appropriate values in English and metric units) or less and who are capable of sitting upright alone; or - (3) This child restraint is designed for use only by children who weigh between and pounds (insert appropriate metric values; use of word "mass" is optional) and whose height is between inches (insert appropriate values in English and metric units). - (g) The following statement, inserting the location of the manufacturer's installation instruction booklet or sheet on the restraint: WARNING! FAILURE TO FOLLOW EACH OF THE FOLLOWING INSTRUCTIONS CAN RESULT IN YOUR CHILD STRIKING THE VEHICLE'S INTERIOR DURING A SUDDEN STOP OR CRASH. SECURE THIS CHILD RESTRAINT WITH A VEHICLE BELT AS SPECIFIED IN THE MAUFACTURER'S INSTRUCTIONS LO-CATED - (h) In the case of each child restraint system that has belts designed to restrain children using them: - SNUGLY ADJUST THE BELTS PROVIDED WITH THIS CHILD RESTRAINT AROUND YOUR CHILD. - (i)(1) For a booster seat that is recommended for use with either a vehicle's Type I or Type II seat belt assembly, one of the following statements, as appropriate: - (i) WARNING! USE ONLY THE VEHICLE'S LAP AND SHOULDER BELT SYSTEM WHEN RESTRAINING THE CHILD IN THIS BOOSTER SEAT; or, - (ii) WARNING! USE ONLY THE VEHICLE'S LAP BELT SYSTEM, OR THE LAP BELT PART OF A LAP/SHOULDER BELT SYSTEM WITH THE SHOULDER BELT PLACED BEHIND THE CHILD, WHEN RESTRAINING THE CHILD IN THIS SEAT. - (2)(i) Except as provided in paragraph (i)(2)(ii) of this section, for a booster seat which is recommended for use with both a vehicle's Type I and Type II seat belt assemblies, the following statement: - WARNING! USE ONLY THE VEHICLE'S LAP BELT SYSTEM, OR THE LAP BELT PART OF A LAP/SHOULDER BELT SYSTEM WITH THE SHOULDER BELT PLACED BEHIND THE CHILD, WHEN RESTRAINING THE CHILD WITH THE insert description of the system element provided to restrain forward movement of the child's torso when used with a lap belt (e.g., shield), AND ONLY THE VEHICLE'S LAP AND SHOULDER BELT SYSTEM WHEN USING THIS BOOSTER WITHOUT THE insert above description. - (ii) A booster seat which is recommended for use with both a vehicle's Type I and Type II seat belt assemblies is not subject to S5.5.2(i)(2)(i) if, when the booster is used with the shield or similar component, the booster will cause the shoulder belt to be located in a position other than in front of the child when the booster is installed. However, such a booster shall be labeled with a warning to use the booster with the vehicle's lap and shoulder belt system when using the booster without a shield. - (j) In the case of each child restraint system equipped with an anchorage strap, the statement: SECURE THE TOP ANCHORAGE STRAP PROVIDED WITH THIS CHILD RESTRAINT AS SPECIFIED IN THE MANUFACTURER'S INSTRUCTIONS. - (k) At the manufacturer's option, child restraint systems manufactured before May 27, 1997 may comply with the requirements of S5.5.2(k)(4) or S5.5.2(k)(5) as appropriate, instead of the requirements of S5.5.2(k)(1)(ii) or S5.5.2(k)(2)(ii). - (1) In the case of each rear-facing child restraint system that is designed for infants only, the following statements— - (i) "PLACE THIS INFANT RESTRAINT IN A REAR-FACING POSITION WHEN USING IT IN THE VEHICLE." - (ii) "WARNING: DO NOT PLACE THIS RE-STRAINT IN THE FRONT SEAT OF A VE-HICLE THAT HAS A PASSENGER SIDE AIR BAG. (insert a statement that describes the consequences of not following the warning.) - (2) In the case of a child restraint system that is designed to be used rearward-facing for infants and forward facing for older children, the following statements— - (i) "PLACE THIS CHILD RESTRAINT IN A REAR-FACING POSITION WHEN USING IT WITH AN INFANT WEIGHING LESS THAN (insert a recommended weight that is not less than 20 pounds)." - (ii) "WARNING: WHEN THIS RESTRAINT IS USED REAR-FACING, DO NOT PLACE IT IN THE FRONT SEAT OF A VEHICLE THAT HAS A PASSENGER SIDE AIR BAG. (Insert a statement that describes the consequences of not following the warning.)" - (3) The statements required by paragraphs (k)(1)(ii) and (k)(2)(ii) shall be on a red, orange or yellow contrasting background, and placed on the restraint so that it is on the side of the restraint designed to be adjacent to the front passenger door of a vehicle and is visible to a person installing the rearfacing child restraint system in the front passenger seat. - (4) Except as provided in (k)(5) of this section, in the case of each child restraint system that can be used in a rear-facing position and is manufactured on or after May 27, 1997, instead warning the specified S5.5.2(k)(1)(ii) or S5.5.2(k)(2)(ii) of this standard, a label that conforms in content to Figure 10 and to the require-S5.5.2(k)(4)(i)through S5.5.2(k)(4)(iii) of this standard shall be permanently affixed to the outer surface of the cushion or padding in or adjacent to the area where a child's head would rest, so that the label is plainly visible and easily readable. - (i) The heading area shall be yellow with the word "warning" and the alert symbol in black. - (ii) The message area shall be white with black text. The message area shall be no less than 30 square cm. - (iii) The pictogram shall be black with a red circle and slash on a white background. The pictogram shall be no less than 30 mm in diameter. - (5) If a child restraint system is equipped with a device that deactivates the passenger-side air bag in a vehicle when and only when the child restraint is installed in the vehicle and provides a signal, for at least 60 seconds after deactivation, that the air bag is deactivated, the label specified in Figure 10 may include the phrase "unless air bag is off" after "on front seat with air bag." - (i) An installation diagram showing the child restraint system installed in: - (1) A seating position equipped with a continuous-loop lap/shoulder belt; and - (2) A seating position equipped with only a lap belt, as specified in the manufacturer's instructions. - (m) The following statement, inserting an address and telephone number: "Child restraints could be recalled for safety reasons. You must register this restraint to be reached in a recall. Send your name, address and the restraint's model number and manufacturing date to (insert address) or call (insert telephone number). For recall information, call the U.S. Government's Auto Safety Hotline at 1-800-424-9393 (202-366-0123 in DC area)." - (n) Child restraint systems, other than belt-positioning seats, harnesses and backless child restraint systems, may be certified as complying with the provisions of S8. Child restraints that are so certified shall be labeled with the statement "This Restraint is Certified for Use in Motor Vehicles and Aircraft." Belt-positioning seats, harnesses and backless child restraint systems shall be labeled with the statement "This Restraint is Not Certified for Use in Aircraft." The statement required by this paragraph shall be in red lettering and shall be placed after the certification statement required by S5.5.2(e). S5.5.3 The information specified in S5.5.2 (g) through (k) shall be located on the add-on child restraint system so that it is visible when the system is installed as specified in S5.6.1. - S5.5.4 (a) Each built-in child restraint system other than a factory-installed built-in restraint shall be permanently labeled with the information specified in S5.5.5 (a) through (l). The information specified in S5.5.5(a) through (j) and in S5.5.5(l) shall be visible when the system is activated for use. - (b) Each factory-installed built-in child restraint shall be permanently labeled with the information specified in S5.5.5(f) through (j) and S5.5.5(l), so that the information is visible when the restraint is activated for use. The information shall also be included in the vehicle owner's manual. - S5.5.5 The information specified in paragraphs (a) through (l) of this section that is required by S5.5.4 shall be in English and lettered in letters and numbers that are not smaller than 10-point type and are on a contrasting background. - (a) The model name or number of the system. - (b) The manufacturer's name. A distributor's or dealer's name may be used instead if the distributor or dealer assumes responsibility for all duties and liabilities imposed on the manufacturer with respect to the system by the National Traffic and Motor Vehicle Safety Act, as amended. - (c) The statement: "Manufactured in _____," inserting the month and year of manufacture. - (d) The place
of manufacture (city and State, or foreign country). However, if the manufacturer uses the name of the distributor or dealer, then it shall state the location (city and State, or foreign country) of the principal offices of the distributor or dealer. - (e) The statement: "This child restraint system conforms to all applicable Federal motor vehicle safety standards." - (f) One of the following statements, inserting the manufacturer's recommendations for the maximum mass and height of children who can safely occupy the system, except that booster seats shall not be recommended for children whose masses are less than 13.6 kg: - (1) This infant restraint is designed for use by children who weigh pounds (______ kg) or less and whose height is (insert values in English and metric units; use of word "mass" in label is optional); or - (2) This child restraint is designed for use only by children who weigh between and - pounds (*insert appropriate metric values*; use of word ''mass'' is optional) and whose height is (*insert appropriate values in English and metric units*) or less and who are capable of sitting upright alone: or - (3) This child restraint is designed for use only by children who weigh between ____ and ___ pounds (insert appropriate metric values; use of word 'mass'' is optional) and whose height is between __ and ___ inches (insert appropriate values in English and metric units). - (g) The statement specified in paragraph (1), and if appropriate, the statement in paragraph (2): - (I) WARNING! FAILURE TO FOLLOW THE MANUFACTURER'S INSTRUCTIONS ON THE USE OF THIS CHILD RESTRAINT SYSTEM CAN RESULT IN YOUR CHILD STRIKING THE VEHICLE'S INTERIOR DURING A SUDDEN STOP OR CRASH. - (2) In the case of each built-in child restraint system which is not intended for use in the motor vehicle in certain adjustment positions or under certain circumstances, an appropriate statement of the manufacturer's restrictions regarding those positions or circumstances, in capitalized letters. - (h) In the case of each built-in child restraint system that has belts designed to restrain children using them: - SNUGLY ADJUST THE BELTS PROVIDED WITH THIS CHILD RESTRAINT AROUND YOUR CHILD. - (i) In the case of each built-in child restraint which can be used in a rearfacing position, the following statement: PLACE AN INFANT IN A REAR-FACING POSITION IN THIS CHILD RESTRAINT. (j) A diagram or diagrams showing the fully activated child restraint system in infant and/or child configurations. - (k) The following statement, inserting an address and telephone number: "Child restraints could be recalled for safety reasons. You must register this restraint to be reached in a recall. Send your name, address and the restraint's model number and manufacturing date to (insert address) or call (insert telephone number). For recall information, call the U.S. Government's Auto Safety Hotline at 1–800–424–9393 (202–366–0123 in DC area)." - (l) In the case of a built-in belt-positioning seat that uses either the vehicle's Type I or Type II belt systems or both, a statement describing the manufacturer's recommendations for the maximum height and weight of children who can safely occupy the system and how the booster should be used (e.g., with or without shield) with the different vehicle belt systems. - S5.6 Printed Instructions for Proper Use. - S5.6.1 Add-on child restraint systems. Each add-on child restraint system shall be accompanied by printed installation instructions in the English language that provide a step-by-step procedure, including diagrams, for installing the system in motor vehicles, securing the system in the vehicles, positioning a child in the system, and adjusting the system to fit the child. S5.6.1.1 In a vehicle with rear designated seating positions, the instructions shall alert vehicle owners that, according to accident statistics, children are safer when properly restrained in the rear seating positions than in the front seating positions. S5.6.1.2 The instructions shall specify in general terms the types of vehicles, the types of seating positions, and the types of vehicle safety belts with which the add-on child restraint system can or cannot be used. S5.6.1.3 The instructions shall explain the primary consequences of not following the warnings required to be labeled on the child restraint system in accordance with S5.5.2 (g) through (k). S5.6.1.4 The instructions for each car bed shall explain that the car bed should position in such a way that the child's head is near the center of the vehicle. S5.6.1.5 The instructions shall state that add-on child restraint systems should be securely belted to the vehicle, even when they are not occupied, since in a crash an unsecured child restraint system may injure other occupants. S5.6.1.6 Each add-on child restraint system shall have a location on the restraint for storing the manufacturer's instructions. S5.6.1.7 The instructions shall include the following statement, inserting an address and telephone number: "Child restraints could be recalled for safety reasons. You must register this restraint to be reached in a recall. Send your name, address and the restraint's model number and manufacturing date to (insert address) or call (insert telephone number). For recall information, call the U.S. Government's Auto Safety Hotline at 1-800-424-9393 (202-366-0123 in DC area)." S5.6.1.8 In the case of each child restraint system that can be used in a position so that it is facing the rear of the vehicle, the instructions shall provide a warning against using rear-facing restraints at seating positions equipped with air bags, and shall explain the reasons for, and consequences of not following the warning. The instructions shall also include a statement that owners of vehicles with front passenger side air bags should refer to their vehicle owner's manual for child restraint installation instructions S5.6.1.9 In the case of each rear-facing child restraint system that has a means for repositioning the seating surface of the system that allows the system's occupant to move from a reclined position to an upright position during testing, the instructions shall include a warning against impeding the ability of the restraint to change adjustment position. S5.6.1.10(a) For instructions for a booster seat that is recommended for use with either a vehicle's Type I or Type II seat belt assembly, one of the following statements, as appropriate, and the reasons for the statement: (i) WARNING! USE ONLY THE VEHICLE'S LAP AND SHOULDER BELT SYSTEM WHEN RESTRAINING THE CHILD IN THIS BOOSTER SEAT; or, - (ii) WARNING! USE ONLY THE VEHICLE'S LAP BELT SYSTEM, OR THE LAP BELT PART OF A LAP/SHOULDER BELT SYSTEM WITH THE SHOULDER BELT PLACED BEHIND THE CHILD, WHEN RESTRAINING THE CHILD IN THIS SEAT. - (b)(i) Except as provided in S5.6.1.10(b)(ii), the instructions for a booster seat that is recommended for use with both a vehicle's Type I and Type II seat belt assemblies shall include the following statement and the reasons therefor: WARNING! USE ONLY THE VEHICLE'S LAP BELT SYSTEM, OR THE LAP BELT PART OF A LAP/SHOULDER BELT SYSTEM WITH THE SHOULDER BELT PLACED BEHIND THE CHILD, WHEN RESTRAINING THE CHILD WITH THE insert description of the system element provided to restrain forward movement of the child's torso when used with a lap belt (e.g., shield), AND ONLY THE VEHICLE'S LAP AND SHOULDER BELT SYSTEM WHEN USING THIS BOOSTER WITHOUT THE insert above description. - (ii) A booster seat which is recommended for use with both a vehicle's Type I and Type II seat belt assemblies is not subject to S5.6.1.10(b)(i) if, when the booster is used with the shield or similar component, the booster will cause the shoulder belt to be located in a position other than in front of the child when the booster is installed. However, the instructions for such a booster shall include a warning to use the booster with the vehicle's lap and shoulder belt system when using the booster without a shield. - (c) The instructions for belt-positioning seats shall include the statement, "This restraint is not certified for aircraft use," and the reasons for this statement. S5.6.2 Built-in child restraint systems. (a) Each built-in child restraint system shall be accompanied by printed instructions in English that provide a step-by-step procedure, including diagrams, for activating the restraint system, positioning a child in the system, adjusting the restraint and, if provided, the restraint harness to fit the child. The instructions for each built-in car bed shall explain that the child should be positioned in the bed in such a way that the child's head is near the center of the vehicle. (b) Each motor vehicle equipped with a factory-installed built-in child restraint shall have the information specified in paragraph (a) of this section included in its vehicle owner's manual. S5.6.2.1 The instructions shall explain the primary consequences of not following the manufacturer's warnings for proper use of the child restraint system in accordance with S5.5.5 (f) through (i). S5.6.2.2 The instructions for each built-in child restraint system other than a factory-installed restraint, shall include the following statement, inserting an address and telephone number: "Child restraints could be recalled for safety reasons. You must register this restraint to be reached in a recall. Send your name, address and the restraint's model number and manufacturing date to (insert address) or call (insert telephone number). For recall information, call the U.S. Government's Auto Safety Hotline at 1-800-424-9393 (202-366-0123 in DC area)." S5.6.2.3. Each built-in child restraint system other than a factory-installed built-in restraint, shall have a location on the restraint for storing the instructions. S5.6.3 Each built-in child restraint system, other than a system that has been installed in a vehicle or a factoryinstalled built-in system that is designed for a
specific vehicle model and seating position, shall be accompanied by instructions in English that provide a step-by-step procedure for installing the system in a motor vehicle. The instructions shall specify the types of vehicles and the seating positions into which the restraint can or cannot be installed. The instructions for each car bed shall explain that the bed should be installed so that the child's head will be near the center of the vehicle. S5.6.4 In the case of a built-in belt-positioning seat that uses either the vehicle's Type I or Type II belt systems or both, the instructions shall include a statement describing the manufacturer's recommendations for the maximum height and weight of children who can safely occupy the system and how the booster must be used with the vehicle belt systems appropriate for the booster seat. The instructions shall explain the consequences of not following the directions. The instructions shall specify that, if the booster seat is recommended for use with only the lapbelt part of a Type II assembly, the shoulder belt portion of the assembly must be placed behind the child. S5.7 Flammability. Each material used in a child restraint system shall conform to the requirements of S4 of FMVSS No. 302 (571.302). In the case of a built-in child restraint system, the requirements of S4 of FMVSS No. 302 shall be met in both the "in-use" and "stowed" positions. S5.8 Information requirements—registration form. - (a) Each child restraint system, except a factory-installed built-in restraint system, shall have a registration form attached to any surface of the restraint that contacts the dummy when the dummy is positioned in the system in accordance with S6.1.2 of Standard 213. - (b) Each form shall: - (1) Consist of a postcard that is attached at a perforation to an informational card; - (2) Conform in size, content and format to Figures 9a and 9b of this section; and - (3) Have a thickness of at least 0.007 inches and not more than 0.0095 inches. - (c) Each postcard shall provide the model name or number and date of manufacture (month, year) of the child restraint system to which the form is attached, shall contain space for the purchaser to record his or her name and mailing address, shall be addressed to the manufacturer, and shall be postage paid. No other information shall appear on the postcard, except identifying information that distinguishes a particular child restraint system from other systems of that model name or number may be preprinted in the shaded area of the postcard, as shown in figure 9a. - S6. Test conditions and procedures. - S6.1 Dynamic systems test for child restraint systems. The test conditions described in S6.1.1 apply to the dynamic systems test. The test procedure for the dynamic systems test is specified in S6.1.2. The test dummy specified in S7 is placed in the test specimen (child restraint), clothed as described in S9 and positioned according to S10. S6.1.1 *Test conditions.* (a) Test devices. (1) The test device for add-on restraint systems is a standard seat assembly consisting of a simulated vehicle bench seat, with three seating positions, which is described in Drawing Package SAS-100-1000 (consisting of drawings and a bill of materials) with addendum A, Seat Base Weldment, dated July 1, 1993 (incorporated by reference; see §571.5). The assembly is mounted on a dynamic test platform so that the center SORL of the seat is parallel to the direction of the test platform travel and so that movement between the base of the assembly and the platform is prevented. (2) The test device for built-in child restraint systems is either the specific vehicle shell or the specific vehicle. (i) Specific vehicle shell. (A) The specific vehicle shell, if selected for testing, is mounted on a dynamic test platform so that the longitudinal center line of the shell is parallel to the direction of the test platform travel and so that movement between the base of the shell and the platform is prevented. Adjustable seats are in the adjustment position midway between the forwardmost and rearmost positions, and if separately adjustable in a vertical direction, are at the lowest position. If an adjustment position does not exist midway between the forwardmost and rearmost position, the closest adjustment position to the rear of the midpoint is used. Adjustable seat backs are in the manufacturer's nominal design riding position. If such a position is not specified, the seat back is positioned so that the longitudinal center line of the child test dummy's neck is vertical, and if an instrumented test dummy is used, the accelerometer surfaces in the dummy's head and thorax, as positioned in the vehicle, are horizontal. If the vehicle seat is equipped with adjustable head restraints, each is adjusted to its highest adjustment position. (B) The platform is instrumented with an accelerometer and data processing system having a frequency response of 60 Hz channel class as specified in Society of Automotive Engineers Recommended Practice J211 JUN80 "Instrumentation for Impact Tests." The accelerometer sensitive axis is parallel to the direction of test platform travel. (ii) Specific vehicle. For built-in child restraint systems, an alternate test device is the specific vehicle into which the built-in system is fabricated. The following test conditions apply to this alternate test device. (A) The vehicle is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus the appropriate child test dummy and, at the vehicle manufacturer's option, anthropomorphic test dummy which conforms to the requirements of subpart B or subpart E of part 572 of this title for a 50th percentile adult male dummy placed in the front outboard seating position. If the built-in child restraint system is installed at one of the seating positions otherwise requiring the placement of a part 572 test dummy, then in the frontal barrier crash specified in (c), the appropriate child test dummy shall be substituted for the part 572 adult dummy, but only at that seating position. The fuel tank is filled to any level from 90 to 95 percent of capacity. (B) Adjustable seats are in the adjustment position midway between the forward-most and rearmost positions, and if separately adjustable in a vehicle direction, are at the lowest position. If an adjustment position does not exist midway between the forward-most and rearmost positions, the closest adjustment position to the rear of the midpoint is used. (C) Adjustable seat backs are in the manufacturer's nominal design riding position. If a nominal position is not specified, the seat back is positioned so that the longitudinal center line of the child test dummy's neck is vertical, and if an anthropomorphic test dummy is used, the accelerometer surfaces in the test dummy's head and thorax, as positioned in the vehicle, are horizontal. If the vehicle is equipped with adjustable head restraints, each is adjusted to its highest adjustment position. - (D) Movable vehicle windows and vents are, at the manufacturer's option, placed in the fully closed position. - (E) Convertibles and open-body type vehicles have the top, if any, in place in the closed passenger compartment configuration. - (F) Doors are fully closed and latched but not locked. - (G) All instrumentation and data reduction is in conformance with SAE J211 JUN80. - (b) The tests are frontal barrier impact simulations of the test platform or frontal barrier crashes of the specific vehicles as specified in S5.1 of §571.208 and for: - (1) Test Configuration I, are at a velocity change of 48 km/h with the acceleration of the test platform entirely within the curve shown in Figure 2, or for the specific vehicle test with the deceleration produced in a 48 km/h frontal barrier crash. - (2) Test Configuration II, are set at a velocity change of 32 km/h with the acceleration of the test platform entirely within the curve shown in Figure 3, or for the specific vehicle test, with the deceleration produced in a 32 km/h frontal barrier crash. - (c) Attached to the seat belt anchorage points provided on the standard seat assembly (illustrated in Figures 1A and 1B) are Type I seat belt assemblies in the case of add-on child restraint systems other than belt-positioning seats, or Type II seat belt assemblies in the case of belt-positioning seats. These seat belt assemblies meet the requirements of Standard No. 209 (§571.209) and have webbing with a width of not more than 50 mm, and are attached to the anchorage points without the use of retractors or reels of any kind. - (d) Performance tests under S6.1 are conducted at any ambient temperature from 19 °C to 26 °C and at any relative humidity from 10 percent to 70 percent. - (e) In the case of add-on child restraint systems, the restraint shall meet the requirements of S5 at each of its seat back angle adjustment positions and restraint belt routing positions, when the restraint is oriented in the direction recommended by the manufacturer (e.g., forward, rearward or laterally) pursuant to S5.6, and tested with the test dummy specified in S7. S6.1.2 Dynamic test procedure. - (a) Activate the built-in child restraint or attach the add-on child restraint to the seat assembly as described below: - (1) Test configuration I. (i) In the case of each add-on child restraint system other than a belt-positioning seat, a child harness, a backless child restraint system with a top anchorage strap, or a restraint designed for use by physically handicapped children, install the add-on child restraint system at the center seating position of the standard seat assembly in accordance with the manufacturer's instructions provided with the system pursuant to S5.6.1, except that the add-on restraint shall be secured to the standard vehicle seat using only the standard vehicle lap belt. A child harness, a backless child restraint system
with a top anchorage strap, or a restraint designed for use by physically handicapped children shall be installed at the center seating position of the standard seat assembly in accordance with the manufacturer's instructions provided with the system pursuant to \$5.6.1. An addon belt-positioning seat shall be installed at either outboard seating position of the standard seat assembly in accordance with the manufacturer's instructions provided with the system pursuant to S5.6.1, except that the beltpositioning seat shall be secured to the standard vehicle seat using only the standard vehicle lap and shoulder belt. - (ii) In the case of each built-in child restraint system, activate the restraint in the specific vehicle shell or the specific vehicle, in accordance with the manufacturer's instructions provided in accordance with S5.6.2. - (2) Test configuration II. (i) In the case of each add-on child restraint system which is equipped with a fixed or movable surface described in S5.2.2.2, or a backless child restraint system with a top anchorage strap, install the add-on child restraint system at the center seating position of the standard seat assembly using only the standard seat lap belt to secure the system to the standard seat. - (ii) In the case of each built-in child restraint system which is equipped with a fixed or movable surface described in S5.2.2.2, or a built-in booster seat with a top anchorage strap, activate the system in the specific vehicle shell or the specific vehicle in accordance with the manufacturer's instructions provided in accordance with S5.6.2. (b) Select any dummy specified in S7 for testing systems for use by children of the heights and weights for which the system is recommended in accordance with S5.5. The dummy is assembled, clothed and prepared as specified in S7 and S9 and Part 572 of this chapter, as appropriate. (c) Place the dummy in the child restraint. Position it, and attach the child restraint belts, if appropriate, as specified in S10. (d) Belt adjustment. (1) Add-on systems other than belt-positioning seats. (i) If appropriate, shoulder and pelvic belts that directly restrain the dummy shall be adjusted as follows: Tighten the belts until a 9 N force applied (as illustrated in figure 5) to the webbing at the top of each dummy shoulder and to the pelvic webbing 50 mm on either side of the torso midsagittal plane pulls the webbing 7 mm from the dummy. (ii) All Type I belt systems used to attach an add-on child restraint system to the standard seat assembly, and any provided additional anchorage belt (tether), are tightened to a tension of not less than 53.5 N and not more than 67 N, as measured by a load cell used on the webbing portion of the belt. (2) Add-on belt-positioning seats. (i) The lap portion of Type II belt systems used to attach the child restraint to the standard seat assembly is tightened to a tension of not less than 53.5 N and not more than 67 N, as measured by a load cell used on the webbing portion of the belt. (ii) The shoulder portion of Type II belt systems used to restrain the dummy is tightened to a tension of not less than 9 N and not more than 18 N, as measured by a load cell used on the webbing portion of the belt. (3) Built-in child restraint systems. (i) The lap portion of Type II belt systems used to secure a dummy to the built-in child restraint system is tightened to a tension of not less than 53.5 N and not more than 67 N, as measured by a load cell used on the webbing portion of the belt. (ii) The shoulder portion of Type II belt systems used to secure a child is tightened to a tension of not less than 9 N and not more than 18 N, as measured by a load cell used on the webbing portion of the belt. (iii) If provided, and if appropriate to attach the child restraint belts under S10, shoulder (other than the shoulder portion of a Type II vehicle belt system) and pelvic belts that directly restrain the dummy shall be adjusted as follows: Tighten the belts until a 9 N force applied (as illustrated in figure 5) to the webbing at the top of each dummy shoulder and to the pelvic webbing 50 mm on either side of the torso midsagittal plane pulls the webbing 7 mm from the dummy. (e) Accelerate the test platform to simulate frontal impact in accordance with Test Configuration I or II, as appropriate. (f) Determine conformance with the requirements in S5.1. S6.2 Buckle release test procedure. The belt assembly buckles used in any child restraint system shall be tested in accordance with S6.2.1 through S6.2.4 inclusive. S6.2.1 Before conducting the testing specified in S6.1, place the loaded buckle on a hard, flat, horizontal surface. Each belt end of the buckle shall be pre-loaded in the following manner. The anchor end of the buckle shall be loaded with a 9 N force in the direction away from the buckle. In the case of buckles designed to secure a single latch plate, the belt latch plate end of the buckle shall be pre-loaded with a 9 N force in the direction away from the buckle. In the case of buckles designed to secure two or more latch plates, the belt latch plate ends of the buckle shall be loaded equally so that the total load is 9 N, in the direction away from the buckle. For pushbutton-release buckles, the release force shall be applied by a conical surface (cone angle not exceeding 90 degrees). For pushbutton-release mechanisms with a fixed edge (referred to in Figure 7 as "hinged button"), the release force shall be applied at the centerline of the button, 3 mm away from the movable edge directly opposite the fixed edge, and in the direction that produces maximum releasing effect. For pushbutton-release mechanisms with no fixed edge (referred to in Figure 7 as "floating button"), the release force shall be applied at the center of the release mechanism in the direction that produces the maximum releasing effect. For all other buckle release mechanisms, the force shall be applied on the centerline of the buckle lever or finger tab in the direction that produces the maximum releasing effect. Measure the force required to release the buckle. Figure 7 illustrates the loading for the different buckles and the point where the release force should be applied, and Figure 8 illustrates the conical surface used to apply the release force to pushbuttonrelease buckles. S6.2.2 After completion of the testing specified in S6.1 and before the buckle is unlatched, tie a self-adjusting sling to each wrist and ankle of the test dummy in the manner illustrated in Figure 4, without disturbing the belted dummy and the child restraint system. S6.2.3 Pull the sling tied to the dummy restrained in the child restraint system and apply a force whose magnitude is: 50 N for a system tested with a newborn dummy; 90 N for a system tested with a 9-month-old dummy; 200 N for a system tested with a 3-year-old dummy; or 270 N for a system tested with a 6-year-old dummy. The force is applied in the manner illustrated in Figure 4 and as follows: (a) Add-on Child Restraints. For an add-on child restraint other than a car bed, apply the specified force by pulling the sling horizontally and parallel to the SORL of the standard seat assembly. For a car bed, apply the force by pulling the sling vertically. (b) Built-in Child Restraints. For a built-in child restraint other than a car bed, apply the force by pulling the sling parallel to the longitudinal center line of the specific vehicle shell or the specific vehicle. In the case of a car bed, apply the force by pulling the sling vertically. S6.2.4 While applying the force specified in S6.2.3, and using the device shown in Figure 8 for pushbutton-re- lease buckles, apply the release force in the manner and location specified in S6.2.1, for that type of buckle. Measure the force required to release the buckle. S6.3 Head impact protection—energy absorbing material test procedure. S6.3.1 Prepare and test specimens of the energy absorbing material used to comply with S5.2.3 in accordance with the applicable 25 percent compression-deflection test described in the American Society for Testing and Materials (ASTM) Standard D1056-73, "Standard Specification for Flexible Cellular Materials—Sponge or Expanded Rubber," or D1564-71 "Standard Method of Testing Flexible Cellular Materials—Slab Urethane Foam" or D1565-76 "Standard Specification for Flexible Cellular Materials—Vinyl Chloride Polymer and Copolymer open-cell foams." \$7 Test dummies. (Subparts referenced in this section are of part 572 of this chapter.) S7.1 Dummy selection. (a) A child restraint that is recommended by its manufacturer in accordance with S5.5 for use either by children in a specified mass range that includes any children having a mass of not greater than 5 kg, or by children in a specified height range that includes any children whose height is not greater than 650 mm, is tested with a newborn test dummy conforming to part 572 subpart K. (b) Å child restraint that is recommended by its manufacturer in accordance with S5.5 for use either by children in a specified mass range that includes any children having a mass greater than 5 but not greater than 10 kg, or by children in a specified height range that includes any children whose height is greater than 650 mm but not greater than 850 mm, is tested with a newborn test dummy conforming to part 572 subpart K, and a 9-month-old test dummy conforming to part 572 subpart J. (c) A child restraint that is recommended by its manufacturer in accordance with S5.5 for use either by children in a specified mass range that includes any children having a mass greater than 10 kg but not greater than 18 kg, or by children in a specified height range that includes any children whose height is greater than 850 mm but not greater than 1100 mm, is tested with a 9-month-old test dummy conforming to part 572 subpart J, and a 3-year-old test dummy conforming to part 572 subpart C and S7.2, provided, however, that the 9-month-old
dummy is not used to test a booster seat. (d) A child restraint that is recommended by its manufacturer in accordance with S5.5 for use either by children in a specified mass range that includes any children having a mass greater than 18 kg, or by children in a specified height range that includes any children whose height is greater than 1100 mm, is tested with a 6-year-old child dummy conforming to part 572 subpart I. (e) A child restraint that meets the criteria in two or more of the preceding paragraphs in S7.1 is tested with each of the test dummies specified in those paragraphs. S7.2 Three-year-old dummy head. Effective September 1, 1993, this dummy is assembled with the head assembly specified in section 572.16(a)(1) of this chapter. Så Requirements, test conditions, and procedures for child restraint systems manufactured for use in aircraft. Each child restraint system manufactured for use in both motor vehicles and aircraft must comply with all of the applicable requirements specified in Section S5 and with the additional requirements specified in S8.1 and S8.2. S8.1 Installation instructions. Each child restraint system manufactured for use in aircraft shall be accompanied by printed instructions in English that provide a step-by-step procedure, including diagrams, for installing the system in aircraft passenger seats, securing a child in the system when it is installed in aircraft, and adjusting the system to fit the child. S8.2 Inversion test. When tested in accordance with S8.2.1 through S8.2.5, each child restraint system manufactured for use in aircraft shall meet the requirements of S8.2.1 through S8.2.6. The manufacturer may, at its option, use any seat which is a representative aircraft passenger seat within the meaning of S4. Each system shall meet the requirements at each of the restraint's seat back angle adjustment positions and restraint belt routing positions, when the restraint is oriented in the direction recommended by the manufacturer (e.g., facing forward, rearward or laterally) pursuant to S8.1, and tested with the test dummy specified in S7. If the manufacturer recommendations do not include instructions for orienting the restraint in aircraft when the restraint seat back angle is adjusted to any position, position the restraint on the aircraft seat by following the instructions (provided in accordance with S5.6) for orienting the restraint in motor vehicles. S8.2.1 A standard seat assembly consisting of a representative aircraft passenger seat shall be positioned and adjusted so that its horizontal and vertical orientation and its seat back angle are the same as shown in Figure 6. S8.2.2 The child restraint system shall be attached to the representative aircraft passenger seat using, at the manufacturer's option, any Federal Aviation Administration approved aircraft safety belt, according to the restraint manufacturer's instructions for attaching the restraint to an aircraft seat. No supplementary anchorage belts or tether straps may be attached; however, Federal Aviation Administration approved safety belt extensions may be used. S8.2.3 In accordance with S10, place in the child restraint any dummy specified in S7 for testing systems for use by children of the heights and weights for which the system is recommended in accordance with S5.5 and S8.1. S8.2.4 If provided, shoulder and pelvic belts that directly restrain the dummy shall be adjusted in accordance with S6.1.2. S8.2.5 The combination of representative aircraft passenger seat, child restraint, and test dummy shall be rotated forward around a horizontal axis which is contained in the median transverse vertical plane of the seating surface portion of the aircraft seat and is located 25 mm below the bottom of the seat frame, at a speed of 35 to 45 degrees per second, to an angle of 180 degrees. The rotation shall be stopped when it reaches that angle and the seat shall be held in this position for three seconds. The child restraint shall not fall out of the aircraft safety belt nor shall the test dummy fall out of the child restraint at any time during the rotation or the three second period. The specified rate of rotation shall be attained in not less than one half second and not more than one second, and the rotating combination shall be brought to a stop in not less than one half second and not more than one second. S8.2.6 Repeat the procedures set forth in S8.2.1 through \$8.2.4. The combination of the representative aircraft passenger seat, child restraint, and test dummy shall be rotated sideways around a horizontal axis which is contained in the median longitudinal vertical plane of the seating surface portion of the aircraft seat and is located 25 mm below the bottom of the seat frame, at a speed of 35 to 45 degrees per second, to an angle of 180 degrees. The rotation shall be stopped when it reaches that angle and the seat shall be held in this position for three seconds. The child restraint shall not fall out of the aircraft safety belt nor shall the test dummy fall out of the child restraint at any time during the rotation or the three second period. The specified rate of rotation shall be attained in not less than one half second and not more than one second, and the rotating combination shall be brought to a stop in not less than one half second and not more than one second. S9 Dummy clothing and preparation. S9.1 *Type of clothing.* (a) *Newborn dummy*. When used in testing under this standard, the dummy is unclothed. (b) Nine-month-old dummy. When used in testing under this standard, the dummy is clothed in terry cloth polyester and cotton size 1 long sleeve shirt and size 1 long pants, with a total mass of 0.136 kg. (c) Three-year-old and six-year-old dummies. When used in testing under this standard, the dummy is clothed in thermal knit, waffle-weave polyester and cotton underwear or equivalent, a size 4 long-sleeved shirt (3-year-old dummy) or a size 5 long-sleeved shirt (6-year-old dummy) having a mass of 0.090 kg, a size 4 pair of long pants having a mass of 0.090 kg, and cut off just far enough above the knee to allow the knee target to be visible, and size 7M sneakers (3-year-old dummy) or size 12 ½M sneakers (6-year-old dummy) with rubber toe caps, uppers of dacron and cotton or nylon and a total mass of 0.453 kg. S9.2 Preparing clothing. Clothing other than the shoes is machinedwashed in 71 $^{\circ}$ C to 82 $^{\circ}$ C and machinedried at 49 $^{\circ}$ C to 60 $^{\circ}$ C for 30 minutes. S9.3 Preparing dummies. Before being used in testing under this standard, dummies must be conditioned at any ambient temperature from 19 $^{\circ}$ C to 25.5 $^{\circ}$ C and at any relative humidity from 10 percent to 70 percent for at least 4 hours. S10 Positioning the dummy and attaching the system belts. S10.1 Car beds. Place the test dummy in the car bed in the supine position with its midsagittal plane perpendicular to the center SORL of the standard seat assembly, in the case of an add-on car bed, or perpendicular to the longitudinal axis of the specific vehicle shell or the specific vehicle, in the case of a built-in car bed. Position the dummy within the car bed in accordance with the instructions for child positioning that the bed manufacturer provided with the bed in accordance with S5.6. S10.2 Restraints other than car beds. S10.2.1 Newborn dummy and ninemonth-old dummy. Position the test dummy according to the instructions for child positioning that the manufacturer provided with the system under S5.6.1 or S5.6.2, while conforming to the following: (a) Prior to placing the 9-month-old test dummy in the child restraint system, place the dummy in the supine position on a horizontal surface. While placing a hand on the center of the torso to prevent movement of the dummy torso, rotate the dummy legs upward by lifting the feet 90 degrees. Slowly release the legs but do not return them to the flat surface. (b)(1) When testing forward-facing child restraint systems, holding the 9-month-old test dummy torso upright until it contacts the system's design seating surface, place the 9-month-old test dummy in the seated position within the system with the mid-sagittal plane of the dummy head— - (i) Coincident with the center SORL of the standard seating assembly, in the case of the add-on child restraint system, or - (ii) Vertical and parallel to the longitudinal center line of the specific vehicle shell or the specific vehicle, in the case of a built-in child restraint system. - (2) When testing rear-facing child restraint systems, place the newborn or 9-month old dummy in the child restraint system so that the back of the dummy torso contacts the back support surface of the system. For a child restraint system which is equipped with a fixed or movable surface described in S5.2.2.2 which is being tested under the conditions of test configuration II, do not attach any of the child restraint belts unless they are an integral part of the fixed or movable surface. For all other child restraint systems and for a child restraint system with a fixed or movable surface which is being tested under the conditions of test configuration I, attach all appropriate child restraint belts and tighten them as specified in S6.1.2. Attach all appropriate vehicle belts and tighten them as specified in S6.1.2. Position each movable surface in accordance with the instructions that the manufacturer provided under S5.6.1 or S5.6.2. If the dummy's head does not remain in the proper position, it shall be taped against the front of the seat back surface of the system by means of a single thickness of 6 mm-wide paper masking tape placed across the center of the dummy's face. - (c)(1)(i) When testing forward-facing child restraint systems, extend the arms of the 9-month-old test dummy as far as possible in the upward vertical direction. Extend the legs of the 9-month-old dummy as far as possible in the forward horizontal direction, with
the dummy feet perpendicular to the centerline of the lower legs. Using a flat square surface with an area of 2,580 square mm, apply a force of 178 N, perpendicular to: - (A) The plane of the back of the standard seat assembly, in the case of an add-on system, or - (B) The back of the vehicle seat in the specific vehicle shell or the specific vehicle, in the case of a built-in sys- - tem, first against the dummy crotch and then at the dummy thorax in the midsagittal plane of the dummy. For a child restraint system with a fixed or movable surface described in S5.2.2.2, which is being tested under the conditions of test configuration II, do not attach any of the child restraint belts unless they are an integral part of the fixed or movable surface. For all other child restraint systems and for a child restraint system with a fixed or movable surface which is being tested under the conditions of test configuration I, attach all appropriate child restraint belts and tighten them as specified in S6.1.2. Attach all appropriate vehicle belts and tighten them as specified in S6.1.2. Position each movable surface in accordance with the instructions that the manufacturer provided under S5.6.1 or S5.6.2. - (ii) After the steps specified in paragraph (c)(1)(i) of this section, rotate each dummy limb downwards in the plane parallel to the dummy's midsagittal plane until the limb contacts a surface of the child restraint system or the standard seat assembly, in the case of an add-on system, or the specific vehicle shell or specific vehicle, in the case of a built-in system, as appropriate. Position the limbs, if necessary, so that limb placement does not inhibit torso or head movement in tests conducted under S6. - (2) When testing rear-facing child restraints, position the newborn and 9month-old dummy arms vertically upwards and then rotate each arm downward toward the dummy's lower body until the arm contacts a surface of the child restraint system or the standard seat assembly in the case of an add-on child restraint system, or the specific vehicle shell or the specific vehicle, in the case of a built-in child restraint system. Ensure that no arm is restrained from movement in other than the downward direction, by any part of the system or the belts used to anchor the system to the standard seat assembly, the specific shell, or the specific vehicle. - S10.2.2 Three-year-old and six-year-old test dummy. Position the test dummy according to the instructions for child positioning that the restraint manufacturer provided with the system in accordance with S5.6.1 or S5.6.2, while conforming to the following: - (a) Holding the test dummy torso upright until it contacts the system's design seating surface, place the test dummy in the seated position within the system with the midsagittal plane of the test dummy head— - (1) Coincident with the center SORL of the standard seating assembly, in the case of the add-on child restraint system, or - (2) Vertical and parallel to the longitudinal center line of the specific vehicle, in the case of a built-in child restraint system. - (b) Extend the arms of the test dummy as far as possible in the upward vertical direction. Extend the legs of the dummy as far as possible in the forward horizontal direction, with the dummy feet perpendicular to the center line of the lower legs. - (c) Using a flat square surface with an area of 2580 square millimeters, apply a force of 178 N, perpendicular to: (1) The plane of the back of the - (1) The plane of the back of the standard seat assembly, in the case of an add-on system, or - (2) The back of the vehicle seat in the specific vehicle shell or the specific vehicle, in the case of a built-in system, first against the dummy crotch and then at the dummy thorax in the midsagittal plane of the dummy. For a child restraint system with a fixed or movable surface described in S5.2.2.2, which is being tested under the conditions of test configuration II, do not attach any of the child restraint belts unless they are an integral part of the fixed or movable surface. For all other child restraint systems and for a child restraint system with a fixed or movable surface which is being tested under the conditions of test configuration I, attach all appropriate child restraint belts and tighten them as specified in S6.1.2. Attach all appropriate vehicle belts and tighten them as specified in S6.1.2. Position each movable surface in accordance with the instructions that the manufacturer provided under S5.6.1 or S5.6.2. (d) After the steps specified in paragraph (c) of this section, rotate each dummy limb downwards in the plane parallel to the dummy's midsagittal plane until the limb contacts a surface of the child restraint system or the standard seat assembly, in the case of an add-on system, or the specific vehicle shell or specific vehicle, in the case of a built-in system, as appropriate. Position the limbs, if necessary, so that limb placement does not inhibit torso or head movement in tests conducted under S6. REAR FACING CHILD RESTRAINT FORWARD AND UPPER HEAD EXCURSION LIMITS FIGURE 1C a) FIGURE 4 - Buckle Release Test Dimension B - 1/2 of Dimension A WEBBING TENSION PULL DEVICE FIGURE 5 "A" represents a 2- to 3-inch thick polyurethane foam pad, 1.5-2.0 pounds per cubic foot density, over 0.020-inch-thick aluminum pan, and covered by 12- to 14-ounce marine canvas. The sheet aluminum pan is 20 inches wide and supported on each side by a rigid structure. The seat back is a rectangular frame covered with the aluminum sheet and weighing between 14 and 15 pounds, with a center of mass 13 to 16 inches above the seat pivot axis. The mass moment of inertia of the seat back about the seat pivot axis is between 195 and 220 ounce-inch-second². The seat back is free to fold forward about the pivot, but a stop prevents rearward motion. The passenger safety belt anchor points are spaced 21 to 22 inches apart and are located in line with the seat pivot axis. FIGURE 6: SIMULATED AIRCRAFT PASSENGER SEAT Figure 7. Pre-impact Buckle Release Force Test Set-up Figure 8. Release Force Application Device--Push Button Release Buckles Figure 9a—Registration form for Child Systems—Product Identification Number and Purchaser Information Side. Figure 9b—Registration form for Child Restraint Systems—address side. Label Outline, Vertical and Horizontal Line Black Figure 10. Label on Child Seat Where Child's Head Rests. [44 FR 72147, Dec. 13, 1979] EDITORIAL NOTE: For FEDERAL REGISTER citations affecting \$571.213, see the List of CFR Sections Affected in the Finding Aids section of this volume. EFFECTIVE DATE NOTE: At 63 FR 52630, Oct. 1, 1998, §571.213 was amended by revising S5.5.2(k)(5) and S5.5.2(l), effective Mar. 30, 1999. For the convenience of the user, the superseded text is set forth as follows: ### §571.213 Standard No. 213; child restraint systems. * * * * * S5.5.2 * * * (k)* * * (5) If a child restraint system is equipped with a device that deactivates the passenger-side air bag in a vehicle when and only when the child restraint is installed in the vehicle and provides a signal, for at least 10 seconds after deactivation, that the air bag is deactivated, the label specified in Figure 10 may vated, the label specified in Figure 10 may include the phrase "unless air bag is off" after "on front seat with air bag." (l) An installation diagram showing the child restraint system installed in the right front outboard seating position equipped with a continuous-loop lap/shoulder belt and in the center rear seating position as specified in the manufacturer's instructions. # §571.214 Standard No. 214; Side impact protection. S1. Scope and purpose. (a) *Scope.* This standard specifies performance requirements for protection of occupants in side impact crashes. (b) Purpose. The purpose of this standard is to reduce the risk of serious and fatal injury to occupants of passenger cars, multipurpose passenger vehicles, trucks and buses in side impact crashes by specifying vehicle crashworthiness requirements in terms of accelerations measured on anthropomorphic dummies in test crashes, by specifying strength requirements for side doors, and by other means. - S2. This standard applies to— - (a) Passenger cars: - (b) Effective September 1, 1993, sections S3(a), S3(e), S3.1 through S3.2.3, and S4 of the standard apply to multipurpose passenger vehicles, trucks, and buses with a GVWR of 10,000 pounds or less, except for walk-in vans; and - (c) Effective September 1, 1998, sections S3(f) and S5 of the standard apply to multipurpose passenger vehicles, trucks and buses with a GVWR of 6,000 pounds or less, except for walk-in vans, motor homes, tow trucks, dump trucks, ambulances and other emergency rescue/medical vehicles (including vehicles with fire-fighting equipment), vehicles equipped with wheelchair lifts, and vehicles which have no doors or exclusively have doors that are designed to be easily attached or removed so the vehicle can be operated without doors. #### S2.1 Definitions. Contoured means, with respect to a door, that the lower portion of its front or rear edge is curved upward, typically to conform to a wheel well. Double side doors means a pair of hinged doors with the lock and latch mechanisms located where the door lips overlap. Walk-in van means a van in which a person can enter the occupant compartment in an upright position. S3. Requirements. (a)(1) Except as provided in section S3(e), each passenger car shall be able to meet the requirements of either, at the manufacturer's option, S3.1 or S3.2, when any of its side doors that can be used for occupant egress is tested according to S4. - (2) Except as provided in section S3(e), each multipurpose passenger vehicle, truck and bus manufactured on or after September 1, 1994 shall be able to meet the requirements of either, at the manufacturer's option, S3.1 or S3.2, when any of its side doors that can be used for occupant
egress is tested according to S4. - (b) When tested under the conditions of S6, each pasenger car manufactured on or after September 1, 1996 shall meet the requirements of S5.1, S5.2, and S5.3 in a 33.5 miles per hour impact in which the car is struck on either side by a moving deformable barrier. Part 572, subpart F test dummies are placed in the front and rear outboard seating positions on the struck side of the car. However, the rear seat requirements do not apply to passenger cars with a wheelbase greater than 130 inches, or to passenger cars which have rear seating areas that are so small that the part 572, subpart F dummies cannot be accommodated according to the positioning procedure specified in S7. - (c) Except as provided in paragraph (d) of this section, from September 1, 1993 to August 31, 1996, a specified percentage of each manufacturer's yearly passenger car production, as set forth in S8, shall, when tested under the conditions of S6, meet the requirements of S5.1, S5.2, and S5.3 in a 33.5 miles per hour impact in which the car is struck on either side by a moving deformable barrier. Part 572, subpart F test dummies are placed in the front and rear outboard seating positions on the struck side of the car. However, the rear seat requirements do not apply to passenger cars with a wheelbase greater than 130 inches, or to passenger cars which have rear seating areas that are so small that the part 572, subpart F dummies cannot be accommodated according to the positioning procedure specified in S7. - (d) A manufacturer may, at its option, comply with the requirements of this paragraph instead of paragraph (c) of this section. When tested under the conditions of S6, each passenger car manufactured from September 1, 1994 to August 31, 1996 shall meet the requirements of S5.1, S5.2, and S5.3 in a 33.5 miles per hour impact in which the car is struck on either side by a moving deformable barrier. Part 572, subpart F test dummies are placed in the front and rear outboard seating positions on the struck side of the car. However, the rear seat requirements do not apply to passenger cars with a wheelbase greater than 130 inches, or to passenger cars which have rear seating areas that are so small that the part 572, subpart F dummies cannot be accommodated according to the positioning procedure specified in S7 - (e) A vehicle need not meet the requirements of sections S3.1 or S3.2 for— - (1) Any side door located so that no point on a ten-inch horizontal longitudinal line passing through and bisected by the H-point of a manikin placed in any seat, with the seat adjusted to any position and the seat back adjusted as specified in Section S6.4, falls within the transverse, horizontal projection of the door's opening, - (2) Any side door located so that no point on a ten-inch horizontal longitudinal line passing through and bisected by the H-point of a manikin placed in any seat recommended by the manufacturer for installation in a location for which seat anchorage hardware is provided, with the seat adjusted to any position and the seat back adjusted as specified in section S6.4, falls within the transverse, horizontal projection of the door's opening, - (3) Any side door located so that a portion of a seat, with the seat adjusted to any position and the seat back adjusted as specified in section S6.4, falls within the transverse, horizontal protection of the door's opening, but a longitudinal vertical plane tangent to the outboard side of the seat cushion is more than 10 inches from the innermost point on the inside surface of the door at a height between the H-point and shoulder reference point (as shown in figure 1 of the Federal Motor Vehicle Safety Standard No. 210) and longitudinally between the front edge of the cushion with the seat adjusted to its forwardmost position and the rear edge of the cushion with the seat adjusted to its rearmost posi- - (4) Any side door that is designed to be easily attached to or removed (e.g., using simple hand tools such as pliers and/or a screw driver) from a motor vehicle manufactured for operation without doors. - (f) When tested according to the conditions of S6, each multipurpose passenger vehicle, truck and bus manufactured on or after September 1, 1998, shall meet the requirements of S5.1, S5.2, and S5.3 in a 33.5 miles per hour impact in which the vehicle is struck on either side by a moving deformable barrier. A part 572, subpart F test dummy is placed in the front outboard seating position on the struck side of the vehicle, and if the vehicle is - equipped with rear seats, then another part 572, subpart F test dummy is placed on the outboard seating position of the second seat on the struck side of the vehicle. However, the second seat requirements do not apply to side-facing seats or to vehicles that have second seating areas that are so small that the part 572, subpart F dummy can not be accommodated according to the positioning procedure specified in S7. - S3.1 With any seats that may affect load upon or deflection of the side of the vehicle removed from the vehicle, each vehicle must be able to meet the requirements of S3.1.1 through S3.1.3. - S3.1.1 *Initial crush resistance.* The initial crush resistance shall not be less than 2,250 pounds. - S3.1.2 Intermediate crush resistance. The intermediate crush resistance shall not be less than 3,500 pounds. - S3.1.3 *Peak crush resistance.* The peak crush resistance shall not be less than two times the curb weight of the vehicle or 7,000 pounds, whichever is less. - S3.2 With seats installed in the vehicle, and located in any horizontal or vertical position to which they can be adjusted and at any seat back angle to which they can be adjusted, each vehicle must be able to meet the requirements of S3.2.1 through S3.2.3. - S3.2.1 *Initial crush resistance*. The initial crush resistance shall not be less than 2,250 pounds. - S3.2.2 Intermediate crush resistance. The intermediate crush resistance shall not be less than 4,375 pounds. - S3.2.3 *Peak crush resistance.* The peak crush resistance shall not be less than three and one half times the curb weight of the vehicle or 12,000 pounds, whichever is less. - S4. *Test procedures.* The following procedures apply to determining compliance with paragraph S3: - (a) Place side windows in their uppermost position and all doors in locked position. Place the sill of the side of the vehicle opposite to the side being tested against a rigid unyielding vertical surface. Fix the vehicle rigidly in position by means of tiedown attachments located at or forward of the front wheel centerline and at or rearward of the rear wheel centerline. - (b) Prepare a loading device consisting of a rigid steel cylinder or semicylinder 305 mm (12 inches) in diameter with an edge radius of 13 mm (½ inch). The length of the loading device shall be such that— - (1) For doors with windows, the top surface of the loading device is at least 13 mm (½ inch) above the bottom edge of the door window opening but not of a length that will cause contact with any structure above the bottom edge of the door window opening during the test. - (2) For doors without windows, the top surface of the loading device is at the same height above the ground as when the loading device is positioned in accordance with paragraph (b)(1) of this section for purposes of testing a front door with windows on the same vehicle. - (c) Locate the loading device as shown in Figure 1 (side view) of this section so that— $\,$ - (1) Its longitudinal axis is vertical. - (2) Except as provided in paragraphs (c)(2) (i) and (ii) of this section, its longitudinal axis is laterally opposite the midpoint of a horizontal line drawn across the outer surface of the door 127 mm (5 inches) above the lowest point of the door, exclusive of any decorative or protective molding that is not permanently affixed to the door panel. - (i) For contoured doors on trucks, buses, and multipurpose passenger vehicles with a GVWR of $4,545~\rm kg$ (10,000 pounds) or less, if the length of the horizontal line specified in (c)(2) is not equal to or greater than 559 mm (22 inches), the line is moved vertically up the side of the door to the point at which the line is 559 mm (22 inches) long. The longitudinal axis of the loading device is then located laterally opposite the midpoint of that line. - (ii) For double side doors on trucks, buses, and multipurpose passenger vehicles with a GVWR of 4,545 kg (10,000 pounds) or less, its longitudinal axis is laterally opposite the midpoint of a horizontal line drawn across the outer surface of the double door span, 127 mm (5 inches) above the lowest point on the doors, exclusive of any decorative or protective molding that is not permanently affixed to the door panel. - (3) Except as provided in paragraphs (c)(3) (i) and (ii) of this section, its bottom surface is in the same horizontal plane as the horizontal line drawn across the outer surface of the door 127 mm (5 inches) above the lowest point of the door, exclusive of any decorative or protective molding that is not permanently affixed to the door panel. - (i) For contoured doors on trucks, buses, and multipurpose passenger vehicles with a GVWR of 4,545 kg (10,000 pounds) or less, its bottom surface is in the lowest horizontal plane such that every point on the lateral projection of the bottom surface of the device on the door is at least 127 mm (5 inches), horizontally and vertically, from any edge of the door panel, exclusive of any decorative or protective molding that is not permanently affixed to the door panel. - (ii) For double side doors, its bottom surface is in the same horizontal plane as a horizontal line drawn across the outer surface of the double door span, 127 mm (5 inches) above the lowest point of the doors, exclusive of any decorative or protective molding that is not permanently affixed to the door panel. - (d) Using the loading device, apply a load
to the outer surface of the door in an inboard direction normal to a vertical plane along the vehicle's longitudinal centerline. Apply the load continuously such that the loading device travel rate does not exceed one-half inch per second until the loading device travels 18 inches. Guide the loading device to prevent it from being rotated or displaced from its direction of travel. The test must be completed within 120 seconds. - (e) Record applied load versus displacement of the loading device, either continuously or in increments of not more than 1 inch or 200 pounds for the entire crush distance of 18 inches. - (f) Determine the initial crush resistance, intermediate crush resistance, and peak crush resistance as follows: - (1) From the results recorded in paragraph (e) of this section, plot a curve of load versus displacement and obtain the integral of the applied load with respect to the crush distances specified in paragraphs (f) (2) and (3) of this section. These quantities, expressed in inch-pounds and divided by the specified crush distances, represent the average forces in pounds required to deflect the door those distances. - (2) The initial crush resistance is the average force required to deform the door over the initial 6 inches of crush. - (3) The intermediate crush resistance is the average force required to deform the door over the initial 12 inches of crush. - (4) The peak crush resistance is the largest force recorded over the entire 18-inch crush distance. # LOADING DEVICE LOCATION AND APPLICATION TO THE DOOR FIGURE 1 - S5. Dynamic performance requirements. S5.1 Thorax. The Thoracic Trauma Index (TTI(d)) shall not exceed: - (a) 85 g for a passenger car with four side doors, and for any multipurpose passenger vehicle, truck, or bus; and, (b) 90 g for a passenger car with two side doors, when calculated in accordance with the following formula: $TTI(d) = 1/2 (G_R + G_{LS})$ The term " G_R " is the greater of the peak accelerations of either the upper or lower rib, expressed in g's and the term " G_{LS} " is the lower spine (T12) peak acceleration, expressed in g's. The peak acceleration values are obtained in accordance with the procedure specified in S6.13.5. S5.2 *Pelvis.* The peak lateral acceleration of the pelvis, as measured in accordance with S6.13.5, shall not exceed 130 g's. S5.3 Door opening. S5.3.1 Any side door, which is struck by the moving deformable barrier, shall not separate totally from the car. S5.3.2 Any door (including a rear hatchback or tailgate), which is not struck by the moving deformable barrier, shall meet the following requirements: S5.3.2.1 The door shall not disengage from the latched position; S5.3.2.2 The latch shall not separate from the striker, and the hinge components shall not separate from each other or from their attachment to the vehicle. S5.3.2.3 Neither the latch nor the hinge systems of the door shall pull out of their anchorages. S6. Test conditions. S6.1 Test weight. Each vehicle is loaded to its unloaded vehicle weight, plus 300 pounds or its rated cargo and luggage capacity (whichever is less), secured in the luggage or load-carrying area, plus the weight of the necessary anthropomorphic test dummies. Any added test equipment is located away from impact areas in secure places in the vehicle. The vehicle's fuel system is filled in accordance with the following procedure. With the test vehicle on a level surface, pump the fuel from the vehicle's fuel tank and then operate the engine until it stops. Then, add Stoddard solvent to the test vehicle's fuel tank in an amount which is equal to not less than 92 percent and not more than 94 percent of the fuel tank's usable capacity stated by the vehicle's manufacturer. In addition, add the amount of Stoddard solvent needed to fill the entire fuel system from the fuel tank through the engine's induction system. S6.2Vehicle test attitude. Determine the distance between a level surface and a standard reference point on the test vehicle's body, directly above each wheel opening, when the vehicle is in its "as delivered" condition. The "as delivered" condition is the vehicle as received at the test site, filled to 100 percent of all fluid capacities and with all tires inflated to the manufacturer's specifications listed on the vehicle's tire placard. Determine the distance between the same level surface and the same standard reference points in the vehicle's "fully loaded condition." The 'fully loaded condition' is the test vehicle loaded in accordance with S6.1. The load placed in the cargo area is centered over the longitudinal centerline of the vehicle. The pretest vehicle attitude is equal to either the as delivered or fully loaded attitude or between the as delivered attitude and the fully loaded attitude. S6.3 Adjustable seats. Adjustable seats are placed in the adjustment position midway between the forward most and rearmost positions, and if separately adjustable in a vertical direction, are at the lowest position. If an adjustment position does not exist midway between the forwardmost and rearmost positions, the closest adjustment position to the rear of the midpoint is used. S6.4 Adjustable seat back placement. Place adjustable seat backs in the manufacturer's nominal design riding position in the manner specified by the manufacturer. If the position is not specified, set the seat back at the first detent rearward of 25° from the vertical. Place each adjustable head restraint in its highest adjustment position. Position adjustable lumbar supports so that they are set in their released, i.e., full back position. S6.5 Adjustable steering wheels. Adjustable steering controls are adjusted so that the steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions. S6.6 *Windows.* Movable vehicle windows and vents are placed in the fully closed position on the struck side of the vehicle. S6.7 *Convertible tops.* Convertibles and open-body type vehicles have the top, if any, in place in the closed passenger compartment configuration. S6.8 *Doors.* Doors, including any rear hatchback or tailgate, are fully closed and latched but not locked. S6.9 Transmission and brake engagement. For a vehicle equipped with a manual transmission, the transmission is placed in second gear. For a vehicle equipped with an automatic transmission, the transmission is placed in neutral. For all vehicles, the parking brake is engaged. S6.10 *Moving deformable barrier.* The moving deformable barrier conforms to the dimensions shown in Figure 2 and specified in part 587. S6.11 *Impact reference line.* Place a vertical reference line at the location described below on the side of the vehicle that will be struck by the moving deformable barrier: S6.11.1 Passenger cars. - (a) For vehicles with a wheelbase of 114 inches or less, 37 inches forward of the center of the vehicle's wheelbase. - (b) For vehicles with a wheelbase greater than 114 inches, 20 inches rearward of the centerline of the vehicle's front axle. S6.11.2 Multipurpose passenger vehicles, trucks and buses. - (a) For vehicles with a wheelbase of 98 inches or less, 12 inches rearward of the centerline of the vehicle's front axle, except as otherwise specified in paragraph (d) of this section. - (b) For vehicles with a wheelbase of greater than 98 inches but not greater than 114 inches, 37 inches forward of the center of the vehicle's wheelbase, except as otherwise specified in paragraph (d) of this section. (c) For vehicles with a wheelbase greater than 114 inches, 20 inches rearward of the centerline of the vehicle's front axle, except as otherwise specified in paragraph (d) of this section. (d) At the manufacturer's option, for different wheelbase versions of the same model vehicle, the impact reference line may be located by the following: (1) Select the shortest wheelbase vehicle of the different wheelbase versions of the same model and locate on it the impact reference line at the loca- tion described in (a), (b) or (c) of this section, as appropriate; - (2) Measure the distance between the seating reference point (SgRP) and the impact reference line; - (3) Maintain the same distance between the SgRP and the impact reference line for the version being tested as that between the SgRP and the impact reference line for the shortest wheelbase version of the model. - (e) For the compliance test, the impact reference line will be located using the procedure used by the manufacturer as the basis for its certification of compliance with the requirements of this standard. If the manufacturer did not use any of the procedures in this section, or does not specify a procedure when asked by the agency, the agency may locate the impact reference line using either procedure. S6.12 Impact configuration. The test vehicle (vehicle A in Figure 3) is stationary. The line of forward motion of the moving deformable barrier (vehicle B in Figure 3) forms an angle of 63 degrees with the centerline of the test vehicle. The longitudinal centerline of the moving deformable barrier is perpendicular to the longitudinal centerline of the test vehicle when the barrier strikes the test vehicle. In a test in which the test vehicle is to be struck on its left (right) side: All wheels of the moving deformable barrier are positioned at an angle of 27 \pm 1 degrees to the right (left) of the centerline of the moving deformable barrier; and the left (right) forward edge of the moving deformable barrier is aligned so that a longitudinal plane tangent to that side passes through the impact reference line within a tolerance of ± 2 inches when the barrier strikes the test vehicle. S6.13 Anthropomorphic test dummies. S6.13.1 The anthropomorphic test dummies used for evaluation of a vehicle's side impact protection conform to the requirements of subpart F of part 572 of this chapter. In a test in which the test vehicle is to be struck
on its left side, each dummy is to be configured and instrumented to be struck on its left side, in accordance with subpart F of part 572. In a test in which the test vehicle is to be struck on its right side, each dummy is to be configured and instrumented to be struck on its right side, in accordance with subpart F of part 572. S6.13.2 Each part 572, subpart F test dummy specified is clothed in formfitting cotton stretch garments with short sleeves and midcalf length pants. Each foot of the test dummy is equipped with a size 11EEE shoe, which meets the configuration size, sole, and heel thickness specifications of MIL-S-13192 (1976) and weighs 1.25 ±0.2 pounds. S6.13.3 Limb joints are set at between 1 and 2 g's. Leg joints are adjusted with the torso in the supine position. S6.13.4 The stabilized temperature of the test dummy at the time of the side impact test shall be at any temperature between 66 degrees F. and 78 degrees F. S6.13.5 The acceleration data from the accelerometers mounted on the ribs, spine and pelvis of the test dummy are processed with the FIR100 software specified in 49 CFR 572.44(d). The data are processed in the following manner: S6.13.5.1 Filter the data with a 300 Hz, SAE Class 180 filter; S6.13.5.2 Subsample the data to a 1600 Hz sampling rate; S6.13.5.3 Remove the bias from the subsampled data, and S6.13.5.4 Filter the data with the FIR100 software specified in 49 CFR 572.44(d), which has the following characteristics— S6.13.5.4.1 Passband frequency 100 Hz. S6.13.5.4.2 Stopband frequency 189 Hz. $S6.13.5.4.3 \quad Stopband \ gain \ -50 \ db.$ S6.13.5.4.4 Passband ripple 0.0225 db. NHTSA SIDE IMPACTOR - MOVING DEFORMABLE BARRIER FIGURE 2 606 - S7. Positioning procedure for the part 572 subpart F test dummy. Position a correctly configured test dummy, conforming to subpart F of part 572 of this chapter, in the front outboard seating position on the side of the test vehicle to be struck by the moving deformable barrier and, if the vehicle has a second seat, position another conforming test dummy in the second seat outboard position on the same side of the vehicle, as specified in S7.1 through S7.4. Each test dummy is restrained using all available belt systems in all seating positions where such belt restraints are provided. In addition, any folding armrest is retracted. - S7.1 *Torso.* For a test dummy in any seating position, hold the dummy's head in place and push laterally on the non-impacted side of the upper torso in a single stroke with a force of 15–20 lb. towards the impacted side. - S7.1.1 For a test dummy in the driver position. - (a) For a bench seat. The upper torso of the test dummy rests against the seat back. The midsagittal plane of the test dummy is vertical and parallel to the vehicle's longitudinal centerline, and passes through the center of the steering wheel. - (b) For a bucket seat. The upper torso of the test dummy rests against the seat back. The midsagittal plane of the test dummy is vertical and parallel to the vehicle's longitudinal centerline, and coincides with the longitudinal centerline of the bucket seat. - S7.1.2 For a test dummy in the front outboard passenger position. - (a) For a bench seat. The upper torso of the test dummy rests against the seat back. The midsagittal plane of the test dummy is vertical and parallel to the vehicle's longitudinal centerline, and the same distance from the vehicle's longitudinal centerline as would be the midsagittal plane of a test dummy positioned in the driver position under S7.1.1. - (b) For a bucket seat. The upper torso of the test dummy rests against the seat back. The midsagittal plane of the test dummy is vertical and parallel to the vehicle's longitudinal centerline, and coincides with the longitudinal centerline of the bucket seat. - S7.1.3 For a test dummy in either of the rear outboard passenger positions. - (a) For a bench seat. The upper torso of the test dummy rests against the seat back. The midsagittal plane of the test dummy is vertical and parallel to the vehicle's longitudinal centerline, and, if possible, the same distance from the vehicle's longitudinal centerline as the midsagittal plane of a test dummy positioned in the driver position under \$7.1.1. If it is not possible to position the test dummy so that its midsagittal plane is parallel to the vehicle longitudinal centerline and is at this distance from the vehicle's longitudinal centerline, the test dummy is positioned so that some portion of the test dummy just touches, at or above the seat level, the side surface of the vehicle, such as the upper quarter panel, an armrest, or any interior trim (i.e., either the broad trim panel surface or a smaller, localized trim feature). - (b) For a bucket or contoured seat. The upper torso of the test dummy rests against the seat back. The midsagittal plane of the test dummy is vertical and parallel to the vehicle's longitudinal centerline, and coincides with the longitudinal centerline of the bucket or contoured seat. S7.2 Pelvis. S7.2.1 *H-point*. The H-points of each test dummy coincide within ½ inch in the vertical dimension and ½ inch in the horizontal dimension of a point ¼ inch below the position of the H-point determined by using the equipment for the 50th percentile and procedures specified in SAE J826 (1980) (incorporated by reference; see § 571.5), except that Table 1 of SAE J826 is not applicable. The length of the lower leg and thigh segments of the H-point machine are adjusted to 16.3 and 15.8 inches, respectively. S7.2.2 Pelvic angle. As determined using the pelvic angle gauge (GM drawing 78051-532 incorporated by reference in part 572, subpart E of this chapter) which is inserted into the H-point gauging hole of the dummy, the angle of the plane of the surface on the lumbar-pelvic adaptor on which the lumbar spine attaches is 23 to 25 degrees from the horizontal, sloping upward toward the front of the vehicle. S7.3 Legs. S7.3.1 For a test dummy in the driver position. The upper legs of each test dummy rest against the seat cushion to the extent permitted by placement of the feet. The left knee of the dummy is positioned such that the distance from the outer surface of the knee pivot bolt to the dummy's midsagittal plane is six inches. To the extent practicable, the left leg of the test dummy is in a vertical longitudinal plane. S7.3.2 For a test dummy in the outboard passenger positions. The upper legs of each test dummy rest against the seat cushion to the extent permitted by placement of the feet. The initial distance between the outboard knee clevis flange surfaces is 11.5 inches. To the extent practicable, both legs of the test dummies in outboard passenger positions are in vertical longitudinal planes. Final adjustment to accommodate placement of feet in accordance with S7.4 for various passenger compartment configurations is permitted. S7.4 Feet. S7.4.1 For a test dummy in the driver position. The right foot of the test dummy rests on the undepressed accelerator with the heel resting as far forward as possible on the floorpan. The left foot is set perpendicular to the lower leg with the heel resting on the floorpan in the same lateral line as the right heel. S7.4.2 For a test dummy in the front outboard passenger position. The feet of the test dummy are placed on the vehicle's toeboard with the heels resting on the floorpan as close as possible to the intersection of the toeboard and floorpan. If the feet cannot be placed flat on the toeboard, they are set perpendicular to the lower legs and placed as far forward as possible so that the heels rest on the floorpan. S7.4.3 For a test dummy in either of the rear outboard passenger positions. The feet of the test dummy are placed flat on the floorpan and beneath the front seat as far as possible without front seat interference. If necessary, the distance between the knees can be changed in order to place the feet beneath the seat. S8. Phase-in of dynamic test and performance requirements. S8.1 [Reserved] S8.2 [Reserved] S8.3 Passenger cars manufactured on or after September 1, 1995 and before September 1, 1996. S8.3.1 The number of passenger cars complying with the requirements of S3(c) shall be not less than 40 percent of - (a) The average annual production of passenger cars manufactured on or after September 1, 1992, and before September 1, 1995, by each manufacturer, or - (b) The manufacturer's annual production of passenger cars during the period specified in S8.3. S8.4 Passenger cars produced by more than one manufacturer. S8.4.1 For the purposes of calculating average annual production of passenger cars for each manufacturer and the number of passenger cars manufactured by each manufacturer under S8.1, S8.2, and S8.3, a passenger car produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S8.4.2: (a) A passenger car which is imported shall be attributed to the importer. (b) A passenger car manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer which markets the vehicle. S8.4.2 A passenger car produced by more than one manufacturer shall be attributed to any one of the vehicle's manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 586, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S8.4.1. [36 FR 22902, Dec. 2, 1971, as amended at 45 FR 17018, Mar. 17, 1980; 55 FR 45752, Oct. 30, 1990; 56 FR 27437, June 14, 1991; 56 FR 47011, Sept. 17, 1991; 57 FR 21615, May 21, 1992; 57 FR 30921 and 30922, July 13, 1992; 58 FR 14169, Mar. 16, 1993; 60 FR 38761, July 28, 1995; 60 FR 57839, Nov. 22, 1995; 63 FR 16140, Apr. 2, 1998] #### §571.215 [Reserved] ## § 571.216 Standard No. 216; Roof crush resistance. S1. *Scope.* This standard establishes
strength requirements for the passenger compartment roof. - S2. *Purpose.* The purpose of this standard is to reduce deaths and injuries due to the crushing of the roof into the passenger compartment in rollover accidents. - S3. Application. This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks and buses with a GVWR of 2722 kilograms or less. However, it does not apply to— - (a) School buses; - (b) Vehicles that conform to the rollover test requirements (S5.3) of Standard No. 208 (§ 571.208) by means that require no action by vehicle occupants; or - (c) Convertibles, except for optional compliance with the standard as an alternative to the rollover test requirements in S5.3 of Standard No. 208. - S4. Requirements. - (a) Passenger cars. A test device as described in S5 shall not move more than 125 millimeters, measured in accordance with S6.4, when it is used to apply a force in newtons equal to 11/2 times the unloaded vehicle weight of the vehicle, measured in kilograms and multiplied by 9.8 or 22,240 newtons, whichever is less, to either side of the forward edge of a vehicle's roof in accordance with the procedures of S6. Both the left and right front portions of the vehicle's roof structure shall be capable of meeting the requirements, but a particular vehicle need not meet further requirements after being tested at one location. - (b) Multipurpose passenger vehicles, trucks and buses with a GVWR of 2,722 kilograms or less, manufactured on or after September 1, 1994. For multipurpose passenger vehicles, trucks and buses with a GVWR of 2,722 kilograms or less, manufactured on or after September 1, 1994, a test device as described in S5 shall not move more than 125 millimeters, measured in accordance with S6.4, when it is used to apply a force in newtons equal to 11/2 times the unloaded vehicle weight of the vehicle, measured in kilograms and multiplied by 9.8, to either side of the forward edge of a vehicle's roof in accordance with the procedures of S6. Both the left and right front portions of the vehicle's roof structure shall be capable of meeting the requirements, but a particular vehicle need not meet fur- ther requirements after being tested at one location. - S5. Test device. The test device is a rigid unyielding block with its lower surface formed as a flat rectangle 762 millimeters $\times\,1829$ millimeters. - S6. *Test procedure.* Each vehicle shall be capable of meeting the requirements of S4 when tested in accordance with the following procedure. - S6.1 Place the sills or the chassis frame of the vehicle on a rigid horizontal surface, fix the vehicle rigidly in position, close all windows, close and lock all doors, and secure any convertible top or removable roof structure in place over the passenger compartment. - S6.2 Orient the test device as shown in Figure 1, so that— - (a) Its longitudinal axis is at a forward angle (side view) of 5° below the horizontal, and is parallel to the vertical plane through the vehicle's longitudinal centerline: - (b) Its lateral axis is at a lateral outboard angle, in the front view projection, of 25° below the horizontal: - (c) Its lower surface is tangent to the surface of the vehicle; and - (d) The initial contact point, or center of the initial contact area, is on the longitudinal centerline of the lower surface of the test device and 254 millimeters from the forwardmost point of that centerline. - 6.3 (a) Passenger cars. Apply force in a downward direction perpendicular to the lower surface of the test device at a rate of not more than 13 millimeters per second until reaching a force in newtons of 1½ times the unloaded vehicle weight of the tested vehicle, measured in kilograms and multiplied by 9.8 or 22,240 newtons, whichever is less. Complete the test within 120 seconds. Guide the test device so that throughout the test it moves, without rotation, in a straight line with its lower surface oriented as specified in S6.2(a) through S6.2(d). - (b) Multipurpose passenger vehicles, trucks and buses with a GVWR of 2,722 kilograms or less, manufactured on or after September 1, 1994. For multipurpose passenger vehicles, trucks and buses with a GVWR of 2,722 kilograms or less, manufactured on or after September 1, 1994, apply force in a downward direction perpendicular to the lower surface of the test device at a rate of not more than 13 millimeters per second until reaching a force in newtons of 1½ times the unloaded vehicle weight of the tested vehicle, measured in kilograms and multiplied by 9.8. Complete the test within 120 seconds. Guide the test device so that throughout the test it moves, without rotation, in a straight line with its lower surface oriented as specified in S6.2(a) through S6.2(d). S6.4 Measure the distance that the test device moves, i.e., the distance between the original location of the lower surface of the test device and its location as the force level specified in S6.3 is reached. Figure 1.—Test Device Location And Application To The Roof [36 FR 23300, Dec. 8, 1971, as amended at 38 FR 21930, Aug. 14, 1973; 56 FR 15517, Apr. 17, 1991; 58 FR 5633, Jan. 22, 1993; 60 FR 13647, Mar. 14, 1995] # §571.217 Standard No. 217; Bus emergency exits and window retention and release. S1. *Scope.* This standard establishes requirements for the retention of windows other than windshields in buses, and establishes operating forces, opening dimensions, and markings for bus emergency exits. S2. *Purpose.* The purpose of this standard is to minimize the likelihood of occupants being thrown from the bus and to provide a means of readily accessible emergency egress. S3. *Application.* This standard applies to buses, except buses manufactured for the purpose of transporting persons under physical restraint. S4. Definitions. Adjacent seat means a designated seating position located so that some portion of its occupant space is not more than 10 inches from an emergency exit, for a distance of at least 15 inches measured horizontally and parallel to the exit. Daylight opening means the maximum unobstructed opening of an emergency exit when viewed from a direction perpendicular to the plane of the opening. Mid-point of the passenger compartment means any point on a vertical transverse plane bisecting the vehicle longitudinal centerline that extends between the two vertical transverse planes which define the foremost and rearmost limits of the passenger compartment. Occupant space means the space directly above the seat and footwell, bounded vertically by the ceiling and horizontally by the normally positioned seat back and the nearest obstruction of occupant motion in the direction the seat faces. Passenger compartment means space within the school bus interior that is between a vertical transverse plane located 76 centimeters in front of the forwardmost passenger seating reference point and a vertical transverse plane tangent to the rear interior wall of the bus at the vehicle centerline. Post and roof bow panel space means the area between two adjacent post and roof bows. *Push-out window* means a vehicle window designed to open outward to provide for emergency egress. Sliding window means a bus window designed to open by moving vertically or horizontally to provide emergency egress. S5. Requirements. - S5.1 Window retention. Except as provided in S5.1.2, each piece of window glazing and each surrounding window frame when tested in accordance with the procedure in S5.1.1 under the conditions of S6.1 through S6.3, shall be retained by its surrounding structure in a manner that prevents the formation of any opening large enough to admit the passage of a 4-inch diameter sphere under a force, including the weight of the sphere, of 5 pounds until any one of the following events occurs: - (a) A force of 1,200 pounds is reached. - (b) At least 80 percent of the glazing thickness has developed cracks running from the load contact region to the periphery at two or more points, or shattering of the glazing occurs. - (c) The inner surface of the glazing at the center of force application has moved relative to the window frame, along a line perpendicular to the undisturbed inner surface, a distance equal to one-half of the square root of the minimum surface dimension measured through the center of the area of the entire sheet of window glazing. - S5.1.1 An increasing force shall be applied to the window glazing through the head form specified in Figure 4, outward and perpendicular to the undisturbed inside surface at the center of the area of each sheet of window glazing, with a head form travel of 2 inches per minute. - S5.1.2 The requirements of this standard do not apply to a window whose minimum surface dimension measured through the center of its area is less than 8 inches. - S5.2 Provision of emergency exits. - S5.2.1 Buses other than school buses shall meet the requirements of either S5.2.2 or S5.2.3. School buses shall meet the requirements of S5.2.3. - S5.2.1.1 A bus with GVWR of more than 10,000 pounds may satisfy the unobstructed openings requirement by providing at least one side door for each three passenger seating positions in the vehicle. - S5.2.2 Buses other than school buses. S5.2.2.1 Buses other than school buses shall provide unobstructed openings for emergency exit which collectively amount, in total square centimeters, to at least 432 times the number of designated seating positions on the bus. At least 40 percent of the total required area of unobstructed openings, computed in the above manner, shall be provided on each side of a bus. However, in determining the total unobstructed openings provided by a bus, no emergency exit, regardless of its area, shall be credited with more than 3,458 square centimeters of the total area requirement. S5.2.2.2 Buses with GVWR of more than 10,000 pounds. Buses with a GVWR of more than 10,000 pounds shall meet the unobstructed openings requirements in S5.2.2.1 by providing side
exits and at least one rear exit that conforms to S5.3 through S5.5. The rear exit shall meet the requirements of S5.3 through S5.5 when the bus is upright and when the bus is overturned on either side, with the occupant standing facing the exit. When the bus configuration precludes installation of an accessible rear exit, a roof exit that meets the requirements of S5.3 through S5.5 when the bus is overturned on either side, with the occupant standing facing the exit, shall be provided in the rear half of the bus. - S5.2.2.3 Buses with GVWR of 10,000 pounds or less. Buses other than school buses with GVWR of 10,000 pounds or less may meet the unobstructed openings requirement in S5.2.2.1 by providing: - (a) Devices that meet the requirements of S5.3 through S5.5 without using remote controls or central power systems: - (b) Windows that can be opened manually to a position that provides an opening large enough to admit unobstructed passage, keeping a major axis horizontal at all times, of an ellipsoid generated by rotating about its minor axis an ellipse having a major axis of 50 centimeters and a minor axis of 33 centimeters; or - (c) Doors. S5.2.3 *School buses.* Except as provided in S5.2.3.4, each school bus shall comply with S5.2.3.1 through S5.2.3.3. - S5.2.3.1. Each school bus shall be equipped with the exits specified in either S5.2.3.1(a) or S5.2.3.1(b), chosen at the option of the manufacturer. - (a) One rear emergency door that opens outward and is hinged on the right side (either side in the case of a bus with a GVWR of 10,000 pounds or less), and the additional exits, if any, specified by Table 1. - (b) One emergency door on the vehicle's left side that is hinged on its forward side and meets the requirements of S5.2.3.2(a), and a push-out rear window that provides a minimum opening clearance 41 centimeters high and 122 centimeters wide and meets the requirements of S5.2.3.2(c), and the additional exits, if any, specified by Table 2. TABLE 1 | Seating ca-
pacity | Additional exits required* | |------------------------|--| | 1–45
46–62
63–70 | None. 1 left side exit door or 2 exit windows. 1 left side exit door or 2 exit windows, and 1 roof exit. | | 71 and above. | 1 left side exit door or 2 exit windows, and 1
roof exit, and any combination of door, roof,
or windows such that the total capacity credit
specified in Table 3 for these exits, plus 70,
is greater than the seating capacity of the
bus. | ^{*}Side emergency exit doors must meet the requirements of \$5.2.3.2(a), emergency roof exits must meet the requirements of \$5.2.3.2(b), emergency window exits must meet the requirements of \$5.2.3.2(c). TABLE 2 | Seating ca-
pacity | Additional exits required* | |------------------------|---| | 1–57
58–74
75–82 | None. 1 right side exit door or 2 exit windows. 1 right side exit door or 2 exit windows, and 1 roof exit. | | 83 and above. | 1 right side exit door or 2 windows, and 1
ments of S5.3 through S5.5 when the bus is
overturned on either side, with the occupant
standing facing the exit, shall be provided in
the rear half of the bus. | S5.2.2.3 Buses with GVWR of 10,000 pounds or less. Buses other than school buses with GVWR of 10,000 pounds or less may meet the unobstructed openings requirement in S5.2.2.1 by providing: (a) Devices that meet the requirements of S5.3 through S5.5 without using remote controls or central power systems; - (b) Windows that can be opened manually to a position that provides an opening large enough to admit unobstructed passage, keeping a major axis horizontal at all times, of an ellipsoid generated by rotating about its minor axis an ellipse having a major axis of 50 centimeters and a minor axis of 33 centimeters; or - (c) Doors. S5.2.3 *School buses.* Except as provided in S5.2.3.4, each school bus shall comply with S5.2.3.1 through S5.2.3.3. - S5.2.3.1. Each school bus shall be equipped with the exits specified in either S5.2.3.1(a) or S5.2.3.1(b), chosen at the option of the manufacturer. - (a) One rear emergency door that opens outward and is hinged on the right side (either side in the case of a bus with a GVWR of 10,000 pounds or less), and the additional exits, if any, specified by Table 1. - (b) One emergency door on the vehicle's left side that is hinged on its forward side and meets the requirements of S5.2.3.2(a), and a push-out rear window that provides a minimum opening clearance 41 centimeters high and 122 centimeters wide and meets the requirements of S5.2.3.2(c), and the additional exits, if any, specified by Table 2. TABLE 1 | Seating ca-
pacity | Additional exits required* | |------------------------|---| | 1–45
46–62
63–70 | None. 1 left side exit door or 2 exit windows. 1 left side exit door or 2 exit windows, and 1 roof exit. | | 71 and
above. | left side exit door or 2 exit windows, and 1 roof exit, and any combination of door, roof, or windows such that the total capacity credit specified in Table 3 for these exits, plus 70, is greater than the seating capacity of the bus. | ^{*}Side emergency exit doors must meet the requirements of \$5.2.3.2(a), emergency roof exits must meet the requirements of \$5.2.3.2(b), emergency window exits must meet the requirements of \$5.2.3.2(c). TABLE 2 | Seating ca-
pacity | Additional exits required* | |------------------------|--| | 1–57
58–74
75–82 | None. 1 right side exit door or 2 exit windows. 1 right side exit door or 2 exit windows, and 1 roof exit. | TABLE 2—Continued | Seating ca-
pacity | Additional exits required* | |-----------------------|---| | 83 and above. | 1 right side exit door or 2 windows, and 1 roof exit, and any combination of door, roof, or windows such that the total capacity credit specified in Table 3 for these exits plus 82 is greater than the capacity of the bus. | ^{*}Side emergency exit doors must meet the requirements of \$5.2.3.2(a), emergency roof exits must meet the requirements of \$5.2.3.2(b), emergency window exits must meet the requirements of \$5.2.3.2(c). TABLE 3 | Exit Type | Capac-
ity
Credit | |-----------|-------------------------| | Side Door | 16 | | Window | 8 | | Roof Exit | 8 | (c) The area of an opening equipped with a wheelchair lift may be credited toward the required additional exits if it meets the requirements of paragraphs (a) or (b) of S5.2.3.1 and if the lift folds or stows in such a manner that the area is available for use by persons not needing the lift. With the lift in the folded or stowed position, such opening is considered a side emergency exit door. S5.2.3.2 All emergency exits required by S5.2.3.1(a) and S5.2.3.1(b) shall meet the following criteria: - (a) Side emergency exit doors. - (1) Each side emergency exit door shall be hinged on its forward side. - (2) The first side emergency exit door installed pursuant to Table 1, shall be located on the left side of the bus and as near as practicable to the mid-point of the passenger compartment. A second side emergency exit door installed pursuant to Table 1 shall be located on the right side of the bus. In the case of a bus equipped with three side emergency door exits pursuant to Table 1, the third shall be located on the left side of the bus. - (3) The first side emergency exit door installed pursuant to Table 2 shall be located on the right side of the bus. A second side emergency door exit installed pursuant to Table 2 shall be located on the left side of the bus. In the case of a bus equipped with three side emergency door exits pursuant to Table 2, the third shall be located on the right side of the bus. - (4) No two side emergency exit doors shall be located, in whole or in part, within the same post and roof bow panel space. - (b) *Emergency roof exit.* (1) Each emergency roof exit shall be hinged on its forward side, and shall be operable from both inside and outside the vehicle. - (2) In a bus equipped with a single emergency roof exit, the exit shall be located as near as practicable to the midpoint of the passenger compartment. - (3) In a bus equipped with two emergency roof exits, one shall be located as near as practicable to a point equidistant between the midpoint of the passenger compartment and the foremost limit of the passenger compartment and the other shall be located as near as practicable to a point equidistant between the midpoint of the passenger compartment and the rearmost point of the passenger compartment. - (4) In a bus equipped with three or more emergency roof exits, the roof exits shall be installed so that, to the extent practicable, the longitudinal distance between each pair of adjacent roof exits is the same and equal to the distance from the foremost point of the passenger compartment to the foremost roof exit and to the distance from the rearmost point of that compartment to the rearmost point of exit. - (5) Except as provided in paragraph (b)(6) of this section, each emergency
roof exit shall be installed with its longitudinal centerline coinciding with a longitudinal vertical plane passing through the longitudinal centerline of the school bus. - (6) In a bus equipped with two or more emergency roof exits, for each roof exit offset from the longitudinal vertical plane specified in paragraph (b)(5) of this section, there shall be another roof exit offset from that plane an equal distance to the other side. - (c) Emergency exit windows. A bus equipped with emergency exit windows shall have an even number of such windows, not counting the push-out rear window required by S5.2.3.1(b). Any side emergency exit windows shall be evenly divided between the right and left sides of the bus. School buses shall not be equipped with horizontally-sliding emergency exit windows. Further, except for buses equipped with rear push-out emergency exit windows in accordance with S5.2.3.1(b), school buses shall not be equipped with both sliding and push-out emergency exit windows. S5.2.3.3 The engine starting system of a bus shall not operate if any emergency exit is locked from either inside or outside the bus. For purposes of this requirement, "locked" means that the release mechanism cannot be activated and the exit opened by a person at the exit without a special device such as a key or special information such as a combination. S5.2.3.4 Each school bus manufactured before September 1, 1994 may, at the manufacturer's option, comply with either S5.2.3.4(a) or S5.2.3.4(b) instead of S5.2.3.1 through S5.2.3.3. (a) Each bus shall be equipped with one rear emergency door that opens outward and is hinged on the right side (either side in the case of a bus with a GVWR of 4,536 kilograms or less); or (b) Each bus shall be equipped with one emergency door on the vehicle's left side that is hinged on its forward side and meets the requirements of S5.2.3.2(a), and a push-out rear window that provides a minimum opening clearance 41 centimeters high and 122 centimeters wide and meets the requirements of S5.2.3.2(c). S5.3 Emergency exit release. S5.3.1 Each emergency exit not required by S5.2.3 shall be releasable by operating one or two mechanisms located within the regions specified in Figure 1, Figure 2, or Figure 3. The lower edge of the region in Figure 1, and Region B in Figure 2, shall be located 13 centimeters above the adjacent seat, or 5 centimeters above the arm rest, if any, whichever is higher. S5.3.2 When tested under the conditions of S6., both before and after the window retention test required by S5.1, each emergency exit not required by S5.2.3 shall allow manual release of the exit by a single occupant using force applications each of which conforms, at the option of the manufacturer, either to S5.3.2 (a) or (b) of this section. Each exit shall have not more than two release mechanisms. In the case of exits with one release mechanism, the mechanism shall require two force applications to release the exit. In the case of exits with two release mechanisms, each mechanism shall require one force application to release the exit. At least one of the force applications for each exit shall differ from the direction of the initial motion to open the exit by not less than 90° and no more than 180°. - (a) Low-force application. - (1) *Location.* As shown in Figure 1 or Figure 3. - (2) *Type of motion.* Rotary or straight. - (3) Magnitude. Not more than 20 pounds. - (b) High force application. - (1) *Location.* As shown in Figure 2 or Figure 3. - (2) *Type of motion.* Straight, perpendicular to the undisturbed exit surface. - (3) Magnitude. Not more than 60 pounds. S5.3.3 School bus emergency exit release. S5.3.3.1 When tested under the conditions of S6., both before and after the window retention test required by S5.1, each school bus emergency exit door shall allow manual release of the door by a single person, from both inside and outside the passenger compartment, using a force application that conforms to S5.3.3.1 (a) through (c) of this section, except a school bus with a GVWR of 10,000 pounds or less is not required to conform to S5.3.3.1 (a). The release mechanism shall operate without the use of remote controls or tools, and notwithstanding any failure of the vehicle's power system. When the release mechanism is not in the position that causes an emergency exit door to be closed and the vehicle's ignition is in the "on" position, a continuous warning sound shall be audible at the driver's seating position and in the vicinity of the emergency exit door. (a) Location: Within the high force access region shown in Figure 3A for a side emergency exit door, and in figure 3D for a rear emergency exit door. (b) Type of motion: Upward from inside the bus and, at the discretion of the manufacturer, from outside the bus. Buses with a GVWR of 10,000 pounds or less shall provide interior release mechanisms that operate by either an upward or pull-type motion. The pull-type motion shall be used only when the release mechanism is recessed in such a manner that the handle, level, or other activating device, before being activated, does not protrude beyond the rim of the recessed receptacle. (c) Magnitude of force: Not more than 178 newtons. S5.3.3.2 When tested under the conditions of S6., both before and after the window retention test required by S5.1, each school bus emergency exit window shall allow manual release of the exit by a single person, from inside the passenger compartment, using not more than two release mechanisms located in specified low-force or high-force regions (at the option of the manufacturer) with force applications and types of motions that conform to either S5.3.3.2 (a) or (b) of this section. In the case of windows with one release mechanism, the mechanism shall require two force applications to release the exit. In the case of windows with two release mechanisms, each mechanism shall require one application to release the exit. At least one of the force applications for each window shall differ from the direction of the initial motion to open the exit by no less than 90° and no more than 180°. Each release mechanism shall operate without the use of remote controls or tools, and notwithstanding any failure of the vehicle's power system. When a release mechanism is open and the vehicle's ignition is in the "on" position, a continuous warning shall be audible at the drivers seating position and in the vicinity of that emergency exit. - (a) Emergency exit windows—Low-force application. - (1) *Location:* Within the low-force access regions shown in Figures 1 and 3 for an emergency exit window. - (2) Type of motion: Rotary or straight. - (3) Magnitude: Not more than 89 newtons. - (b) Emergency exit windows—Highforce application. - (1) *Location:* Within the high-force access regions shown in Figures 2 and 3 for an emergency exit window. - (2) *Type of motion:* Straight and perpendicular to the undisturbed exit surface. - (3) Magnitude: Not more than 178 newtons. S5.3.3.3 When tested under the conditions of S6., both before and after the window retention test required by S5.1, each school bus emergency roof exit shall allow manual release of the exit by a single person from both inside and outside the passenger compartment, using not more than two release mechanisms located at specified low-force or high-force regions (at the option of the manufacturer) with force applications and types of motions that conform either to S5.3.3.3 (a) or (b) of this section. In the case of roof exits with one release mechanism, the mechanism shall require two force applications to release the exit. In the case of roof exits with two release mechanisms, each mechanism shall require one application to release the exit. At least one of the force applications for each roof exit shall differ from the direction of the initial push-out motion of the exit by no less than 90° and no more than 180°. (a) Emergency roof exits—Low-force application. - (1) Location: Within the low force access regions shown in Figure 3B, in the case of buses whose roof exits are not offset from the plane specified in S5.2.3.2(b)(5). In the case of buses which have roof exits offset from the plane specified in S5.2.3.2(b)(5), the amount of offset shall be used to recalculate the dimensions in Figure 3B for the offset exits. - (2) *Type of motion:* Rotary or straight.(3) *Magnitude:* Not more than 89 new- tons. (b) Emergency roof exits—High-force application. - (1) Location: Within the high force access regions shown in Figure 3B, in the case of buses whose roof exits are not offset from the plane specified in S5.2.3.2(b)(5). In the case of buses which have roof exits offset from the plane specified in S5.2.3.2(b)(5), the amount of offset shall be used to recalculate the dimensions in Figure 3B for the offset exits. - (2) Type of motion: Straight and perpendicular to the undisturbed exit surface. - (3) Magnitude: Not more than 178 newtons. - S5.4 Emergency exit opening. - S5.4.1 After the release mechanism has been operated, each emergency exit not required by S5.2.3 shall, under the conditions of Š6., both before and after the window retention test required by S5.1, using the reach distances and corresponding force levels specified in S5.3.2, allow manual opening by a single occupant to a position that provides an opening large enough to admit unobstructed passage, keeping a major axis horizontal at all times, of an ellipsoid generated by rotating about its minor axis an ellipse having a major axis of 50 centimeters and a minor axis of 33 centimeters. - S5.4.2 School bus emergency exit opening. - S5.4.2.1 School buses with a GVWR of more than 10,000 pounds. - (a) Emergency exit doors. After the release mechanism has been operated, each emergency exit door of a school bus shall, under the conditions of S6., before and after the window retention test required by S5.1, using the force levels specified in S5.3.3, be manually extendable by a
single person to a position that permits: - (1) In the case of a rear emergency exit door, an opening large enough to permit unobstructed passage of a rectangular parallelepiped 114 centimeters high, 61 centimeters wide, and 30 centimeters deep, keeping the 114 centimeter dimension vertical, the 61 centimeter dimension parallel to the opening, and the lower surface in contact with the floor of the bus at all times; and - (2) In the case of a side emergency exit door, an opening at least 114 centimeters high and 61 centimeters wide. - (i) Except as provided in paragraph (a)(2)(ii) of this section, no portion of a seat or a restraining barrier shall be installed within the area bounded by the opening of a side emergency exit door, a vertical transverse plane tangent to the rearward edge of the door opening frame, a vertical transverse plane parallel to that plane at a distance of 30 centimeters forward of that plane, and a longitudinal vertical plane passing through the longitudinal centerline of the bus. (See Figure 5A). - (ii) A seat bottom may be located within the area described in paragraph (a)(2)(i) of this section if the seat bottom pivots and automatically assumes and retains a vertical position when not in use, so that no portion of the seat bottom is within the area described in paragraph (i) when the seat bottom is vertical. (See Figure 5B). - (iii) No portion of a seat or restraining barrier located forward of the area described in paragraph (a)(2)(i) of this section and between the door opening and a longitudinal vertical plane passing through the longitudinal centerline of the bus shall extend rearward of a vertical transverse plane tangent to the forwardmost portion of a latch mechanism on the door. (See Figures 5B and 5C.) - (3)(i) Each emergency exit door of a school bus shall be equipped with a positive door opening device that, after the release mechanism has been operated, under the conditions of S6, before and after the window retention test required by S5.1— - (A) Bears the weight of the door; - (B) Keeps the door from closing past the point at which the door is perpendicular to the side of the bus body, regardless of the body's orientation; and - (C) Provides a means for release or override. - (ii) The positive door opening device shall perform the functions specified in paragraph (a)(3)(i) (A) and (B) of this section without the need for additional action beyond opening the door past the point at which the door is perpendicular to the side of the bus body. - (b) Emergency roof exits. After the release mechanism has been operated, each emergency roof exit of a school bus shall, under the conditions of S6, before and after the window retention test required by S5.1, using the force levels specified in S5.3.3, be manually extendable by a single person to a position that permits an opening at least 41 centimeters high and 41 centimeters wide. - (c) Emergency exit windows. After the release mechanism has been operated, each emergency exit window of a school bus shall, under the conditions of S6., both before and after the window retention test of S5.1, using force levels specified in S5.3.3.2, be manually extendable by a single occupant to a position that provides an opening large enough to admit unobstructed passage, keeping a major axis horizontal at all times, of an ellipsoid generated by rotating about its minor axis an ellipse having a major axis of 50 centimeters and a minor axis of 33 centimeters. S5.4.2.2 School buses with a GVWR of 10,000 pounds or less. A school bus with a GVWR of 10,000 pounds or less shall conform to all the provisions of S5.4.2, except that the parallelepiped dimension for the opening of the rear emergency door or doors shall be 45 inches high, 22 inches wide, and six inches deep. S5.5 Emergency exit identification. S5.5.1 In buses other than school buses, and except for windows serving as emergency exits in accordance with S5.2.2.3(b) and doors in buses with a GVWR of 10,000 pounds or less, each emergency exit door shall have the designation "Emergency Door" or "Emergency Exit," and every other emergency exit shall have the designation "Emergency Exit" followed by concise operating instructions describing each motion necessary to unlatch and open the exit, located within 16 centimeters of the release mechanism. #### EXAMPLES: - (1) Lift to Unlatch, Push to Open - (2) Lift Handle and Push out to Open When a release mechanism is not located within an occupant space of an adjacent seat, a label meeting the requirements of S5.5.2 that indicates the location of the nearest release mechanism shall be placed within the occupant space. EXAMPLE: "Emergency Exit Instructions Located Next to Seat Ahead" S5.5.2 In buses other than school buses. Except as provided in S5.5.2.1, each marking shall be legible, when the only source of light is the normal nighttime illumination of the bus interior, to occupants having corrected visual acuity of 20/40 (Snellen ratio) seated in the adjacent seat, seated in the seat directly adjoining the adjacent seat, and standing in the aisle location that is closest to that adjacent seat. The marking shall be legible from each of these locations when the other two corresponding locations are occupied. S5.5.2.1 If the exit has no adjacent seat, the marking must meet the legibility requirements of S5.5.2 for occupants standing in the aisle location nearest to the emergency exit, except for a roof exit, which must meet the legibility requirements for occupants positioned with their backs against the floor opposite the roof exit. S5.5.3 School Bus. - (a) Each school bus emergency exit provided in accordance with \$5.2.3.1 shall have the designation "Emergency Door" or "Emergency Exit," as appropriate, in letters at least 5 centimeters high, of a color that contrasts with its background. For emergency exit doors, the designation shall be located at the top of, or directly above, the emergency exit door on both the inside and outside surfaces of the bus. The designation for roof exits shall be located on an inside surface of the exit, or within 30 centimeters of the roof exit opening. For emergency window exits, the designation shall be located at the top of, or directly above, or at the bottom of the emergency window exit on both the inside and outside surfaces of the bus. - (b) Concise operating instructions describing the motions necessary to unlatch and open the emergency exit shall be located within 15 centimeters of the release mechanism on the inside surface of the bus. These instructions shall be in letters at least 1 centimeter high and of a color that contrasts with its background. #### EXAMPLES: - (1) Lift to Unlatch, Push to Open - (2) Turn Handle, Push Out to Open - (c) Each opening for a required emergency exit shall be outlined around its outside perimeter with a retroreflective tape with a minimum width of 2.5 centimeters and either red, white, or yellow in color, that when tested under the conditions specified in S6.1 of Standard No. 131 (49 CFR 571.131), meets the criteria specified in Table 1 of that section. S6. Test conditions. S6.1 The vehicle is on a flat, horizontal surface. S6.2 The inside of the vehicle and the outside environment are kept at any temperature from 70° to 85° Fahrenheit for 4 hours immediately preceding the tests, and during the tests. S6.3 For the window retention test, windows are installed, closed, and latched (where latches are provided) in the condition intended for normal bus operation. S6.4 For the emergency exit release and extension tests, windows are installed as in S6.3, seats, armrests, and interior objects near the windows are installed as for normal use, and seats are in the upright position. FIGURE 1 LOW-FORCE ACCESS REGION FOR EMERGENCY EXITS HAVING ADJACENT SEATS FIGURE 2 HIGH-FORCE ACCESS REGIONS FOR EMERGENCY EXITS HAVING ADJACENT SEATS 3A. SIDE EMERGENCY EXIT 3B. ROOF EMERGENCY EXIT *TYPICAL CLEARANCE AROUND OBSTRUCTIONS #### 3C. REAR EMERGENCY EXIT WITH REAR OBSTRUCTION 3D. REAR EMERGENCY EXIT WITHOUT REAR OBSTRUCTION FIGURE 3 LOW AND HIGH-FORCE ACCESS REGIONS FOR EMERGENCY EXITS WITHOUT ADJACENT SEATS FIGURE 4 HEAD FORM Figure 5A. Minimum Side Emergency Exit Clearance Specifications (Plan View) Figure 5B. Minimum Side Emergency Exit Flip-Up Seat Clearance Specifications Figure 5C. Minimum Side Emergency Exit Clearance Specifications Table 1. Minimum Specific Intensity Per Unit Area (SIA) (Candelas per Footcandle Per Square Foot) # Type III Retroreflective Material ## A - Glass Bead Retroreflective Element Material | Observation
Angle (9) | Entrance
Angle (9) | White | Red | Yellow | |--------------------------|-----------------------|-------|-----|--------| | 0.2 | -4 | 250 | 45 | 170 | | 0.2 | +30 | 150 | 25 | 100 | | 0.5 | -4 | 95 | 15 | 62 | | 0.5 | +30 | 65 | 10 | 45 | # B - Prismatic Retroreflectve Element Material | Observation
Angle (9) | Entrance
Angle (9) | White | Red | Yellow | |--------------------------|-----------------------|-------|------|--------| | 0.2 | -4 | 250 | 45 | 170 | | 0.2 | +30 | 95 | 13.3 | 64 | | 0.5 | -4 | 200 | 28 | 136 | | 0.5 | +30 | 65 | 10 | 45 | [37 FR 9395, May 10, 1972, as amended at 37 FR 18035, Sept. 6, 1972; 38 FR 6070, Mar. 6, 1973; 38 FR 7562, Mar. 28, 1973; 39 FR 15274, May 2, 1974; 40 FR 48512, Oct. 16, 1975; 41 FR 3872, Jan. 27, 1976; 41 FR 22357, June 3, 1976; 41 FR 24592, June 17, 1976; 41 FR 36027, Aug. 26, 1976; 47 FR 7256, Feb. 18, 1982; 47 FR 37555, Aug. 26, 1982; 57 FR 49423, Nov. 2, 1992; 57 FR 57020, Dec. 2, 1992; 59 FR 22999, May 4, 1994; 60 FR 24570, May 9, 1995] # § 571.218 Standard No. 218; Motorcycle helmets. - S1. *Scope.* This standard establishes minimum performance requirements for helmets designed for use by motorcyclists and other motor vehicle users. - S2. *Purpose.* The purpose of this standard is to reduce deaths and injuries to motorcyclists and other motor vehicle users resulting from
head impacts. - S3. Application. This standard applies to all helmets designed for use by motorcyclists and other motor vehicle S4. Definitions. Basic plane means a plane through the centers of the right and left external ear openings and the lower edge of the eye sockets (Figure 1) of a reference headform (Figure 2) or test headform. Helmet positioning index means the distance in inches, as specified by the manufacturer, from the lowest point of the brow opening at the lateral midpoint of the helmet to the basic plane of a reference headform, when the helmet is firmly and properly positioned on the reference headform. Midsagittal plane means a longitudinal plane through the apex of a reference headform or test headform that is perpendicular to the basic plane (Figure 3). Reference headform means a measuring device contoured to the dimensions of one of the three headforms described in Table 2 and Figures 5 through 8 with surface markings indicating the locations of the basic, mid-sagittal, and reference planes, and the centers of the external ear openings. Reference plane means a plane above and parallel to the basic plane on a reference headform or test headform (Figure 2) at the distance indicated in Table 2. Retention system means the complete assembly by which the helmet is retained in position on the head during Test headform means a test device contoured to the dimensions of one of the three headforms described in Table 2 and Figures 5 through 8 with surface markings indicating the locations of the basic, mid-sagittal, and reference planes. - S5. Requirements. Each helmet shall meet the requirements of S5.1, S5.2, and S5.3 when subjected to any conditioning procedure specified in S6.4, and tested in accordance with S7.1, S7.2, and S7.3. - S5.1 *Impact attenuation.* When an impact attenuation test is conducted in accordance with S7.1, all of the following requirements shall be met: - (a) Peak accelerations shall not exceed 400g; - (b) Accelerations in excess of 200g shall not exceed a cumulative duration of 2.0 milliseconds; and - (c) Accelerations in excess of 150g shall not exceed a cumulative duration of 4.0 milliseconds. - S5.2 *Penetration.* When a penetration test is conducted in accordance with S7.2, the striker shall not contact the surface of the test headform. S5.3 Retention system. S5.3.1 When tested in accordance with S7.3: - (a) The retention system or its components shall attain the loads specified without separation; and - (b) The adjustable portion of the retention system test device shall not move more than 1 inch (2.5 cm) measured between preliminary and test load positions. S5.3.2 Where the retention system consists of components which can be independently fastened without securing the complete assembly, each such component shall independently meet the requirements of S5.3.1. S5.4 Configuration. Each helmet shall have a protective surface of continuous contour at all points on or above the test line described in S6.2.3. The helmet shall provide peripheral vision clearance of at least 105° to each side of the mid-sagittal plane, when the helmet is adjusted as specified in S6.3. The vertex of these angles, shown in Figure 3, shall be at the point on the anterior surface of the reference headform at the intersection of the mid-sagittal and basic planes. The brow opening of the helmet shall be at least 1 inch (2.5 cm) above all points in the basic plane that are within the angles of peripheral vision (see Figure 3). S5.5 *Projections*. A helmet shall not have any rigid projections inside its shell. Rigid projections outside any helmet's shell shall be limited to those required for operation of essential accessories, and shall not protrude more than 0.20 inch (5 mm). S5.6 Labeling. - S5.6.1 Each helmet shall be labeled permanently and legibly, in a manner such that the label(s) can be read easily without removing padding or any other permanent part, with the following: - (a) Manufacturer's name or identification. - (b) Precise model designation. - (c) Size. - (d) Month and year of manufacture. This may be spelled out (for example, June 1988), or expressed in numerals (for example, 6/88). - (e) The symbol DOT, constituting the manufacturer's certification that the helmet conforms to the applicable Federal motor vehicle safety standards. This symbol shall appear on the outer surface, in a color that contrasts with the background, in letters at least ¾ inch (1 cm) high, centered laterally with the horizontal centerline of the symbol located a minimum of 1½ inches (2.9 cm) and a maximum of 1½ inches (3.5 cm) from the bottom edge of the posterior portion of the helmet. - (f) Instructions to the purchaser as follows: - (1) "Shell and liner constructed of (identify type(s) of materials). - (2) "Helmet can be seriously damaged by some common substances without damage being visible to the user. Apply only the following: (Recommended cleaning agents, paints, adhesives, etc., as appropriate). - (3) "Make no modifications. Fasten helmet securely. If helmet experiences a severe blow, return it to the manufacturer for inspection, or destory it and replace it." - (4) Any additional relevant safety information should be applied at the time of purchase by means of an attached tag, brochure, or other suitable means. - S5.7 Helmet positioning index. Each manufacturer of helmets shall establish a positioning index for each helmet he manufactures. This index shall be furnished immediately to any person who requests the information, with respect to a helmet identified by manufacturer, model designation, and size. S6. *Preliminary test procedures.* Before subjecting a helmet to the testing sequence specified in S7., prepare it according to the procedures in S6.1, S6.2, and S6.3. S6.1 Selection of appropriate headform. S6.1.1 A helmet with a manufacturer's designated discrete size or size range which does not exceed 6¾ (European size: 54) is tested on the small headform. A helmet with a manufacturer's designated discrete size or size range which exceeds 6¾, but does not exceed 7½ (European size: 60) is tested on the medium headform. A helmet with a manufacturer's designated discrete size or size range which exceeds 7½ is tested on the large headform. S6.1.2 A helmet with a manufacturer's designated size range which includes sizes falling into two or all three size ranges described in S6.1.1 is tested on each headform specified for each size range. S6.2 Reference marking. S6.2.1 Use a reference headform that is firmly seated with the basic and reference planes horizontal. Place the complete helmet to be tested on the appropriate reference headform, as specified in S6.1.1 and S6.1.2. S6.2.2 Apply a 10-pound (4.5 kg) static verticle load through the helmet's apex. Center the helmet laterally and seat it firmly on the reference headform according to its helmet positioning index. S6.2.3 Maintaining the load and position described in S6.2.2, draw a line (hereinafter referred to as "test line") on the outer surface of the helmet coinciding with portions of the intersection of that service with the following planes, as shown in Figure 2: (a) A plane 1 inch (2.5 cm) above and parallel to the reference plane in the anterior portion of the reference headform; - (b) A vertical transverse plane 2.5 inches (6.4 cm) behind the point on the anterior surface of the reference headform at the intersection of the mid-sagittal and reference planes; - (c) The reference plane of the reference headform; - (d) A vertical transverse plane 2.5 inches (6.4. cm) behind the center of the external ear opening in a side view; and (e) A plane 1 inch (2.5 cm) below and parallel to the reference plane in the posterior portion of the reference headform. S6.3 Helmet positioning. S6.3.1 Before each test, fix the helmet on a test headform in the position that conforms to its helmet positioning index. Secure the helmet so that it does not shift position before impact or before application of force during testing. \$6.3.2 In testing as specified in \$7.1 and \$7.2, place the retention system in a position such that it does not interfere with free fall, impact or penetration. S6.4 Conditioning. S6.4.1 Immediately before conducting the testing sequence specified in S7, condition each test helmet in accordance with any one of the following procedures: - (a) Ambient conditions. Expose to a temperature of 70°F(21°C) and a relative humidity of 50 percent for 12 hours. - (b) Low temperature. Expose to a temperature of $14^{\circ}F(-10^{\circ}C)$ for 12 hours. - (c) *High temperature*. Expose to a temperature of 122°F (50°C) for 12 hours. - (d) *Water immersion*. Immerse in water at a temperature of 77°F(25°C) for 12 hours. S6.4.2 If during testing, as specified in S7.1.3 and S7.2.3, a helmet is returned to the conditioning environment before the time out of that environment exceeds 4 minutes, the helmet is kept in the environment for a minimum of 3 minutes before resumption of testing with that helmet. If the time out of the environment exceeds 4 minutes, the helmet is returned to the environment for a minimum of 3 minutes for each minute or portion of a minute that the helmet remained out of the environment in excess of 4 minutes or for a maximum of 12 hours, whichever is less, before the resumption of testing with that helmet. S7. Test conditions. S7.1 Impact attenuation test. S7.1.1 Impact attenuation is measured by determining acceleration imparted to an instrumented test headform on which a complete helmet is mounted as specified in S6.3, when it is dropped in guided free fall upon a fixed hemispherical anvil and a fixed flat steel anvil. S7.1.2 Each helmet is impacted at four sites with two successive identical impacts at each site. Two of these sites are impacted upon a flat steel anvil and two upon a hemispherical steel anvil as specified in S7.1.10 and S7.1.11. The impact sites are at any point on the area above the test line described in paragraph
S6.2.3, and separated by a distance not less than one-sixth of the maximum circumference of the helmet in the test area. S7.1.3 Impact testing at each of the four sites, as specified in S7.1.2, shall start at two minutes, and be completed by four minutes, after removal of the helmet from the conditioning environment. S7.1.4 (a) The guided free fall drop height for the helmet and test headform combination onto the hemispherical anvil shall be such that the minimum impact speed is 17.1 feet/second (5.2 m/sec). The minimum drop height is 54.5 inches (138.4 cm). The drop height is adjusted upward from the minimum to the extent necessary to compensate for friction losses. (b) The guided free fall drop height for the helmet and test headform combination onto the flat anvil shall be such that the minimum impact speed is 19.7 ft./sec (6.0 m/sec). The minimum drop height is 72 inches (182.9 cm). The drop height is adjusted upward from the minimum to the extent necessary to compensate for friction losses. S7.1.5 Test headforms for impact attenuation testing are constructed of magnesium alloy (K-1A), and exhibit no resonant frequencies below 2,000 Hz. S7.1.6 The monorail drop test system is used for impact attenuation testing. S7.1.7 The weight of the drop assembly, as specified in Table 1, is the combined weight of the test headform and the supporting assembly for the drop test. The weight of the supporting assembly is not less than 2.0 lbs. and not more than 2.4 lbs. (0.9 to 1.1 kg). The supporting assembly weight for the monorail system is the drop assembly weight minus the combined weight of the test headform, the headform's clamp down ring, and its tie down screws. S7.1.8 The center of gravity of the test headform is located at the center of the mounting ball on the supporting assembly and lies within a cone with its axis vertical and forming a 10° included angle with the vertex at the point of impact. The center of gravity of the drop assembly lies within the rectangular volume bounded by x -0.25 inch (-0.64 cm), x = 0.85 inch (2.16cm), y = 0.25 inch (0.64 cm), and y =-0.25 inch (-0.64 cm) with the origin located at the center of gravity of the test headform. The rectangular volume has no boundary along the z-axis. The x-y-z axes are mutually perpendicular and have positive or negative designations in accordance with the righthand rule (See Figure 5). The origin of the coordinate axes also is located at the center of the mounting ball on the supporting assembly (See Figures 6, 7, and 8). The x-y-z axes of the test headform assembly on a monorail drop test equipment are oriented as follows: From the origin, the x-axis is horizontal with its positive direction going toward and passing through the vertical centerline of the monorail. The positive z-axis is downward. The y-axis also is horizontal and its direction can be decided by the z- and x-axes, using the right-hand rule. S7.1.9 The acceleration transducer is mounted at the center of gravity of the test headform with the sensitive axis aligned to within 5° of vertical when the test headform assembly is in the impact position. The acceleration data channel complies with SAE Recommended Practice J211 JUN 80, Instrumentation for Impact Tests, requirements for channel class 1,000. S7.1.10 The flat anvil is constructed of steel with a 5-inch (12.7 cm) minimum diameter impact face, and the hemispherical anvil is constructed of steel with a 1.9 inch (4.8 cm) radius impact face. S7.1.11 The rigid mount for both of the anvils consists of a solid mass of at least 300 pounds (136.1 kg), the outer surface of which consists of a steel plate with minimum thickness of 1 inch (2.5 cm) and minimum surface area of 1 ft ² (929 cm²). S7.1.12 The drop system restricts side movement during the impact attenuation test so that the sum of the areas bounded by the acceleration-time response curves for both the x- and y-axes (horizontal axes) is less than five percent of the area bounded by the acceleration-time response curve for the vertical axis. S7.2 Penetration test. S7.2.1 The penetration test is conducted by dropping the penetration test striker in guided free fall, with its axis aligned vertically, onto the outer surface of the complete helmet, when mounted as specified in S6.3, at any point above the test line, described in S6.2.3, except on a fastener or other rigid projection. \$7.2.2 Two penetration blows are applied at least 3 inches (7.6 cm) apart, and at least 3 inches (7.6 cm) from the centers of any impacts applied during the impact attenuation test. S7.2.3 The application of the two penetration blows, specified in S7.2.2, starts at two minutes and is completed by four minutes, after removal of the helmet from the conditioning environment. S7.2.4 The height of the guided free fall is 118.1 inches (3 m), as measured from the striker point to the impact point on the outer surface of the test helmet. S7.2.5 The contactable surface of the penetration test headform is constructed of a metal or metallic alloy having a Brinell hardness number no greater than 55, which will permit ready detection should contact by the striker occur. The surface is refinished if necessary before each penetration test blow to permit detection of contact by the striker. S7.2.6 The weight of the penetration striker is 6 pounds, 10 ounces (3 kg). S7.2.7 The point of the striker has an included angle of 60°, a cone height of 1.5 inches (3.8 cm), a tip radius of 0.02 inch (standard 0.5 millimeter radius) and a minimum hardness of 60 Rockwell, C-scale. S7.2.8 The rigid mount for the penetration test headform is as described in S7.1.11. S7.3 Retention system test. S7.3.1 The retention system test is conducted by applying a static tensile load to the retention assembly of a complete helmet, which is mounted, as described in S6.3, on a stationary test headform as shown in Figure 4, and by measuring the movement of the adjustable portion of the retention system test device under tension. S7.3.2 The retention system test device consists of both an adjustable loading mechanism by which a static tensile load is applied to the helmet retention assembly and a means for holding the test headform and helmet stationary. The retention assembly is fastened around two freely moving rollers, both of which have a 0.5 inch (1.3 cm) diameter and a 3-inch (7.6 cm) centerto-center separation, and which are mounted on the adjustable portion of the tensile loading device (Figure 4). The helmet is fixed on the test headform as necessary to ensure that it does not move during the application of the test loads to the retention assembly. S7.3.3 A 50-pound (22.7 kg) preliminary test load is applied to the retention assembly, normal to the basic plane of the test headform and symmetrical with respect to the center of the retention assembly for 30 seconds, and the maximum distance from the extremity of the adjustable portion of the retention system test device to the apex of the helmet is measured. S7.3.4 An additional 250-pound (113.4 kg) test load is applied to the retention assembly, in the same manner and at the same location as described in S7.3.3, for 120 seconds, and the maximum distance from the extremity of the adjustable portion of the retention system test device to the apex of the helmet is measured. #### **APPENDIX TO § 571.218** TABLE 1—WEIGHTS FOR IMPACT ATTENUATION TEST DROP ASSEMBLY | Test headform size | Weight ¹ —1b(kg) | |--------------------|---| | Small Medium Large | 7.8 (3.5 kg).
11.0 (5.0 kg).
13.4 (6.1 kg). | $^{\rm 1}\text{Combined}$ weight of instrumented test headform and supporting assembly for drop test. Figure 1 Note: Solid lines would correspond to the test line on a test helmet. Test Surface Figure 2 ## SECTION THROUGH THE BASIC PLANE Figure 3 RETENTION SYSTEM TEST DEVICE Figure 4 Figure 5 HEADFORM SECTIONS Table 2 Medium Headform – Exterior Dimensions | • | Botte | Bottom Opening Z= −3.02 | | | Level-5 Z= -2.900 | | | |-----|-------|-------------------------|-------|-------|-------------------|-------|--| | Θ | R | x | Υ | R | x | Y | | | 0 | 4.292 | 4.292 | 0 | 4.293 | 4.293 | 0 | | | 10 | 4.266 | 4.201 | 0.741 | 4.270 | 4.205 | 0.742 | | | 20 | 4.159 | 3.908 | 1.423 | 4.172 | 3.920 | 1.427 | | | 30 | 3.967 | 3.436 | 1.984 | 3.961 | 3.430 | 1.981 | | | 40 | 3.660 | 2.804 | 2.353 | 3.670 | 2.811 | 2.359 | | | 50 | 3.332 | 2.142 | 2.553 | 3.352 | 2.155 | 2.568 | | | 60 | 3.039 | 1.520 | 2.632 | 3.067 | 1.534 | 2.656 | | | 70 | 2.839 | 0.971 | 2.668 | 2.869 | 0.981 | 2.696 | | | 80 | 2.720 | 0.472 | 2.679 | 2.772 | 0.481 | 2.730 | | | 90 | 2.675 | 0 | 2.675 | 2.709 | 0 | 2.709 | | | 100 | 2.703 | -0.469 | 2.662 | 2.724 | -0.473 | 2.683 | | | 110 | 2.764 | -0.945 | 2.597 | 2.794 | -0.956 | 2.626 | | | 120 | 2.888 | -1.444 | 2.501 | 2.917 | -1.459 | 2.526 | | | 130 | 2.985 | -1.919 | 2.287 | 3.040 | -1.954 | 2.329 | | | 140 | 3.100 | -2.375 | 1.993 | 3.175 | -2.432 | 2.041 | | | 150 | 3.175 | -2.750 | 1.588 | 3.232 | -2.799 | 1.616 | | | 160 | 3.186 | -2.994 | 1.090 | 3.246 | -3.050 | 1.110 | | | 170 | 3.177 | -3.129 | 0.552 | 3.237 | -3.188 | 0.562 | | | 180 | 3,187 | -3.187 | 0 | 3.246 | -3.246 | lο | | | | Ва | sic Plane Z= -2.3 | 360 | L | evel-4 Z= -2.00 | 00 - | |-----|-------|-------------------|-------|-------|-----------------|-------| | Θ | R | х | Υ | R | x | Y | | 0 | 4.272 | 4.272 | 0 | 4.247 | 4.247 | 0 | | 10 | 4.248 | 4.184 | 0.738 | 4.223 | 4.159 | 0.733 | | 20 | 4.147 | 3.897 | 1.418 | 4.120 | 3.872 | 1.409 | | 30 | 3.961 | 3.430 | 1.981 | 3.940 | 3.412 | 1.970 | | 40 | 3.687 | 2.824 | 2.370 | 3.683 | 2.821 | 2.367 | | 50 | 3.384 | 2.175 | 2.592 | 3.392 | 2.180 | 2.598 | | 60 | 3.111 | 1.556 | 2.694 | 3.132 | 1.566 | 2.712 | | 70 | 2.927 | 1.001 | 2.751 | 2.960 | 1.012 | 2.782 | | 80 | 2.815 | 0.489 | 2.772 | 2.860 | 0.497 | 2.817 | | 90 | 2.779 | 0 | 2.779 | 2.838 | 0 | 2.838 | | 100 | 2.802 | -0.487 | 2.759 | 2.861 |
-0.497 | 2.818 | | 110 | 2.887 | -0.987 | 2.713 | 2.958 | -1.012 | 2.780 | | 120 | 3.019 | -1.510 | 2.615 | 3.098 | -1.549 | 2.683 | | 130 | 3.180 | -2.044 | 2.436 | 3.260 | -2.096 | 2.497 | | 140 | 3.306 | -2.533 | 2.125 | 3.405 | -2.608 | 2,189 | | 150 | 3.398 | -2.943 | 1.699 | 3.516 | -3.045 | 1.758 | | 160 | 3.458 | -3.250 | 1.183 | 3.585 | -3.369 | 1,226 | | 170 | 3.475 | -3.422 | 0.603 | 3.612 | -3.557 | 0.627 | | 180 | 3.472 | -3.472 | 0 | 3.609 | -3.609 | 0 | Table 2 Medium Headform – Exterior Dimensions (Continued) | | L | evel-3 Z= -1.50 | 00 | Level—2 Z= -1.000 | | | |-----|-------|-----------------|-------|-------------------|--------|-------| | Θ | R | х | Y | R | x | Y | | 0 | 4.208 | 4.208 | 0 | 4.148 | 4.148 | 0 | | 10 | 4,179 | 4.116 | 0.726 | 4.112 | 4.050 | 0.714 | | 20 | 4.075 | 3.829 | 1.394 | 4.013 | 3.771 | 1.373 | | 30 | 3.902 | 3.379 | 1.951 | 3.844 | 3.329 | 1.922 | | 40 | 3.654 | 2.799 | 2.349 | 3.609 | 2.765 | 2.320 | | 50 | 3.377 | 2.171 | 2.587 | 3.352 | 2.155 | 2.568 | | 60 | 3.094 | 1.547 | 2.680 | 3.137 | 1.569 | 2.717 | | 70 | 2.982 | 1.020 | 2.802 | 2.989 | 1.022 | 2.809 | | 80 | 2.891 | 0.502 | 2.847 | 2.902 | 0.504 | 2.858 | | 90 | 2.876 | 0 | 2.876 | 2.884 | 0 | 2.884 | | 100 | 2.918 | -0.507 | 2.874 | 2.943 | -0.511 | 2.898 | | 110 | 3.021 | -1.033 | 2.839 | 3.052 | -1.044 | 2.868 | | 120 | 3.170 | -1.585 | 2.745 | 3.225 | -1.613 | 2.793 | | 130 | 3.337 | -2.145 | 2.556 | 3.397 | -2.184 | 2.602 | | 140 | 3,483 | -2.668 | 2.239 | 3.536 | -2.709 | 2.273 | | 150 | 3.604 | -3.121 | 1.802 | 3.657 | -3.167 | 1.829 | | 160 | 3.682 | -3.460 | 1.259 | 3.751 | -3.525 | 1.283 | | 170 | 3.725 | -3.668 | 0.647 | 3.807 | -3.749 | 0.661 | | 180 | 3.741 | -3.741 | 0 | 3.822 | -3.822 | l o | | | Level - 1 Z= -0.500 | | | Reference Plane Z=0.0 | | | |-----|---------------------|--------|-------|-----------------------|--------|-------| | Θ | , R | х | Y | R | X | Y | | 0 | 4.067 | 4.067 | 0 | 3.971 | 3.971 | 0 | | 10 | 4.033 | 3.972 | 0.700 | 3.935 | 3.875 | 0.683 | | 20 | 3.944 | 3.706 | 1.349 | 3.853 | 3.621 | 1.318 | | 30 | 3.777 | 3.271 | 1.889 | 3.701 | 3.205 | 1.851 | | 40 | 3.552 | 2.721 | 2.283 | 3.491 | 2.674 | 2.244 | | 50 | 3.323 | 2.136 | 2.546 | 3.279 | 2.108 | 2.512 | | 60 | 3.126 | 1.563 | 2.707 | 3.101 | 1.551 | 2.686 | | 70 | 2.987 | 1.022 | 2.807 | 2.979 | 1.019 | 2.799 | | 80 | 2.912 | 0.506 | 2.868 | 2.910 | 0.505 | 2.866 | | 90 | 2.893 | . 0 | 2.893 | 2.890 | 0 | 2.890 | | 100 | 2.895 | -0.503 | 2.851 | 2.945 | -0.511 | 2.900 | | 110 | 3.064 | -1.048 | 2.879 | 3.062 | -1.047 | 2.877 | | 120 | 3.231 | -1.616 | 2.798 | 3.228 | -1.614 | 2.796 | | 130 | 3.411 | -2.193 | 2.613 | 3.413 | -2.194 | 2.615 | | 140 | 3.560 | -2.727 | 2.288 | 3.563 | -2.729 | 2.290 | | 150 | 3.682 | -3.189 | 1.841 | 3.681 | -3.188 | 1.841 | | 160 | 3.783 | -3.555 | 1.294 | 3.773 | -3.546 | 1.290 | | 170 | 3.885 | -3.826 | 0.675 | 3.832 | -3.774 | 0.665 | | 180 | 3.857 | -3.857 | 0 | 3.844 | -3.844 | 0 | Table 2 Medium Headform – Exterior Dimensions (Continued) | Θ | | Level+1 Z= 0.500 | | | Level +2 Z=1.000 | | | |-----|-------|------------------|-------|-------|------------------|-------|--| | | R | х | Y | R | х | Υ | | | 0 | 3.830 | 3.830 | 0 | 3.665 | 3.665 | 0 | | | 10 | 3,801 | 3.743 | 0.660 | 3.613 | 3.558 | 0.627 | | | 20 | 3.725 | 3.500 | 1.274 | 3.554 | 3.340 | 1.216 | | | 30 | 3.587 | 3.106 | 1.794 | 3.436 | 2.976 | 1.718 | | | 40 | 3.399 | 2.604 | 2.185 | 3.271 | 2.506 | 2.103 | | | 50 | 3.205 | 2.060 | 2.455 | 3.102 | 1.994 | 2.376 | | | 60 | 3.044 | 1.522 | 2.636 | 2.959 | 1.480 | 2.563 | | | 70 | 2.927 | 1.001 | 2.751 | 2.854 | 0.976 | 2.682 | | | 80 | 2.861 | 0.497 | 2.818 | 2.792 | 0.485 | 2.750 | | | 90 | 2.855 | 0 | 2.855 | 2.783 | 0 | 2.783 | | | 100 | 2.897 | -0.503 | 2.853 | 2.832 | -0.492 | 2.789 | | | 110 | 3.007 | -1.029 | 2.826 | 2.938 | -1.005 | 2.761 | | | 120 | 3.176 | -1.588 | 2.751 | 3.102 | -1.551 | 2.686 | | | 130 | 3.372 | -2.168 | 2.583 | 3.294 | -2.117 | 2.523 | | | 140 | 3.520 | -2.697 | 2.263 | 3.450 | -2.643 | 2.218 | | | 150 | 3.643 | -3.155 | 1.822 | 3.564 | -3.087 | 1.782 | | | 160 | 3.728 | -3.503 | 1.275 | 3.637 | -3.418 | 1.244 | | | 170 | 3.777 | -3.720 | 0.656 | 3.675 | -3.619 | 0.638 | | | 180 | 3.782 | -3.782 | 0 | 3.670 | -3.670 | 0 | | | Θ | Level +3 Z=1.450 | | | Level +4 Z=1.860 | | | |-----|------------------|--------|-------|------------------|--------|-------| | | R | x | Y | R | х | Y | | 0 | 3.419 | 3.419 | 0 | 3.061 | 3.061 | 0 | | 10 | 3.382 | 3.331 | 0.587 | 3.035 | 2.989 | 0.527 | | 20 | 3.299 | 3.100 | 1.128 | 2.966 | 2.787 | 1.014 | | 30 | 3.197 | 2.769 | 1.599 | 2.872 | 2.487 | 1.436 | | 40 | 3.052 | 2.338 | 1.962 | 2.754 | 2.110 | 1.770 | | 50 | 2.911 | 1.871 | 2.230 | 2.642 | 1.698 | 2.024 | | 60 | 2.786 | 1.393 | 2.413 | 2.522 | 1.261 | 2.184 | | 70 | 2.700 | 0.924 | 2.537 | 2.477 | 0.847 | 2.328 | | 80 | 2.647 | 0.460 | 2.607 | 2.442 | 0.424 | 2.405 | | 90 | 2.636 | 0 | 2.636 | 2.442 | l o | 2.442 | | 100 | 2.691 | -0.467 | 2.650 | 2.492 | -0.433 | 2.454 | | 110 | 2.796 | -0.956 | 2.627 | 2.599 | -0.889 | 2.442 | | 120 | 2.961 | -1.481 | 2.564 | 2.758 | -1.379 | 2.389 | | 130 | 3.147 | -2.023 | 2.411 | 2.936 | -1.887 | 2.249 | | 140 | 3.301 | -2.529 | 2.122 | 3.081 | -2.360 | 1.980 | | 150 | 3.408 | -2.951 | 1.704 | 3.176 | -2.751 | 1.588 | | 160 | 3.479 | -3.269 | 1.190 | 3.230 | -3.035 | 1.105 | | 170 | 3.514 | -3.461 | 0.610 | 3.270 | -3.220 | 0.568 | | 180 | 3.502 | -3.502 | 0 | 3.271 | -3.271 | 0 | Table 2 Medium Headform – Exterior Dimensions (Continued) | Θ | Level +5 Z=2.250 | | | Level +6 Z=2.560 | | | |-----|------------------|--------|-------|------------------|--------|-------| | | R | х | Y | R | x | Υ | | 0 | 2.526 | 2.526 | 0 | 1.798 | 1.798 | 0 | | 10 | 2.521 | 2.483 | 0.483 | 1.798 | 1.771 | 0.312 | | 20 | 2,464 | 2.315 | 0.843 | 1.757 | 1.651 | 0.601 | | 30 | 2.387 | 2.067 | 1.194 | 1.719 | 1.489 | 0.860 | | 40 | 2.305 | 1.766 | 1.482 | 1.678 | 1.285 | 1.079 | | 50 | 2.232 | 1.435 | 1.710 | 1.652 | 1.062 | 1.266 | | 60 | 2.174 | 1.087 | 1.883 | 1.641 | 0.821 | 1.421 | | 70 | 2.144 | 0.733 | 2.015 | 1.645 | 0.563 | 1.546 | | 80 | 2.132 | 0.370 | 2.100 | 1.673 | 0.291 | 1.648 | | 90 | 2.147 | 0 | 2.147 | 1.712 | 0 | 1.712 | | 100 | 2.213 | -0.384 | 2.179 | 1.809 | -0.314 | 1.782 | | 110 | 2.316 | -0.792 | 2.176 | 1.925 | -0.658 | 1.809 | | 120 | 2.463 | -1.232 | 2.133 | 2.066 | -1.033 | 1.789 | | 130 | 2.624 | -1.687 | 2.010 | 2.213 | -1.423 | 1.695 | | 140 | 2.763 | -2.117 | 1.776 | 2.358 | -1.806 | 1.516 | | 150 | 2.863 | -2.479 | 1.432 | 2.469 | -2.138 | 1.235 | | 160 | 2.919 | -2.743 | 0.988 | 2.536 | -2.383 | 0.867 | | 170 | 2.954 | -2.909 | 0.513 | 2.561 | -2.522 | 0.445 | | 180 | 2.958 | -2.958 | 0 | 2.556 | -2.556 | 0 | | | Level +7 Z=2.750 | | | Notes: | | | |---|--|--|--|--|--|--| | Θ | R | X | Υ | 1 Apply is located at (-0.75, 0.3,02) | | | | 0
10
20
30
40
50
60
70
80
90
100
110
120
130 | 1.081
1.088
1.055
1.039
1.039
1.052
1.068
1.106
1.171
1.242
1.422
1.489
1.683
1.801 | 1.081
1.072
0.991
0.900
0.796
0.676
0.534
0.378
0.203
0
-0.247
-0.509
-0.842
-1.158 | 0
0.189
0.361
0.520
0.668
0.806
0.925
1.039
1.153
1.242
1.400
1.339
1.458
1.380 | Apex is located at (-0.75, 0, 3.02) for (X,Y,Z) or (0.75, 180, 3.02) for (R, Θ, Z). Center of ear opening is located at (0.40, 2.78, -2.36) for (R, Θ,Z). Scale all dimensions by 0.8941 for small headform. Scale all dimensions by 1.069 for large headform. Headform is symmetrical about the mid-sagittal plane. Units: R,X,Y,Z — inches. | | | | 150 | 2.083 | -1.804 | 1.042 | θ – degrees. | | | | 160
170
180 | 2.138
2.175
2.175 | -2.009
-2.142
-2.175 | 0.731
0.378
0 | To obtain metric equivalents in centimeters,
multiply each figure by 2.54. | | | 49 CFR Ch. V (10-1-98 Edition) § 571.218 Figure 6 Small Headform — Interior Design 642 $\label{eq:Figure 7} \textbf{Medium Headform} - \textbf{Interior Design}$ Figure 8 Large Headform — Interior Design Section C-C [38 FR 22391, Aug. 20, 1973, as amended at 39 FR 3554, Jan. 28, 1974; 45 FR 15181, Mar. 10, 1980; 53 FR 11288, Apr. 6, 1988; 53 FR 12529, Apr. 15, 1988] ### § 571.219 Standard No. 219; Windshield zone intrusion. - S1. *Scope.* This standard specifies limits for the displacement into the windshield area of motor vehicle components during a crash. - S2. Purpose. The purpose of this standard is to reduce crash injuries and fatalities that result from occupants contacting vehicle components displaced near or through the windshield. - S3. Application. This standard applies to passenger cars and to multipurpose passenger vehicles, trucks and buses of 4,536 kilograms or less gross vehicle weight rating. However, it does not apply to forward control vehicles, walk-in van-type vehicles, or to openbody-type vehicles with fold-down or removable windshields. - S4. Definitions. Daylight Opening (DLO) means the maximum unobstructed
opening through the glazing surface, including reveal or garnish moldings adjoining the surface, as measured parallel to the outer surface of the glazing material. - S5. Requirement. When the vehicle travelling longitudinally forward at any speed up to and including 48 km/h impacts a fixed collision barrier that is perpendicular to the line of travel of the vehicle, under the conditions of S7, no part of the vehicle outside the occupant compartment, except windshield molding and other components designed to be normally in contact with the windshield, shall penetrate the protected zone template, affixed according to S6, to a depth of more than 6 mm, and no such part of a vehicle shall penetrate the inner surface of that portion of the windshield, within the DLO, below the protected zone defined in S6. - S6. Protected zone template. - S6.1 The lower edge of the protected zone is determined by the following procedure (See Figure 1). - (a) Place a 165 mm diameter rigid sphere, with a mass of 6.8 kg in a position such that it simultaneously contacts the inner surface of the windshield glazing and the surface of the instrument panel, including padding. If any accessories or equipment such as the steering control system obstruct positioning of the sphere, remove them for the purposes of this procedure. - (b) Draw the locus of points on the inner surface of the windshield contactable by the sphere across the width of the instrument panel. From the outermost contactable points, extend the locus line horizontally to the edges of the glazing material. - (c) Draw a line on the inner surface of the windshield below and 13 mm distant from the locus line. - (d) The lower edge of the protected zone is the longitudinal projection onto the outer surface of the windshield of the line determined in S6.1(c). - S6.2 The protected zone is the space enclosed by the following surfaces, as shown in Figure 1: - (a) The outer surface of the wind-shield in its precrash configuration. - (b) The locus of points 76 mm outward along perpendiculars drawn to each point on the outer surface of the windshield. - (c) The locus of lines forming a 45° angle with the outer surface of the windshield at each point along the top and side edges of the outer surface of the windshield and the lower edge of the protected zone determined in S6.1, in the plane perpendicular to the edge at that point. - S6.3 A template is cut or formed from Styrofoam, type DB, cut cell, to the dimensions of the zone as determined in S6.2. The template is affixed to the windshield so that it delineates the protected zone and remains affixed throughout the crash test. - S7. *Test conditions.* The requirement of S5. shall be met under the following conditions: - S7.1 The protected zone template is affixed to the windshield in the manner described in S6. - S7.2 The hood, hood latches, and any other hood retention components are engaged prior to the barrier crash. - S7.3 Adjustable cowl tops or other adjustable panels in front of the windshield are in the position used under normal operating conditions when windshield wiping systems are not in use. - S7.4 The parking brake is disengaged and the transmission is in neutral. - S7.5 Tires are inflated to the vehicle manufacturer's specifications. S7.6 The fuel tank is filled to any level from 90 to 95 per cent of capacity. S7.7 The vehicle, including test devices and instrumentation, is loaded as follows: (a) Except as specified in S7.6, a passenger car is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus a 50th-percentile test dummy as specified in part 572 of this chapter at each front outboard designated seating position and at any other position whose protection system is required to be tested by a dummy under the provisions of Standard No. 208. Each dummy is restrained only by means that are installed for protection at its seating position. (b) Except as specified in S7.6, a multipurpose passenger vehicle, truck or bus is loaded to its unloaded vehicle weight, plus 136 kg or its rated cargo and luggage capacity, whichever is less, secured to the vehicle, plus a 50th- percentile test dummy as specified in part 572 of this chapter at each front outboard designated seating postion and at any other position whose protection system is required to be tested by a dummy under the provisions of Standard No. 208. Each dummy is restrained only by means that are installed for protection at its seating position. The load is distributed so that the mass on each axle as measured at the tire-ground interface is in proportion to its GAWR. If the mass on any axle when the vehicle is loaded to its unloaded vehicle weight plus dummy mass exceeds the axle's proportional share of the test mass, the remaining mass is placed so that the mass on that axle remains the same. For the purposes of this section, unloaded vehicle weight does not include the mass of work-performing accessories. Vehicles are tested to a maximum unloaded vehicle weight of 2,495 kg. Figure 1.—WINDSHIELD PROTECTION ZONE All dimensions in millimeters (mm) [40 FR 25462, June 16, 1975, as amended at 40 FR 53033, Nov. 14, 1975; 41 FR 54946, Dec. 16, 1976; 45 FR 22046, Apr. 3, 1980; 63 FR 28946, May 27, 1998] EFFECTIVE DATE NOTE: At 63 FR 28946, May 27, 1998, §571.219 was amended by revising S3, S5, S6.1, S6.2, revising in S7.7, paragraph (b), and revising Figure 1, effective May 27, 1999. For the convenience of the user, the superseded text follows: ### § 571.219 Standard No. 219, Windshield zone intrusion. * * * * * S3. Application. This standard applies to passenger cars and to multipurpose passenger vehicles, trucks and buses of 10,000 pounds or less gross vehicle weight rating. However, it does not apply to forward control vehicles, walk-in van-type vehicles, or to open-body-type vehicles with fold-down or removable windshields. * * * * * S5. Requirement. When the vehicle traveling longitudinally forward at any speed up to and including 30 mph impacts a fixed collision barrier that is perpendicular to the line of travel of the vehicle, under the conditions of S7., no part of the vehicle outside the occupant compartment, except windshield molding and other components designed to be normally in contact with the windshield, shall penetrate the protected zone template, affixed according to S6., to a depth of more than one-quarter inch, and no such part of a vehicle shall penetrate the inner surface of that portion of the windshield, within the DLO, below the protected zone defined in S6. * * * * * #### S6. Protected zone template. - S6.1 The lower edge of the protected zone is determined by the following procedure (see Figure 1). - (a) Place a 6.5-inch diameter rigid sphere, weighing 15 pounds, in a position such that it simultaneously contacts the inner surface of the windshield glazing and the surface of the instrument panel, including padding. If any accessories or equipment such as the steering control system obstruct positioning of the sphere, remove them for the purposes of this procedure. - (b) Draw the locus of points on the inner surface of the windshield contactable by the sphere across the width of the instrument panel. From the outermost contactable points, extend the locus line horizontally to the edges of the glazing material. - (c) Draw a line on the inner surface of the windshield below and one-half inch distant from the locus line - (d) The lower edge of the protected zone is the longitudinal projection onto the outer surface of the windshield of the line determined in S6.1(c). - S6.2 The protected zone is the space enclosed by the following surfaces, as shown in Figure 1: - (a) The outer surface of the windshield in its precrash configuration. - (b) The locus of points 3 inches outward along perpendiculars drawn to each point on the outer surface of the windshield. - (c) The locus of lines forming a 45° angle with the outer surface of the windshield at each point along the top and side edges of the outer surface of the windshield and the lower edge of the protected zone determined in S6.1, in the plane perpendicular to the edge at that point. * * * * * * S7.7 * * * * * * * * * (b) Except as specified in S7.6, a multipurpose passenger vehicle, truck or bus is loaded to its unloaded vehicle weight, plus 300 pounds or its rated cargo and luggage capacity, whichever is less, secured to the vehicle, plus a 50th-percentile test dummy as specified in part 572 of this chapter at each front outboard designated seating position and at any other position whose protection system is required to be tested by a dummy under the provisions of Standard No. 208. Each dummy is restrained only by means that are installed for protection at its seating position. The load is distributed so that the weight on each axle as measured at the tireground interface is in proportion to its GAWR. If the weight on any axle when the vehicle is loaded to its unloaded vehicle weight plus dummy weight exceeds the axle's proportional share of the test weight, the remaining weight is placed so that the weight on that axle remains the same. For the purposes of this section, unloaded vehicle weight does not include the weight of workperforming accessories. Vehicles are tested to a maximum unloaded vehicle weight of 5,500 pounds. * * * * * #### § 571.219, Nt. LOWER BOUNDARY OF WINDSHIELD PROTECTED ZONE HORIZONTAL EXTENSION BEYOND OUTERMOST CONTACTABLE POINT CROSS SECTION OF PROTECTED ZONE IN TYPICAL VERTICAL LONGITUDINAL PLANE POINT OF CONTACT BETWEEN SPHERE AND INNER SURFACE OF WINDSHIELD FRONT VIEW SIDE VIEW WINDSHIELD PROTECTED ZONE Figure 1 ### §571.220 Standard No. 220; School bus rollover protection. S1. *Scope.* This standard establishes performance requirements for school bus rollover protection. S2. *Purpose.* The purpose of this standard is to reduce the number of deaths and the severity of injuries that result from failure
of the school bus body structure to withstand forces encountered in rollover crashes. S3. *Applicability*. This standard applies to school buses. S4. Requirements. When a force in Newtons equal to 1½ times the unloaded vehicle weight in kilograms multiplied by 9.8 m/sec² is applied to the roof of the vehicle's body structure through a force application plate as specified in S5, Test procedures— (a) The downward vertical movement (a) The downward vertical movement at any point on the application plate shall not exceed 130 mm and (b) Each emergency exit of the vehicle provided in accordance with Standard No. 217 (§ 571.217) shall be capable of opening as specified in that standard during the full application of the force and after release of the force, except that an emergency exit located in the roof of the vehicle is not required to be capable of being opened during the application of the force. A particular vehicle (i.e., test specimen) need not meet the emergency exit opening requirement after release of force if it is subjected to the emergency exit opening requirements during the full application of the force. S5. *Test procedures*. Each vehicle shall be capable of meeting the requirements of S4. when tested in accordance with the procedures set forth below. S5.1 With any non-rigid chassis-to-body mounts replaced with equivalent rigid mounts, place the vehicle on a rigid horizontal surface so that the vehicle is entirely supported by means of the vehicle frame. If the vehicle is constructed without a frame, place the vehicle on its body sills. Remove any components which extend upward from the vehicle roof. S5.2 Use a flat, rigid, rectangular force application plate that is measured with respect to the vehicle roof longitudinal and lateral centerlines, (a) In the case of a vehicle with a GVWR of more than 4,536 kg, 305 mm shorter than the vehicle roof and 914 mm wide; and (b) In the case of a vehicle with a GVWR of 4,536 kg or less, 127 mm longer and 127 mm wider than the vehicle roof. For purposes of these measurements, the vehicle roof is that structure, seen in the top projected view, that coincides with the passenger and driver compartment of the vehicle. S5.3 Position the force application plate on the vehicle roof so that its rigid surface is perpendicular to a vertical longitudinal plane and it contacts the roof at not less than two points, and so that, in the top projected view, its longitudinal centerline coincides with the longitudinal centerline of the vehicle, and its front and rear edges are an equal distance inside the front and rear edges of the vehicle roof at the centerline. S5.4 Apply an evenly-distributed vertical force in the downward direction to the force application plate at any rate not more than 13 mm per second, until a force of 2,224 N has been applied. S5.5 Apply additional vertical force in the downward direction to the force application plate at a rate of not more than 13 mm per second until the force specified in S4. has been applied, and maintain this application of force. S5.6 Measure the downward movement of any point on the force application plate which occurred during the application of force in accordance with S5.5. S5.7 To test the capability of the vehicle's emergency exits to open in accordance with S4.(b)— (a) In the case of testing under the full application of force, open the emergency exits as specified in S4.(b) while maintaining the force applied in accordance with S5.4 and S5.5; and (b) In the case of testing after the release of all force, release all downward force applied to the force application plate and open the emergency exits as specified in S4.(b). S6. *Test conditions*. The following conditions apply to the requirements specified in S4. S6.1 *Temperature*. The ambient temperature is any level between 0° C and 32° C. S6.2 *Windows and doors.* Vehicle windows, doors, and emergency exits are in the fully-closed position, and latched but not locked. [41 FR 3875, Jan. 27, 1976, as amended at 41 FR 36026, 36027, Aug. 26, 1976; 63 FR 28948, May 27, 1998] EFFECTIVE DATE NOTE: At 63 FR 28948, May 27, 1998, §571.220 was amended by revising S4, S5.2, S5.4, S5.5, and S6.1, effective May 27, 1999. For the convenience of the user, the superseded text follows: #### §571.220 Standard No. 220, School bus rollover protection. * * * * * * S4. Requirements. When a force equal to 1½ times the unloaded vehicle weight is applied to the roof of the vehicle's body structure through a force application plate as specified in S5., Test procedures— (a) The downward vertical movement at (a) The downward vertical movement at any point on the application plate shall not exceed 51/8 inches; and (b) Each emergency exit of the vehicle provided in accordance with Standard No. 217 (§571.217) shall be capable of opening as specified in that standard during the full application of the force and after release of the force, except that an emergency exit located in the roof of the vehicle is not required to be capable of being opened during the application of the force. A particular vehicle (i.e., test specimen) need not meet the emergency exit opening requirement after release of force if it is subjected to the emergency exit opening requirements during the full application of the force. * * * * * S5.2 Use a flat, rigid, rectangular force application plate that is measured with respect to the vehicle roof longitudinal and lateral centerlines, (a) In the case of a vehicle with a GVWR of more than 10,000 pounds, 12 inches shorter than the vehicle roof and 36 inches wide; and (b) In the case of a vehicle with a GVWR of 10,000 pounds or less, 5 inches longer and 5 inches wider than the vehicle roof. For purposes of these measurements, the vehicle roof is that structure, seen in the top projected view, that coincides with the passenger and driver compartment of the vehicle. * * * * * S5.4 Apply an evenly-distributed vertical force in the downward direction to the force application plate at any rate not more than 0.5 inch per second, until a force of 500 pounds has been applied. S5.5 Apply additional vertical force in the downward direction to the force application plate at a rate of not more than 0.5 inch per second until the force specified in S4. has been applied, and maintain this application of force. * * * * * S6.1 Temperature. The ambient temperature is any level between 32° F. and 90° F. ### §571.221 Standard No. 221; School bus body joint strength. S1. *Scope.* This standard establishes requirements for the strength of the body panel joints in school bus bodies. S2. *Purpose.* The purpose of this standard is to reduce deaths and injuries resulting from the structural collapse of school bus bodies during crashes S3. Application. This standard applies to school buses with gross vehicle weight ratings of more than 10,000 pounds. S4. *Definitions. Body component* means a part of a bus body made from a single piece of homogeneous material or from a single piece of composite material such as plywood. *Body panel* means a body component used on the exterior or interior surface to enclose the bus' occupant space. Body panel joint means the area of contact or close proximity between the edges of a body panel and another body component, excluding spaces designed for ventilation or another functional purpose, and excluding doors, windows, and maintenance access panels. Bus body means the portion of a bus that encloses the bus's occupant space, exclusive of the bumpers, the chassis frame, and any structure forward of the forwardmost point of the windshield mounting. S5. Requirement. When tested in accordance with the procedure of S6., each body panel joint shall be capable of holding the body panel to the member to which it is joined when subjected to a force of 60% of the tensile strength of the weakest joined body panel determined pursuant to S6.2. S6. Procedure. S6.1 Preparation of the test specimen. S6.1.1 If a body panel joint is 8 inches long or longer, cut a test specimen that consists of any randomly selected 8-inch segment of the joint, together with a portion of the bus body whose dimensions, to the extent permitted by the size of the joined parts, are those specified in Figure 1, so that the specimen's centerline is perpendicular to the joint at the midpoint of the joint segment. Where the body panel joint is not fastened continuously, select the segment so that it does not bisect a spot weld or a discrete fastener. S6.1.2 If a joint is less than 8 inches long, cut a test specimen with enough of the adjacent material to permit it to be held in the tension testing machine specified in S6.3. S6.1.3 Prepare the test specimen in accordance with the preparation procedures specified in the 1973 edition of the Annual Book of ASTM Standards, published by the American Society for Testing and Materials, 1916 Race Street, Philadelphia, Pennsylvania 19103. S6.2 Determination of minimum allowable strength. For purposes of determining the minimum allowable joint strength, determine the tensile strengths of the joined body components as follows: #### FIGURE 1 All dimensions in inches - (a) If the mechanical properties of a material are specified by the American Society for Testing and Materials, the relative tensile strength for such a material is the minimum tensile strength specified for that material in the 1973 edition of the Annual Book of ASTM Standards. - (b) If the mechanical properties of a material are not specified by the American Society for Testing and Materials, determine its tensile strength by cutting a specimen from the bus body outside the area of the joint and by testing it in accordance with S6.3. S6.3 Strength test. - S6.3.1 Grip the joint specimen on opposite sides of the joint in a tension testing machine calibrated in accordance with Method E4, Verification of Testing Machines, of the American Society for Testing and Materials (1973 Annual
Book of ASTM Standards). - S6.3.2 Adjust the testing machine grips so that the joint, under load, will be in stress approximately perpendicular to the joint. - S6.3.3 Apply a tensile force to the specimen by separating the heads of the testing machine at any uniform rate not less than ¼ inch and not more than ¾-inch per minute until the specimen separates. [41 FR 3872, Jan. 27, 1976, as amended at 41 FR 36027, Aug. 26, 1976] # § 571.222 Standard No. 222; School bus passenger seating and crash protection. - S1. *Scope.* This standard establishes occupant protection requirements for school bus passenger seating and restraining barriers. - S2. *Purpose*. The purpose of this standard is to reduce the number of deaths and the severity of injuries that result from the impact of school bus occupants against structures within the vehicle during crashes and sudden driving maneuvers. - S3. *Application*. This standard applies to school buses. - S4. Definitions. Contactable surface means any surface within the zone specified in S5.3.1.1 that is contactable from any direction by the test device described in S6.6, except any surface on the front of a seat back or restraining barrier 76 mm or more below the top of the seat back or restraining barrier. School bus passenger seat means a seat in a school bus, other than the driver's seat. Wheelchair means a wheeled seat frame for the support and conveyance of a physically disabled person, comprised of at least a frame, seat, and wheels. Wheelchair occupant restraint anchorage means the provision for transferring wheelchair occupant restraint system loads to the vehicle structure. Wheelchair securement anchorage means the provision for transferring wheelchair securement device loads to the vehicle structure. Wheelchair securement device means a strap, webbing or other device used for securing a wheelchair to the school bus, including allnecessary buckles and other fasteners. S4.1 The number of seating positions considered to be in a bench seat is expressed by the symbol W, and calculated as the bench width in millimeters divided by 381 and rounded to the nearest whole number. S5. Requirements. (a) Each vehicle with a gross vehicle weight rating of more than 4,536 kg shall be capable of meeting any of the requirements set forth under this heading when tested under the conditions of S6. However, a particular school bus passenger seat (i.e., test specimen) in that weight class need not meet further requirements after having met S5.1.2 and S5.1.5, or having been subjected to either S5.1.3, S5.1.4, or S5.3. - (b) Each vehicle with a gross vehicle weight rating of 4,536 kg or less shall be capable of meeting the following requirements at all seating positions other than the driver's seat: - (1)(A) In the case of vehicles manufactured before September 1, 1991, the requirements of §§ 571.208, 571.209, and 571.210 as they apply to multipurpose passenger vehicles; or - (B) In the case of vehicles manufactured on or after September 1, 1991, the requirements of \$4.4.3.3 of \$571.208 and the requirements of \$\$571.209 and 571.210 as they apply to school buses with a gross vehicle weight rating of 4,536 kg or less; and - (2) The requirements of S5.1.2, S5.1.3, S5.1.4, S5.1.5, S5.3, and S5.4 of this standard. However, the requirements of §§ 571.208 and 571.210 shall be met at W seating positions in a bench seat using a body block as specified in Figure 2 of this standard, and a particular school bus passenger seat (i.e., a test specimen) in that weight class need not meet further requirements after having met S5.1.2 and S5.1.5, or after having been subjected to either S5.1.3, S5.1.4, or S5.3 of this standard or §571.210. - S5.1 *Seating requirements.* School bus passenger seats shall be forward facing. S5.1.1 [Reserved] S5.1.2 Seat back height and surface area. Each school bus passenger seat shall be equipped with a seat back that, in the front projected view, has a front surface area above the horizontal plane that passes through the seating reference point, and below the horizontal plane 508 mm above the seating reference point, of not less than 90 percent of the seat bench width in millimeters multiplied by 508. S5.1.3 Seat performance forward. When a school bus passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.3.1 and S5.1.3.2, and subsequently, the application of additional force to the seat back as specified in S5.1.3.3 and S5.1.3.4: - (a) The seat back force/deflection curve shall fall within the zone specified in Figure 1; - (b) Seat back deflection shall not exceed 356 mm; (for determination of (a) and (b) the force/deflection curve describes only the force applied through the upper loading bar, and only the forward travel of the pivot attachment point of the upper loading bar, measured from the point at which the initial application of 44 N of force is attained.) - (c) The seat shall not deflect by an amount such that any part of the seat moves to within 102 mm of any part of another school bus passenger seat or restraining barrier in its originally installed position; - (d) The seat shall not separate from the vehicle at any attachment point; and - (e) Seat components shall not separate at any attachment point. S5.1.3.1 Position the loading bar specified in S6.5 so that it is laterally centered behind the seat back with the bar's longitudinal axis in a transverse plane of the vehicle and in any horizontal plane between 102 mm above and 102 mm below the seating reference point of the school bus passenger seat behind the test specimen. S5.1.3.2 Apply a force of 3,114W newtons horizontally in the forward direction through the loading bar at the pivot attachment point. Reach the specified load in not less than 5 nor more than 30 seconds. S5.1.3.3 No sooner than 1.0 second after attaining the required force, reduce that force to 1,557W newtons and, while maintaining the pivot point position of the first loading bar at the position where the 1,557W newtons is attained, position a second loading bar described in S6.5 so that it is laterally centered behind the seat back with the bar's longitudinal axis in a transverse plane of the vehicle and in the horizontal plane 406 mm above the seating reference point of the school bus passenger seat behind the test specimen, and move the bar forward against the seat back until a force of 44 N has been applied. \$5.1.3.4 Apply additional force horizontally in the forward direction through the upper bar until 452W joules of energy have been absorbed in deflecting the seat back (or restraining barrier). Apply the additional load in not less than 5 seconds nor more than 30 seconds. Maintain the pivot attachment point in the maximum forward travel position for not less than 5 seconds nor more than 10 seconds and release the load in not less than 5 nor more than 30 seconds. (For the determination of S5.1.3.4 the force/deflection curve describes only the force applied through the upper loading bar, and the forward and rearward travel distance of the upper loading bar pivot attachment point measured from the position at which the initial application of 44 N of force is attained.) S5.1.4 Seat performance rearward. When a school bus passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.4.1 and S5.1.4.2: - (a) Seat back force shall not exceed 9,786 N; - (b) Seat back deflection shall not exceed 254 mm; (for determination of (a) and (b) the force/deflection curve describes only the force applied through the loading bar, and only the rearward travel of the pivot attachment point of the loading bar, measured from the point at which the initial application of 222 N is attained. - (c) The seat shall not deflect by an amount such that any part of the seat moves to within 102 mm of any part of another passenger seat in its originally installed position; - (d) The seat shall not separate from the vehicle at any attachment point; and - (e) Seat components shall not separate at any attachment point. S5.1.4.1 Position the loading bar described in S6.5 so that it is laterally centered forward of the seat back with the bar's longitudinal axis in a transverse plane of the vehicle and in the horizontal plane 343 mm above the seating reference point of the test specimen, and move the loading bar rearward against the seat back until a force of 222 N has been applied. S5.1.4.2 Apply additional force horizontally rearward through the loading bar until 316W joules (J) of energy has been absorbed in deflecting the seat back. Apply the additional load in not less than 5 seconds nor more than 30 seconds. Maintain the pivot attachment point in the maximum rearward travel position for not less than 5 seconds nor more than 10 seconds and release the load in not less than 5 seconds nor more than 30 seconds. (For determination of S5.1.4.2 the force deflection curve describes the force applied through the loading bar and the rearward and forward travel distance of the loading bar pivot attachment point measured from the position at which the initial application of 222 N of force is attained.) S5.1.5 Seat cushion retention. In the case of school bus passenger seats equipped with seat cushions, with all manual attachment devices between the seat and the seat cushion in the manufacturer's designated position for attachment, the seat cushion shall not separate from the seat at any attachment point when subjected to an upward force in newtons of 5 times the mass of the seat cushion in kilograms and multiplied by 9.8 m/s², applied in any period of not less than 1 nor more than 5 seconds, and maintained for 5 seconds. S5.2 Restraining barrier requirements. Each vehicle shall be equipped with a restraining barrier forward of any designated seating position that does not have the rear surface of another school bus passenger seat within 610 mm of its seating reference point,
measured along a horizontal longitudinal line through the seating reference point in the forward direction. S5.2.1 Barrier-seat separation. The horizontal distance between the restraining barrier's rear surface and the seating reference point of the seat in front of which the barrier is required shall not be more than 610 mm measured along a horizontal longitudinal line through the seating reference point in the forward direction. S5.2.2 Barrier position and rear surface area. The position and rear surface area of the restraining barrier shall be such that, in a front projected view of the bus, each point of the barrier's perimeter coincides with or lies outside of the perimeter of the seat back of the seat for which it is required. S5.2.3 Barrier performance forward. When force is applied to the restraining barrier in the same manner as specified in S5.1.3.1 through S5.1.3.4 for seating performance tests: (a) The restraining barrier force/deflection curve shall fall within the zone specified in Figure 1; - (b) Restraining barrier deflection shall not exceed 356 mm; (for computation of (a) and (b) the force/deflection curve describes only the force applied through the upper loading bar, and only the forward travel of the pivot attachment point of the loading bar, measured from the point at which the initial application of 44 N of force is attained.) - (c) Restraining barrier deflection shall not interfere with normal door operation; - (d) The restraining barrier shall not separate from the vehicle at any attachment point; and - (e) Restraining barrier components shall not separate at any attachment point. S5.3 Impact zone requirements. S5.3.1 Head protection zone. Any contactable surface of the vehicle within any zone specified in S5.3.1.1 shall meet the requirements of S5.3.1.2 and S5.3.1.3. However, a surface area that has been contacted pursuant to an impact test need not meet further requirements contained in S5.3. S5.3.1.1 The head protection zones in each vehicle are the spaces in front of each school bus passenger seat which are not occupied by bus sidewall, win- dow, or door structure and which, in relation to that seat and its seating reference point, are enclosed by the following planes; (a) Horizontal planes 305 mm and 1016 mm above the seating reference point; (b) A vertical longitudinal plane tangent to the inboard (aisle side) edge of the seat; and (c) A vertical longitudinal plane 83 mm inboard of the outboard edge of the seat: (d) Vertical transverse planes through and 762 mm forward of the reference point. S5.3.1.2 Head form impact requirement. When any contactable surface of the vehicle within the zones specified in S5.3.1.1 is impacted from any direction at 6.7 m/s by the head form described in S6.6, the axial acceleration at the center of gravity of the head form shall be such that the expression $$\left[\frac{1}{t1-t2}\int_{t1}^{t2} adt\right]^{2.5} (t1-t2)$$ shall not exceed 1,000 where "a" is the axial acceleration expressed as a multiple of "g" (the acceleration due to gravity), and " t_1 " and " t_2 " are any two points in time during the impact. S5.3.1.3 Head form force distribution. When any contactable surface of the vehicle within the zones specified in S5.3.1.1 is impacted from any direction at 6.7 m/s by the head form described in S6.6, the energy necessary to deflect the impacted material shall be not less than 4.5 joules before the force level on the head form exceeds 667 N. When any contactable surface within such zones is impacted by the head form from any direction at 1.5 m/s the contact area on the head form surface shall be not less than 1,935 mm². S5.3.2 *Leg protection zone.* Any part of the seat backs or restraining barriers in the vehicle within any zone specified in S5.3.2.1 shall meet the requirements of S5.3.2.2. S5.3.2.1 The leg protection zones of each vehicle are those parts of the school bus passenger seat backs and restraining barriers bounded by horizontal planes 305 mm above and 102 mm below the seating reference point of the school bus passenger seat immediately behind the seat back or restraining barrier. S5.3.2.2 When any point on the rear surface of that part of a seat back or restraining barrier within any zone specified in S5.3.2.1 is impacted from any direction at 4.9 m/s by the knee form specified in S6.7, the resisting force of the impacted material shall not exceed 2,669 N and the contact area on the knee form surface shall not be less than 1,935 mm². S5.4 Each school bus having one or more locations designed for carrying a person seated in a wheelchair shall comply with S5.4.1 through S5.4.4 at each such wheelchair location. S5.4.1 Wheelchair securement anchorages. Each wheelchair location shall have not less than four wheelchair securement anchorages complying with S5.4.1.1 through S5.4.1.3. S5.4.1.1 Each wheelchair securement anchorage shall have a wheelchair securement device complying with S5.4.2 attached to it. S5.4.1.2 The wheelchair securement anchorages at each wheelchair location shall be situated so that— (a) A wheelchair can be secured in a forward-facing position. (b) The wheelchair can be secured by wheelchair securement devices at two locations in the front and two locations in the rear. (c) The front wheel of a threewheeled wheelchair can be secured. S5.4.1.3 Each wheelchair securement anchorage shall be capable of withstanding a force of 13,344 Newtons applied as specified in paragraphs (a) through (d) of this section. When more than one securement device share a common anchorage, the anchorage shall be capable of withstanding a force of 13,344 Newtons multiplied by the number of securement devices sharing that anchorage. (a) The initial application force shall be applied at an angle of not less than 30 degrees, but not more than 60 degrees, measured from the horizontal. (See Figure 4.) (b) The horizontal projection of the force direction shall be within a horizontal arc of ±45 degrees relative to a longitudinal line which has its origin at the anchorage location and projects rearward for an anchorage whose wheelchair securement device is intended to secure the front of the wheelchair and forward for an anchorage whose wheelchair securement device is intended to secure the rear of the wheelchair. (See Figure 4.) (c) The force shall be applied at the onset rate of not more than 133,440 Newtons per second. (d) The 13,344 Newton force shall be attained in not more than 30 seconds, and shall be maintained for 10 seconds. S5.4.2 Wheelchair securement devices. Each wheelchair securement device shall— (a) If incorporating webbing or a strap— (1) Comply with the requirements for Type 1 safety belt systems in S4.2, S4.3, and S4.4(a) of FMVSS No. 209, *Seat Belt Assemblies*; and (2) Provide a means of adjustment to remove slack from the device. (b) If not incorporating webbing or a strap, limit movement of the wheel-chair through either the equipment design or a means of adjustment. S5.4.3 Wheelchair occupant restraint anchorages. S5.4.3.1 Each wheelchair location shall have: (a) Not less than one anchorage for the upper end of the upper torso restraint; and (b) Not less than two floor anchorages for wheelchair occupant pelvic and upper torso restraint. S5.4.3.2 Each wheelchair occupant restraint floor anchorage shall be capable of withstanding a force of 13,344 Newtons applied as specified in paragraphs (a) through (d). When more than one wheelchair occupant restraint share a common anchorage, the anchorage shall be capable of withstanding a force of 13,344 Newtons multiplied by the number of occupant restraints sharing that anchorage. (a) The initial application force shall be applied at a angle of not less than 45 degrees, but not more than 80 degrees, measured from the horizontal. (See Figure 5.) (b) The horizontal projection of the force direction shall be within a horizontal arc of ±45 degrees relative to a longitudinal line which has its origin at the anchorage and projects forward. (See Figure 5.) - (c) The force shall be applied at an onset rate of not more than 133,440 Newtons per second. - (d) The 13,344 Newton force shall be attained in not more than 30 seconds, and shall be maintained for 10 seconds. - (e) When a wheelchair securement device and an occupant restraint share a common anchorage, including occupant restraint designs that attach the occupant restraint to the securement device or the wheelchair, the loads specified by S5.4.1.3 and S5.4.3.2 shall be applied simultaneously, under the conditions specified in S5.4.3.2 (a) and (b). (See Figure 6.) - S5.4.3.3 Each anchorage for a wheel-chair occupant upper torso restraint shall be capable of withstanding a force of 6,672 Newtons applied as specified in paragraphs (a) through (d). - (a) The initial application force shall be applied at a vertical angle of not less than zero degrees, but not more than 40 degrees, below a horizontal plane which passes through the anchorage. (See Figure 7.) - (b) The projection of the force direction onto the horizontal plane shall be within zero degrees and 45 degrees as measured from a longitudinal line with its origin at the anchorage and projecting forward. (See Figure 7.) - (c) The force shall be applied at the onset rate of not more than 66,720 Newtons per second. - (d) The 6,672 Newton force shall be attained in not more than 30 seconds, and shall be maintained for 10 seconds. - S5.4.4 Wheelchair occupant restraints. - (a) Each wheelchair location shall have wheelchair occupant pelvic and upper torso restraints attached to the anchorages required by S5.4.3. - (b) Each wheelchair occupant restraint shall comply with the requirements for Type 2 safety belt systems in S4.2, S4.3, and S4.4(b) of FMVSS No. 209, Seat Belt Assemblies. - S6. *Test conditions*. The following conditions apply to the requirements specified in S5. - S6.1 *Test surface.* The bus is at rest on a level surface. - S6.2 *Tires.* Tires are inflated to the pressure
specified by the manufacturer for the gross vehicle weight rating. - S6.3 *Temperature.* The ambient temperature is any level between 0 degrees C and 32 degrees C. - S6.4 Seat back position. If adjustable, a seat back is adjusted to its most upright position. - S6.5 Loading bar. The loading bar is a rigid cylinder with an outside diameter of 152 mm that has hemispherical ends with radii of 76 mm and with a surface roughness that does not exceed 1.6 µm, root mean square. The length of the loading bar is 102 mm less than the width of the seat back in each test. The stroking mechanism applies force through a pivot attachment at the center point of the loading bar which allows the loading bar to rotate in a horizontal plane 30 degrees in either direction from the transverse position. - S6.5.1 A vertical or lateral force of 17,792 N applied externally through the pivot attachment point of the loading bar at any position reached during a test specified in this standard shall not deflect that point more than 25 mm. - S6.6 Head form. The head form for the measurement of acceleration is a rigid surface comprised of two hemispherical shapes, with total equivalent mass of 5.2 kg. The first of the two hemispherical shapes has a diameter of 166 mm. The second of the two hemispherical shapes has a 50 mm diameter and is centered as shown in Figure 3 to protrude from the outer surface of the first hemispherical shape. The surface roughness of the hemispherical shapes does not exceed 1.6 μm , root mean square. - S6.6.1 The direction of travel of the head form is coincidental with the straight line connecting the centerpoints of the two spherical outer surfaces which constitute the head form shape. - S6.6.2 The head form is instrumented with an acceleration sensing device whose output is recorded in a data channel that conforms to the requirements for a 1,000 Hz channel class as specified in SAE Recommended Practice J211a, December 1971. The head form exhibits no resonant frequency below three times the frequency of the channel class. The axis of the acceleration sensing device coincides with the straight line connecting the centerpoints of the two hemispherical outer surfaces which constitute the head form shape. S6.6.3 The head form is guided by a stroking device so that the direction of travel of the head form is not affected by impact with the surface being tested at the levels called for in the standard. S6.7 Knee form. The knee form for measurement of force is a rigid 76 millimeter-diameter cylinder, with an equivalent weight of 44 N that has one hemispherical end with a 38 mm radius forming a contact surface of the knee form. The hemispherical surface roughness does not exceed 1.6 μ m, root mean square. S6.7.1 The direction of travel of the knee form is coincidental with the centerline of the rigid cylinder. S6.7.2 The knee form is instrumented with an acceleration sensing device whose output is recorded in a data channel that conforms to the requirements of a 600 Hz channel class as specified in the SAE Recommended Practice J211a, December 1971. The knee form exhibits no resonant frequency below three times the frequency of the channel class. The axis of the acceleration sensing device is aligned to measure acceleration along the centerline of the cylindrical knee form. S6.7.3 The knee form is guided by a stroking device so that the direction of travel of the knee form is not affected by impact with the surface being tested at the levels called for in the standard. S6.8 The head form, knee form, and contactable surfaces are clean and dry during impact testing. Figure 1.—Force/Deflection Zone Figure 2.—Body Block for Lap Belt All Dimensions in Millimeters (mm) Figure 3 All dimensions in millimeters (mm) 662 #### § 571.222, Nt. [41 FR 4018, Jan. 28, 1976, as amended at 41 FR 28528, July 12, 1976; 41 FR 36027, Aug. 26, 1976; 41 FR 54945, Dec. 16, 1976; 42 FR 64120, Dec. 22, 1977; 43 FR 9150, Mar. 6, 1978; 44 FR 18675, Mar. 29, 1979; 48 FR 12386, Mar. 24, 1983; 54 FR 46268, Nov. 2, 1989; 58 FR 4593, Jan. 15, 1993; 58 FR 46876, Sept. 3, 1993; 63 FR 28948, 28950, May 27, 1998] EFFECTIVE DATE NOTE: At 63 FR 28948, May 27, 1998, §571.222 was amended by revising in S4, the definition of "contactable surface"; revising S4.1; revising in S5, paragraphs (a) and (b); revising S5.1.2, S5.1.3, S5.1.3.1, S5.1.3.2, S5.1.3.3, S5.1.3.4, S5.1.4.4, S5.1.4.5, S5.1.5, S5.2, S5.2.1, S5.2.3, S5.3.1.1, S5.3.1.2, S5.3.1.3, S5.3.2.1, S5.3.2.2, S6.3, S6.5, S6.5.1, S6.6, S6.7, Figure 1, "Force/Deflection Zone", Figure 2, "Body Block for Lap Belt", and Figure 3 after S6.8, effective May 27, 1999. For the convenience of the user, the superseded text is set forth as follows: #### §571.222 Standard No. 222, School bus passenger seating and crash protection. * * * * * S4. Definitions. Contactable surface means any surface within the zone specified in S.5.3.1.1 that is contactable from any direction by the test device described in S6.6, except any surface on the front of a seat back or restraining barrier 3 inches or more below the top of the seat back or restraining barrier. * * * * * * - S4.1 The number of seating positions considered to be in a bench seat is expressed by the symbol W, and calculated as the bench width in inches divided by 15 and rounded to the nearest whole number. - S5. Requirements. (a) Each vehicle with a gross vehicle weight rating of more than 10,000 pounds shall be capable of meeting any of the requirements set forth under this heading when tested under the conditions of S6. However, a particular school bus passenger seat (i.e., test specimen) in that weight class need not meet further requirements after having met S5.1.2 and S5.1.5, or having been subjected to either S5.1.3, S5.1.4, or S5.3. - (b) Each vehicle with a gross vehicle weight rating of 10,000 pounds or less shall be capable of meeting the following requirements at all seating positions other than the driver's seat: - (1)(A) In the case of vehicles manufactured before September 1, 1991, the requirements of \$\$\\$571.208, 571.209, and 571.210 as they apply to multipurpose passenger vehicles; or (B) In the case of vehicles manufactured on or after September 1, 1991, the requirements of S4.4.3.3 of §571.208 and the requirements of §\$571.209 and 571.210 as they apply to school buses with a gross vehicle weight rating of 10,000 pounds or less; and (2) The requirements of S5.1.2, S5.1.3, S5.1.4, S5.1.5, S5.3, and S5.4 of this standard. However, the requirements of §§ 571.208 and 571.210 shall be met at W seating positions in a bench seat using a body block as specified in Figure 2 of this standard, and a particular school bus passenger seat (i.e., a test specimen) in that weight class need not meet further requirements after having met S5.1.2 and S5.1.5, or after having been subjected to either S5.1.3, S5.1.4, or S5.3 of this standard or § 571.210. * * * * * S5.1.2 Seat back height and surface area. Each school bus passenger seat shall be equipped with a seat back that, in the front projected view, has a front surface area above the horizontal plane that passes through the seating reference point, and below the horizontal plane 20 inches above the seating reference point, of not less than 90 percent of the sea bench width in inches multiplied by 20. S5.1.3 Seat performance forward. When a school bus passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.3.1 and S5.1.3.2, and subsequently, the application of additional force to the seat back as specified in S5.1.3.3 and S5.1.3.4: - (a) The seat back force/deflection curve shall fall within the zone specified in Figure 1: - (b) Seat back deflection shall not exceed 14 inches; (for determination of (a) and (b) the force/deflection curve describes only the force applied through the upper loading bar, and only the forward travel of the pivot attachment point of the upper loading bar, measured from the point at which the initial application of 10 pounds of force is attained.) (c) The seat shall not deflect by an amount - (c) The seat shall not deflect by an amount such that any part of the seat moves to within 4 inches of any part of another school bus passenger seat or restraining barrier in its originally installed position; (d) The seat shall not separate from the vehicle at any attachment point; and (e) Seat components \bar{shall} not separate at any attachment point. * * * * * * S5.1.3.1 Position the loading bar specified in S6.5 so that it is laterally centered behind the seat back with the bar's longitudinal axis in a transverse plane of the vehicle and in any horizontal plane between 4 inches above and 4 inches below the seating reference point of the school bus passenger seat behind the test specimen. S5.1.3.2 Apply a force of 700W pounds horizontally in the forward direction through the loading bar at the pivot attachment point. Reach the specified load in not less than 5 nor more than 30 seconds. S5.1.3.3 No sooner than 1.0 second after attaining the required force, reduce that force to 350W pounds and, while maintaining the pivot point position of the first loading bar at the position where the 350W pounds is attained, position a second loading bar described in S6.5 so that it is laterally centered behind the seat back with the bar's longitudinal axis in a transverse plane of the vehicle and in the horizontal plane 16 inches above the seating reference point of the school bus passenger seat behind the test specimen, and move the bar forward against the seat back until a force of 10 pounds has been applied. S5.1.3.4 Apply additional force horizontally in the forward direction through the upper bar until 4,000W inch-pounds of energy have been absorbed in deflecting the seat back (or restraining barrier). Apply the additional load in not less than 5 seconds nor more than 30 seconds. Maintain the pivot attachment point in the maximum forward travel
position for not less than 5 seconds nor more than 10 seconds and release the load in not less than 5 nor more than 30 seconds. (For the determination of S5.1.3.4 the force/deflection curve describes only the force applied through the upper loading bar, and the forward and rearward travel distance of the upper loading bar pivot attachment point measured from the position at which the initial application of 10 pounds of force is attained.) S5.1.4 Seat performance rearward. When a school bus passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.4.1 and S5.1.4.2: (a) Seat back force shall not exceed 2,200 pounds; (b) In the case of a school bus manufactured on or after April 1, 1978, seat back deflection shall not exceed 10 inches; (For determination of (a) and (b) the force/deflection curve describes only the force applied through the loading bar, and only the rearward travel of the pivot attachment point of the loading bar, measured from the point at which the initial application of 50 pounds of force is attained. (c) The seat shall not deflect by an amount such that any part of the seat moves to within 4 inches of any part of another passenger seat in its originally installed position; (d) The seat shall not separate from the vehicle at any attachment point; and (e) Seat components shall not separate at any attachment point. S5.1.4.1 Position the loading bar described in S6.5 so that it is laterally centered forward of the seat back with the bar's longitudinal axis in a transverse plane of the vehicle and in the horizontal plane 13.5 inches above the seating reference point of the test specimen, and move the loading bar rearward against the seat back until a force of 50 pounds has been applied. additional S5.1.4.2 Apply force zontally rearward through the loading bar until 2,800W inch-pounds of energy has been absorbed in deflecting the seat back. Apply the additional load in not less than 5 seconds nor more than 30 seconds. Maintain the pivot attachment point in the maximum rearward travel position for not less than 5 seconds nor more than 10 seconds and release the load in not less than 5 seconds nor more than 30 seconds. (For determination of S5.1.4.2 the force/deflection curve describes the force applied through the loading bar and the rearward and forward travel distance of the loading bar pivot attachment point measured from the position at which the initial application of 50 pounds of force is attained.) S5.1.5 Seat cushion retention. In the case of school bus passenger seats equipped with seat cushions, with all manual attachment devices between the seat and the seat cushion in the manufacturer's designed position for attachment, the seat cushion shall not separate from the seat at any attachment point when subjected to an upward force of five times the seat cushion weight, applied in any period of not less than 1 nor more than 5 seconds, and maintained for 5 seconds. S5.2 Restraining barrier requirements. Each vehicle shall be equipped with a restraining barrier forward of any designated seating position that does not have the rear surface of another school bus passenger seat within 24 inches of its seating reference point, measured along a horizontal longitudinal line through the seating reference point in the forward direction. S5.2.1 Barrier-seat separation. The horizontal distance between the restraining barrier's rear surface and the seating reference point of the seat in front of which the barrier is required shall not be more than 24 inches measured along a horizontal longitudinal line through the seating reference point in the forward direction. * * * * * S5.2.3 Barrier performance forward. When force is applied to the restraining barrier in the same manner as specified in S5.1.3.1 through S5.1.3.4 for seating performance tests: (a) The restraining barrier force/deflection curve shall fall within the zone specified in Figure 1; (b) Restraining barrier deflection shall not exceed 14 inches; (For computation of (a) and (b) the force/deflection curve describes only the force applied through the upper loading bar, and only the forward travel of the pivot attachment point of the loading bar, measured from the point at which the initial application of 10 pounds of force is attained.) #### § 571.222, Nt. - (c) Restraining barrier deflection shall not interfere with normal door operation; - (d) The restraining barrier shall not separate from the vehicle at any attachment point; and - (e) Restraining barrier components shall not separate at any attachment point. * * * * * S5.3.1.1 The head protection zones in each vehicle are the spaces in front of each school bus passenger seat which are not occupied by bus sidewall, window, or door structure and which, in relation to that seat and its seating reference point, are enclosed by the following planes; - (a) Horizontal planes 12 inches and 40 inches above the seating reference point; - (b) A vertical longitudinal plane tangent to the inboard (aisle side) edge of the seat; - (c) A vertical longitudinal plane 3.25 inches inboard of the outboard edge of the seat, and (d) Vertical transverse planes through and - (d) Vertical transverse planes through and 30 inches forward of the reference point. S5.3.1.2 Head form impact requirement. When any contactable surface of the vehicle within the zones specified in S5.3.1.1 is impacted from any direction at 22 feet per second by the head form described in S6.6, the axial acceleration at the center of gravity of the head form shall be such that the expression $$\left[\frac{1}{(t_2-t_1)}\int_{t_1}^{t_2}adt\right]^{2.5}(t_2-t_1)$$ shall not exceed 1,000 where a is the axial acceleration expressed as a multiple of g (the acceleration due to gravity), and t_1 and t_2 are any two points in time during the impact. S5.3.1.3 Head form force distribution. When any contactable surface of the vehicle within the zones specified in S5.3.1.1 is impacted from any direction at 22 feet per second by the head form described in S6.6, the energy necessary to deflect the impacted material shall be not less than 40 inch-pounds before the force level on the head form exceeds 150 pounds. When any contactable surface within such zones is impacted by the head form from any direction at 5 feet per second, the contact area on the head form surface shall be not less than 3 square inches. * * * * * S5.3.2.1 The leg protection zones of each vehicle are those parts of the school bus passenger seat backs and restraining barriers bounded by horizontal planes 12 inches above and 4 inches below the seating reference point of the school bus passenger seat imme- diately behind the seat back or restraining barrier. S5.3.2.2 When any point on the rear surface of that part of a seat back or restraining barrier within any zone specified in S5.3.2.1 is impacted from any direction at 16 feet per second by the knee form specified in S6.7, the resisting force of the impacted material shall not exceed 600 pounds and the contact area on the knee form surface shall not be less than 3 square inches. * * * * * S6.3 Temperature. The ambient temperature is any level between 32 degrees F. and 90 degrees F. * * * * * S6.5 Loading bar. The loading bar is a rigid cylinder with an outside diameter of 6 inches that has hemispherical ends with radii of 3 inches and with a surface roughness that does not exceed 63 micro-inches, root mean square. The length of the loading bar is 4 inches less than the width of the seat back in each test. The stroking mechanism applies force through a pivot attachment at the centerpoint of the loading bar which allows the loading bar to rotate in a horizontal plane 30 degrees in either direction from the transverse position. S6.5.1 A vertical or lateral force of 4,000 pounds applied externally through the pivot attachment point of the loading bar at any position reached during a test specified in this standard shall not deflect that point more than 1 inch. S6.6 *Head form.* The head form for the measurement of acceleration is a rigid surface comprised of two hemispherical shapes, with total equivalent weight of 11.5 pounds. The first of the two hemispherical shapes has a diameter of 6.5 inches. The second of the two hemispherical shapes has a 2 inch diameter and is centered as shown in Figure 3 to protrude from the outer surface of the first hemispherical shape. The surface roughness of the hemispherical shapes does not exceed 63 micro-inches, root mean square. * * * * * S6.7 Knee form. The knee form for measurement of force is a rigid 3-inch-diameter cylinder, with an equivalent weight of 10 pounds, that has one rigid hemispherical end with a $1\frac{1}{2}$ inch radius forming the contact surface of the knee form. The hemispherical surface roughness does not exceed 63 microinches, root mean square. * * * * * FIGURE 1 - FORCE/DEFLECTION ZONE § 571.222, Nt. FIGURE 2 – BODY BLOCK FOR LAP BELT ### BIHEMISPHERICAL HEAD FORM RADII FIGURE 3 # § 571.223 Standard No. 223; Rear impact guards. S1. *Scope.* This standard specifies requirements for rear impact guards for trailers and semitrailers. S2. *Purpose*. The purpose of this standard is to reduce the number of deaths and serious injuries that occur when light duty vehicles collide with the rear end of trailers and semitrailers. S3. Application. This standard applies to rear impact guards for trailers and semitrailers subject to Federal Motor Safety Standard No. 224, Rear Impact Protection (§ 571.224). S4. Definitions. In this standard, directional terms such as *bottom*, *center*, *height*, *horizontal*, *longitudinal*, *transverse*, and *rear* refer to directions relative to the vehicle orientation when the guard is oriented as if it were installed on a vehicle according to the installation instructions in S5.5 of this section. *Chassis* means the load supporting frame structure of a motor vehicle. Guard width means the maximum horizontal
guard dimension that is perpendicular to the longitudinal vertical plane passing through the longitudinal centerline of the vehicle when the guard is installed on the vehicle according to the installation instructions in S5.5 of this section. Horizontal member means the structural member of the guard that meets the configuration requirements of S5.1.1 through 5.1.3 of §571.224, Rear Impact Protection, when the guard is installed on a vehicle according to the guard manufacturer's installation instructions. Hydraulic guard means a guard designed to use fluid properties to provide resistance force to deformation. Rear impact guard means a device installed on or near the rear of a vehicle so that when the vehicle is struck from the rear, the device limits the distance that the striking vehicle's front end slides under the rear end of the impacted vehicle. Rigid test fixture means a supporting structure on which a rear impact guard can be mounted in the same manner it is mounted to a vehicle. The rigid text fixture is designed to resist the forces applied to the rear impact guard without significant deformation, such that a performance requirement of this standard must be met no matter how small an amount of energy is absorbed by the rigid test fixture. S5. Requirements. S5.1 Projected Vertical Height. The horizontal member of each guard, when viewed from the rear as it would be installed on a trailer pursuant to the installation instructions or procedures required by S5.5 of this standard, shall have a vertical height of at least 100 mm at each point across the guard width, when projected horizontally on a transverse vertical plane. Those installation instructions or procedures shall specify that the guard is to be mounted so that all portions of the member horizontal necessary achieve a 100 mm high projected vertical height are located not more than 305 mm forward of the vehicle's rear extremity, as defined in S4 of 49 CFR 571.224, Rear Impact Protection. See Figure 1 of this section. S5.2 Strength and Energy Absorption. When tested under the procedures of S6 of this section, each guard shall comply with the strength requirements of S5.2.1 of this section at each test location and the energy absorption requirements of S5.2.2 of this section at test location P3, as specified in S6.4 of this section. However, a particular guard (i.e., test specimen) need not be tested at more than one location. S5.2.1 *Guard Strength.* The guard must resist the force levels specified in S5.2.1 (a) through (c) of this section without deflecting by more than 125 mm. (a) A force of 50,000~N at test location P1 on either the left or the right side of the guard as defined in S6.4(a) of this section. (b) A force of 50,000 N at test location P2 as defined in S6.4(b) of this section. (c) A force of $100,000~\rm N$ at test location P3 on either the left or the right side of the guard as defined in S6.4(c) of this section. S5.2.2 Guard Energy Absorption. A guard, other than a hydraulic guard, shall absorb by plastic deformation within the first 125 mm of deflection at least 5,650 J of energy at each test location P3. See Figure 2 of this section. - S5.3 Labeling. Each guard shall be permanently labeled with the information specified in S5.3 (a) through (c) of this section. The information shall be in English and in letters that are at least 2.5 mm high. The label shall be placed on the forward-facing surface of the horizontal member of the guard, 305 mm inboard of the right end of the guard. - (a) The guard manufacturer's name and address. - (b) The statement: "Manufactured in _____" (inserting the month and year of guard manufacture). - (c) The letters "DOT", constituting a certification by the guard manufacturer that the guard conforms to all requirements of this standard. - S5.4 Guard Attachment Hardware. Each guard, other than a guard that is to be installed on a vehicle manufactured by the manufacturer of the guard, shall be accompanied by all attachment hardware necessary for installation of the guard on the chassis of the motor vehicle for which it is intended. - S5.5 Installation Instructions. manufacturer of rear impact guards for sale to vehicle manufacturers shall include with each guard printed instructions in English for installing the guard, as well as a diagram or schematic depicting proper guard installation. The manufacturer of a rear impact guard for one of its own vehicles shall prepare and keep a copy of installation procedures applicable to each vehicle/guard combination for a period of one year from the date of vehicle manufacture and provide them to NHTSA on request. The instructions or procedures shall specify: - (a) Vehicles on which the guard can be installed. Vehicles may be designated by listing the make and model of the vehicles for which the guard is suitable, or by specifying the design elements that would make any vehicle an appropriate host for the particular guard (e.g., vehicles with frame rails of certain spacing and gauge of steel). - (b) A description of the chassis surface to which the guard will be attached, including frame design types with dimensions, material thickness, and tire track width. This description shall be detailed enough to permit the - agency to locate and duplicate the chassis surface during compliance testing. - (c) An explanation of the method of attaching the guard to the chassis of each vehicle make and model listed or to the design elements specified in the instructions or procedures. The principal aspects of vehicle chassis configuration that are necessary to the proper functioning of the guard shall be specified. If the chassis strength is inadequate for the guard design, the instructions or procedures shall specify methods for adequately reinforcing the vehicle chassis. Procedures for properly installing any guard attachment hardware shall be provided. - S6. Guard Test Procedures. The procedures for determining compliance with S5.2 of this section are specified in S6.1 through S6.6 of this section. - S6.1 Preparation of Hydraulic Guards. For hydraulic guards, the horizontal member of the guard is deflected in a forward direction until the hydraulic unit(s) have reached the full extent of their designed travel or 610 mm, whichever occurs first. The hydraulic units are compressed before the application of force to the guard in accordance with S6.6 of this section and maintained in this condition throughout the testing under S6.6 of this section. - S6.2 Guard Installation for Strength and Energy Absorption Tests. - (a) The rear impact guard is attached to a test device. - (b) The test device for the compliance test will be whichever of the following devices, if either was used, the manufacturer used as a basis for its certification of the guard in S5.3(c) of this section. If the manufacturer did not use one of these devices or does not specify a device when asked by the agency, the agency may choose either of the following devices— - (1) A rigid test fixture. In the case of testing on a rigid test fixture NHTSA will consult the installation instructions or procedures to determine the surface or structure that the guard is supposed to be mounted to and mount it to the rigid test fixture in the same way. - (2) A complete trailer for which installation of the guard is suitable, as provided in the manufacturer's installation instructions or procedures required by S5.5 of this section. The trailer chassis is secured so that it behaves essentially as a fixed object during the test, such that the test must be passed no matter how little it moves during the test. (c) The guard is attached in accordance with the instructions or procedures for guard attachment provided by the guard manufacturer for that guard as required by S5.5 of this section. S6.3 Force Application Device. The force application device employed in S6.6 of this section consists of a rectangular solid made of rigid steel. The steel solid is 203 mm in height, 203 mm in width, and 25 mm in thickness. The 203 mm by 203 mm face of the block is used as the contact surface for application of the forces specified in S5.2.1 (a) through (c) of this section. Each edge of the contact surface of the block has a radius of curvature of 5 mm plus or minus 1 mm. S6.4 Test Locations. With the guard mounted to the rigid test fixture or to a complete trailer, determine the test locations P1, P2, and P3 in accordance with the procedure set forth in S6.4 (a) through (c) of this section. See Figure 1 of this section. - (a) Test location P1 is the point on the rearmost surface of the horizontal member of the guard that: - Is located at a distance of % of the guard width from the vertical longitudinal plane passing through center of the guard; - (2) Lies on either side of the center of the guard's horizontal member; and - (3) Is 50 mm above the bottom of the guard. - (b) Test location P2 is the point on the rearmost surface of the horizontal member of the guard that: - (1) Lies in the longitudinal vertical plane passing through the center of the guard's horizontal member; and - (2) Is 50 mm above the bottom of the guard. - (c) Test location P3 is any point on the rearmost surface of the horizontal member of the guard that: - (1) Is not less than 355 mm and not more than 635 mm from the vertical longitudinal plane passing through center of the guard; - (2) Lies on either the right or left side of the horizontal member of the guard; and - (3) Is 50 mm above the bottom of the guard. - S6.5 Positioning of Force Application Device. Before applying any force to the guard, locate the force application device such that: - (a) The center point of the contact surface of the force application device is aligned with and touching the guard test location, as defined by the specifications of S6.4 of this section. - (b) The longitudinal axis of the force application device passes through the test location and is perpendicular to the transverse vertical plane
that is tangent to the rearmost surface of the guard's horizontal member. S6.6 Force Application. After the force application device has been positioned according to S6.5 of this section, apply the loads specified in S5.2.1 of this section. Load application procedures are specified in the S6.6 (a) through (d) of this section. - (a) Using the force application device, apply force to the guard in a forward direction such that the displacement rate of the force application device is the rate, plus or minus 10 percent, designated by the guard manufacturer within the range of 2.0 cm per minute to 9.0 cm per minute. If the guard manufacturer does not designate a rate, any rate within that range may be chosen. - (b) If conducting a strength test to satisfy the requirement of S5.2.1 of this section, the force is applied until the forces specified in S5.2.1 of this section have been exceeded, or until the displacement of the force application device has reached at least 125 mm, whichever occurs first. - (c) If conducting a test to be used for the calculation of energy absorption levels to satisfy the requirement of S5.2.2 of this section, apply the force to the guard until displacement of the force application device has reached 125 mm. For calculation of guard energy absorption, the value of force is recorded at least ten times per 25 mm of displacement of the contact surface of the loading device. Reduce the force until the guard no longer offers resistance to the force application device. Produce a force vs. deflection diagram of the type shown in Figure 2 of this section using this information. Determine the energy absorbed by the guard by calculating the shaded area bounded by the curve in the force vs. deflection diagram and the abscissa (X-axis). (d) During each force application, the force application device is guided so that it does not rotate. At all times during the application of force, the location of the longitudinal axis of the force application device remains constant. § 571.223 FIGURE 2. GUARD ENERGY ABSORPTION (TYPICAL FORCE-DEFLECTION CURVE AT P3) [61 FR 2030, Jan. 24, 1996, as amended at 63 FR 3662, Jan. 26, 1998] ### §571.224 Standard No. 224; Rear impact protection. S1. Scope. This standard establishes requirements for the installation of rear impact guards on trailers and semitrailers with a gross vehicle weight rating (GVWR) of 4,536 kg or more. S2. *Purpose.* The purpose of this standard is to reduce the number of deaths and serious injuries occurring when light duty vehicles impact the rear of trailers and semitrailers with a GVWR of 4,536 kg or more. S3. Application. This standard applies to trailers and semitrailers with a GVWR of 4,536 kg or more. The standard does not apply to pole trailers, pulpwood trailers, special purpose vehicles, wheels back vehicles, or temporary living quarters as defined in 49 CFR 529.2. If a cargo tank motor vehicle, as defined in 49 CFR 171.8, is certified to carry hazardous materials and has a rear bumper or rear end protection device conforming with 49 CFR part 178 located in the area of the horizontal member of the rear underride guard required by this standard, the guard need not comply with the energy absorption requirement (S5.2.2) of 49 CFR 571.223. #### S4. Definitions. *Chassis* means the load supporting frame structure of a motor vehicle. Horizontal member means the structural member of the guard that meets the configuration requirements of S5.1 of this section when the guard is installed on the vehicle according to the installation instructions or procedures required by S5.5 of §571.223, Rear Impact Guards. Low chassis vehicle means a trailer or semitrailer having a chassis that extends behind the rearmost point of the rearmost tires and a lower rear surface that meets the configuration requirements of S5.1.1 through 5.1.3 of this section. Outer or Outboard means away from the trailer centerline and toward the side extremities of the trailer. Pulpwood trailer means a trailer that is designed exclusively for harvesting logs or pulpwood and constructed with a skeletal frame with no means for attachment of a solid bed, body, or container. Rear extremity means the rearmost point on a vehicle that is above a horizontal plane located 560 mm above the ground and below a horizontal plane located 1,900 mm above the ground when the vehicle is configured as specified in S5.1 of this section and when the vehicle's cargo doors, tailgate, or other permanent structures are positioned as they normally are when the vehicle is in motion. Nonstructural protrusions such as taillights, rubber bumpers, hinges and latches are excluded from the determination of the rearmost point. Rounded corner means a guard's outermost end that curves upward or forward toward the front of the vehicle, or both. Side extremity means the outermost point on a vehicle's side that is located above a horizontal plane 560 mm above the ground, below a horizontal plane located 190 cm above the ground, and between a transverse vertical plane tangent to the rear extremity of the vehicle and a transverse vertical plane located 305 mm forward of that plane when the vehicle is configured as specified in S5.1 of this section. Non-structural protrusions such as taillights, inges, rubber bumpers, and latches are excluded from the determination of the outermost point. Special purpose vehicle means a trailer or semitrailer having work-performing equipment that, while the vehicle is in transit, resides in or moves through the area that could be occupied by the horizontal member of the rear underride guard, as defined by S5.1.1 through S5.1.3. Wheels back vehicle means a trailer or semitrailer whose rearmost axle is permanently fixed and is located such that the rearmost surface of tires of the size recommended by the vehicle manufacturer for the vehicle on that axle is not more than 305 mm forward of the transverse vertical plane tangent to the rear extremity of the vehicle. #### S5. Requirements. S5.1 *Installation; vehicle configuration.*Each vehicle shall be equipped with a rear impact guard certified as meeting Federal Motor Vehicle Safety Standard No. 223, Rear Impact Guards (§ 571.223). When the vehicle to which the guard is attached is resting on level ground, unloaded, with its full capacity of fuel, and with its tires inflated and air suspension, if so equipped, pressurized in accordance with the manufacturer's recommendations, the guard shall comply with the requirements of S5.1.1 through S5.1.3 of this section. See Figure 1 of this section. S5.1.1 *Guard width.* The outermost surfaces of the horizontal member of the guard shall extend outboard to within 100 mm of the longitudinal vertical planes that are tangent to the side extremities of the vehicle, but shall not extend outboard of those planes. See Figure 1 of this section. S5.1.2 Guard height. The vertical distance between the bottom edge of the horizontal member of the guard and the ground shall not exceed 560 mm at any point across the full width of the member. Notwithstanding this requirement, guards with rounded corners may curve upward within 255 mm of the longitudinal vertical planes that are tangent to the side extremities of the vehicle. See Figure 1 of this section. S5.1.3 Guard rear surface. At any height 560 mm or more above the ground, the rearmost surface of the horizontal member of the guard shall be located as close as practical to a transverse vertical plane tangent to the rear extremity of the vehicle, but no more than 305 mm forward of that plane. Notwithstanding this requirement, the horizontal member may extend rearward of the plane, and guards with rounded corners may curve forward within 255 mm of the longitudinal vertical planes that are tangent to the side extremities of the vehicle. S5.2 Installation Requirements. Guards shall be attached to the vehicle's chassis by the vehicle manufacturer in accordance with the installation instructions or procedures provided pursuant to S5.5 of Standard No. 223, Rear Impact Guards (§571.223). The vehicle must be of a type identified in the installation instructions as appropriate for the guard. $[61\ FR\ 2035,\ Jan.\ 24,\ 1996,\ as\ amended\ at\ 63\ FR\ 3662,\ Jan.\ 26,\ 1998]$ ## §571.301 Standard No. 301; Fuel system integrity. S1. *Scope.* This standard specifies requirements for the integrity of motor vehicle fuel systems. S2. *Purpose.* The purpose of this standard is to reduce deaths and injuries occurring from fires that result from fuel spillage during and after motor vehicle crashes, and resulting from ingestion of fuels during siphoning S3. Application. This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks and buses that have a GVWR of 4,536 kg or less and use fuel with a boiling point above 0° C, and to school buses that have a GVWR greater than 4,536 kg and use fuel with a boiling point above 0° C. S4. *Definition. Fuel spillage* means the fall, flow, or run of fuel from the vehicle but does not include wetness resulting from capillary action. S5. General requirements. S5.1 Passenger cars, and multipurpose passenger vehicles, trucks, and buses with a GVWR of 10,000 pounds or less. Each passenger car and each multipurpose passenger vehicle, truck, and bus with a GVWR of 10,000 pounds or less shall meet the requirements of S6.1 through S6.4. Each of these types of vehicles that is manufactured to use alcohol fuels shall also meet the requirements of S6.6. S5.2 [Reserved] S5.3 [Reserved] S5.4 Schoolbuses with a GVWR greater than 10,000 pounds. Each schoolbus with a GVWR greater than 10,000 pounds shall meet the requirements of S6.5. Each schoolbus with a GVWR greater than 10,000 pounds that is manufactured to use alcohol fuels shall meet the requirements of S6.6. S5.5 Fuel spillage; Barrier crash. Fuel spillage in any fixed or moving barrier crash test shall not exceed 28 g from impact until motion of the vehicle has ceased, and shall not
exceed a total of 142 g in the 5-minute period following cessation of motion. For the subsequent 25-minute period, fuel spillage during any 1 minute interval shall not exceed 28 g. S5.6 Fuel spillage; rollover. Fuel spillage in any rollover test, from the onset of rotational motion, shall not exceed a total of 142 g for the first 5 minutes of testing at each successive 90° increment. For the remaining test period, at each increment of 90° fuel spillage during any 1 minute interval shall not exceed 28 g. S5.7. Alcohol fuel vehicles. Each vehicle manufactured to operate on an alcohol fuel (e.g., methanol, ethanol) or a fuel blend containing at least 20 percent alcohol fuel shall meet the requirements of S6.6. S6. Test requirements. Each vehicle with a GVWR of 4,536 kg or less shall be capable of meeting the requirements of any applicable barrier crash test followed by a static rollover, without alteration of the vehicle during the test sequence. A particular vehicle need not meet further requirements after having been subjected to a single barrier crash test and a static rollover test. S6.1 Frontal barrier crash. When the vehicle travelling longitudinally forward at any speed up to and including 48 km/h impacts a fixed collision barrier that is perpendicular to the line of travel of the vehicle, or at any angle up to 30° in either direction from the perpendicular to the line of travel of the vehicle, with 50th-percentile test dummies as specified in part 572 of this chapter at each front outboard designated seating position and at any other position whose protection system is required to be tested by a dummy under the provisions of Standard No. 208, under the applicable conditions of S7., fuel spillage shall not exceed the limits of S5.5. S6.2 Rear moving barrier crash. When the vehicle is impacted from the rear by a barrier moving at 48 km/h, with test dummies as specified in part 572 of this chapter at each front outboard designated seating position, under the applicable conditions of S7., fuel spillage shall not exceed the limits of S5.5. S6.3 Lateral moving barrier crash. When the vehicle is impacted laterally on either side by a barrier moving at 32 km/h with 50th-percentile test dummies as specified in part 572 of this chapter at positions required for testing to Standard No. 208, under the applicable conditions of S7., fuel spillage shall not exceed the limits of S5.5. S6.4 Static rollover. When the vehicle is rotated on its longitudinal axis to each successive increment of 90° , following an impact crash of S6.1, S6.2, or S6.3, fuel spillage shall not exceed the limits of S5.6. S6.5 Moving contoured barrier crash. When the moving contoured barrier assembly traveling longitudinally forward at any speed up to and including 48 km/h impacts the test vehicle (school bus with a GVWR exceeding 4,536 kg) at any point and angle, under the applicable conditions of S7.1 and S7.5, fuel spillage shall not exceed the limits of S5.5. S6.6 Anti-siphoning test for alcohol fuel vehicles. Each vehicle shall have means that prevent any hose made of vinyl plastic or rubber, with a length of not less than 1200 millimeters (mm) and an outside diameter of not less than 5.2 mm, from contacting the level surface of the liquid fuel in the vehicle's fuel tank or fuel system, when the hose is inserted into the filler neck attached to the fuel tank with the fuel tank filled to any level from 90 to 95 percent of capacity. S7. Test conditions. The requirements of S5.1 through S5.6 and S6.1 through S6.5 shall be met under the following conditions. Where a range is specified, the vehicle must be capable of meeting the requirements at all points within the range. S7.1 *General test conditions.* The following conditions apply to all tests. S7.1.1 The fuel tank is filled to any level from 90 to 95 percent of capacity with Stoddard solvent, having the physical and chemical properties of type 1 solvent, Table I ASTM Standard D484-71, "Standard Specifications for Hydrocarbon Dry Cleaning Solvents." S7.1.2 The fuel system other than the fuel tank is filled with Stoddard solvent to its normal operating level. S7.1.3 In meeting the requirements of S6.1 through S6.3, if the vehicle has an electrically driven fuel pump that normally runs when the vehicle's electrical system is activated, it is operating at the time of the barrier crash. S7.1.4 The parking brake is disengaged and the transmission is in neutral, except that in meeting the requirements of S6.5 the parking brake is set. S7.1.5 Tires are inflated to manufacturer's specifications. S7.1.6 The vehicle, including test devices and instrumentation, is loaded as follows: (a) Except as specified in S7.1.1, a passenger car is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus the necessary test dummies as specified in S6., restrained only by means that are installed in the vehicle for protection at its seating position. (b) Except as specified in S7.1.1, a multipurpose passenger vehicle, truck, or bus with a GVWR of 4,536 kg or less is loaded to its unloaded vehicle weight, plus the necessary test dummies, as specified in S6., plus 136 kg or its rated cargo and luggage capacity weight, whichever is less, secured to the vehicle and distributed so that the weight on each axle as measured at the tire-ground interface is proportional to its GAWR. If the weight on any axle, when the vehicle is loaded to unloaded vehicle weight plus dummy weight, exceeds the axle's proportional share of the test weight, the remaining weight shall be placed so that the weight on that axle remains the same. Each dummy shall be restrained only by means that are installed in the vehicle for protection at its seating position. (c) Except as specified in S7.1.1, a school bus with a GVWR greater than 4,536 kg is loaded to its unloaded vehicle weight, plus 54 kg of unsecured mass at each designated seating position. S7.2 Lateral moving barrier crash test conditions. The lateral moving barrier crash test conditions are those specified in S8.2 of Standard No. 208, 49 CFR 571.208. S7.3 Rear moving barrier test conditions. The rear moving barrier test conditions are those specified in S8.2 of Standard No. 208, 49 CFR 571.208, except for the positioning of the barrier and the vehicle. The barrier and test vehicle are positioned so that at impact— (a) The vehicle is at rest in its normal attitude; (b) The barrier is traveling at $48\ km/h$ with its face perpendicular to the longitudinal centerline of the vehicle; and (c) A vertical plane through the geometric center of the barrier impact surface and perpendicular to that surface coincides with the longitudinal centerline of the vehicle. S7.4 Static rollover test conditions. The vehicle is rotated about its longitudinal axis, with the axis kept horizontal, to each successive increment of 90°, 180°, and 270° at a uniform rate, with 90° of rotation taking place in any time interval from 1 to 3 minutes. After reaching each 90° increment the vehicle is held in that position for 5 minutes. S7.5 *Moving contoured barrier test conditions.* The following conditions apply to the moving contoured barrier crash test. S7.5.1 The moving barrier, which is mounted on a carriage as specified in Figure 1, is of rigid construction, symmetrical about a vertical longitudinal plane. The contoured impact surface, which is 629 mm high and 1,981 mm wide, conforms to the dimensions shown in Figure 2, and is attached to the carriage as shown in that figure. The ground clearance to the lower edge of the impact surface is 133 mm \pm 13 mm. The wheelbase is 3,048 mm \pm 50 mm. S7.5.2 The moving contoured barrier, including the impact surface, supporting structure, and carriage, has a mass of 1,814 kg \pm 23 kg with the mass distributed so that 408 kg \pm 11 kg is at each rear wheel and 499 kg \pm 11 kg is at each front wheel. The center of gravity is located 1,372 mm \pm 38 mm rearward of the front wheel axis, in the vertical longitudinal plane of symmetry, 401 mm above the ground. The moment of inertia about the center of gravity is: $I_x = 367 \text{ kgm}^2 \pm 18.4 \text{ kgm}^2$ $I_z = 4,711 \text{ kgm}^2 \pm 236 \text{ kgm}^2$ S7.5.3 The moving contoured barrier has a solid nonsteerable front axle and fixed rear axle attached directly to the frame rails with no spring or other type of suspension system on any wheel. (The moving barrier assembly is equipped with a braking device capable of stopping its motion.) S7.5.4 The moving barrier assembly is equipped with G78–15 pneumatic tires with a tread width of 152 mm \pm 25 mm, inflated to 165 kPa. S7.5.5 The concrete surface upon which the vehicle is tested is level, rigid, and of uniform construction, with a skid number of 75 when measured in accordance with American Society of Testing and Materials Method E: 274-65T at 64 km/h, omitting water delivery as specified in paragraph 7.1 of that method. S7.5.6 The barrier assembly is released from the guidance mechanism immediately prior to impact with the vehicle. 683 [40 FR 48353, Oct. 15, 1975. Redesignated and amended at 41 FR 9350, Mar. 4, 1976; 41 FR 36026, 36027, Aug. 26, 1976; 53 FR 8204, Mar. 14, 1988; 53 FR 49990, Dec. 13, 1988; 58 FR 5638, Jan. 22, 1993; 61 FR 19202, May 1, 1996; 63 FR 28953, May 27, 1998] EFFECTIVE DATE NOTE: At 63 FR 28953, May 27, 1998, §571.301 was amended by revising S3, S5.5, S5.6, S6, S6, S6.1, S6.2, S6.3, S6.5, S6.5, S7.1.6, S7.3, S7.5.1, S7.5.2, S7.5.4, and S7.5.5, effective May 27, 1999. For the convenience of the user, the superseded text follows: ### §571.301 Standard No. 301; Fuel system integrity. * * * * * S3. Application. This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks and buses that have a GVWR of 10,000 pounds or less and use fuel with a boiling point above 32° F, and to school buses that have a GVWR greater than 10,000 pounds
and use fuel with a boiling point above 32° F. * * * * * S5.5 Fuel Spillage: Barrier Crash. Fuel spillage for each vehicle in any fixed or moving barrier crash test shall not exceed 1 ounce by weight from impact until motion of the vehicle has ceased, and shall not exceed a total of 5 ounces by weight in the 5-minute period following cessation of motion. For the subsequent 25-minute period, fuel spillage during any 1-minute interval shall not exceed 1 ounce by weight. S5.6 Fuel spillage: Rollover. Fuel spillage in any rollover test, from the onset of rotational motion, shall not exceed a total of 5 ounces by weight for the first 5 minutes of testing at each successive 90° increment. For the remaining testing period, at each increment of 90° fuel spillage during any 1-minute interval shall not exceed 1 ounce by weight. * * * * * * S6. Test requirements. Each vehicle with a GVWR of 10,000 pounds or less shall be capable of meeting the requirements of any applicable barrier crash test followed by a static rollover, without alteration of the vehicle during the test sequence. A particular vehicle need not meet further requirements after having been subjected to a single barrier crash test and a static rollover test. S6.1 Frontal barrier crash. When the vehicle traveling longitudinally forward at any speed up to and including 30 mph impacts a fixed collision barrier that is perpendicular to the line of travel of the vehicle, or at any angle up to 30° in either direction from the perpendicular to the line of travel of the vehicle, with 50th-percentile test dummies as specified in part 572 of this chapter at each front outboard designated seating position and at any other position whose protection system is required to be tested by a dummy under the provisions of Standard No. 208, under the applicable conditions of S7., fuel spillage shall not exceed the limits of S5.5. S6.2 Rear moving barrier crash. When the vehicle is impacted from the rear by a barrier moving at 30 mph, with test dummies as specified in part 572 of this chapter at each front outboard designated seating position, under the applicable conditions of S7., fuel spillage shall not exceed the limits of S5.5. S6.3 Lateral moving barrier crash. When the vehicle is impacted laterally on either side by a barrier moving at 20 mph with 50th-percentile test dummies as specified in part 572 of this chapter at positions required for testing to Standard No. 208, under the applicable conditions of S7., fuel spillage shall not exceed the limits of S5.5. * * * * * S6.5 Moving contoured barrier crash. When the moving contoured barrier assembly traveling longitudinally forward at any speed up to and including 30 mph impacts the test vehicle (schoolbus with a GVWR exceeding 10,000 pounds) at any point and angle, under the applicable conditions of S7.1 and S7.5, fuel spillage shall not exceed the limits of S5.5. S6.6 Anti-siphoning test for alcohol fuel vehicles. Each vehicle shall have means that prevent any hose made of vinyl plastic or rubber, with a length of not less than 120 centimeters (cm) (47.2 inches) and an outside diameter of not less than 5.2 millimeters (mm) (0.20 inches), from contacting the level surface of the liquid fuel in the vehicle's fuel tank or fuel system, when the hose is inserted into the filler neck attached to the fuel tank with the fuel tank filled to any level from 90 to 95 percent of capacity. * * * * * S7.1.6 The vehicle, including test devices and instrumentation, is loaded as follows: (a) Except as specified in S7.1.1, a passenger car is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus the necessary test dummies as specified in S6., restrained only by means that are installed in the vehicle for protection at its seating position. (b) Except as specified in S7.1.1, a multipurpose passenger vehicle, truck, or bus with a GVWR of 10,000 pounds or less is loaded to its unloaded vehicle weight, plus the necessary test dummies, as specified in S6., plus 300 pounds or its rated cargo and luggage capacity weight, whichever is less, secured to the vehicle and distributed so that the weight on each axle as measured at the tireground interface is in proportion to its GAWR. If the weight on any axle, when the vehicle is loaded to unloaded vehicle weight plus dummy weight, exceeds the axle's proportional share of the test weight, the remaining weight shall be placed so that the weight on that axle remains the same. Each dummy shall be restrained only by means that are installed in the vehicle for protection at its seating position. (c) Except as specified in S7.1.1, a schoolbus with a GVWR greater than 10,000 pounds is loaded to its unloaded vehicle weight, plus 120 pounds of unsecured weight at each designated seating position. * * * * * S7.3 Rear moving barrier test conditions. The rear moving barrier test conditions are those specified in S8.2 of Standard No. 208, 49 CFR 571.208, except for the positioning of the barrier and the vehicle. The barrier and test vehicle are positioned so that at impact— (a) The vehicle is at rest in its normal atti- (b) The barrier is traveling at 30 mph with its face perpendicular to the longitudinal centerline of the vehicle; and (c) A vertical plane through the geometric center of the barrier impact surface and perpendicular to that surface coincides with the longitudinal centerline of the vehicle. * * * * * * S7.5.1 The moving barrier, which is mounted on a carriage as specified in figure 1, is of rigid construction, symmetrical about a vertical longitudinal plane. The contoured impact surface, which is 24.75 inches high and 78 inches wide, conforms to the dimensions shown in Figure 2, and is attached to the carriage as shown in that figure. The ground clearance to the lower edge of the impact surface is 5.25 ± 0.5 inches. The wheelbase is 120 ± 2 inches. S7.5.2 The moving contoured barrier, including the impact surface, supporting structure, and carriage, weighs $4,000\pm50$ pounds with the weight distributed so that 900 ± 25 pounds is at each rear wheel and 1100 ± 25 pounds is at each front wheel. The center of gravity is located 54.0 ± 1.5 inches rearward of the front wheel axis, in the vertical longitudinal plane of symmetry, 15.8 inches above the ground. The moment of inertia about the center of gravity is: $I_x = 271 \pm 13.6$ slug ft. ² $I_z = 3475 \pm 174$ slug ft. ² * * * * * * S7.5.4 The moving barrier assembly is equipped with G78-15 pneumatic tires with a tread width of 6.0 ± 1 inch, inflated to 24 psi. S7.5.5 The concrete surface upon which the vehicle is tested is level, rigid, and of uniform construction, with a skid number of 75 when measured in accordance with American Society of Testing and Materials Method E-274-65T at 40 mph, omitting water delivery as specified in paragraph 7.1 of that method. ### § 571.302 Standard No. 302; Flammability of interior materials. S1. *Scope.* This standard specifies burn resistance requirements for materials used in the occupant compartments of motor vehicles. S2. *Purpose.* The purpose of this standard is to reduce the deaths and injuries to motor vehicle occupants caused by vehicle fires, especially those originating in the interior of the vehicle from sources such as matches or cigarettes. S3. *Application*. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses. S3A. *Definitions. Occupant compartment air space* means the space within the occupant compartment that normally contains refreshable air. S4. Requirements. S4.1 The portions described in S4.2 of the following components of vehicle occupant compartments shall meet the requirements of S4.3: Seat cushions, seat backs, seat belts, headlining, convertible tops, arm rests, all trim panels including door, front, rear, and side panels, compartment shelves, head restraints, floor coverings, sun visors, curtains, shades, wheel housing covers, engine compartment covers, mattress covers, and any other interior materials, including padding and crash-deployed elements, that are designed to absorb energy on contact by occupants in the event of a crash. S4.1.1 [Reserved] S4.2 Any portion of a single or composite material which is within 13 mm of the occupant compartment air space shall meet the requirements of S4.3. S4.2.1 Any material that does not adhere to other material(s) at every point of contact shall meet the requirements of S4.3 when tested separately. S4.2.2 Any material that adheres to other materials at every point of contact shall meet the requirements of S4.3 when tested as a composite with the other material(s). # Occupant Compartment Air Space All Dimensions in Millimeters (mm) Material A has a non-adhering interface with material B and is tested separately. Part of material B is within 13 mm of the occupant compartment air space, and materials B and C adhere at every point of contact; therefore, B and C are tested as a composite. The cut is in material C as shown, to make a specimen 13 mm thick. S4.3(a) When tested in accordance with S5, material described in S4.1 and S4.2 shall not burn, nor transmit a flame front across its surface, at a rate of more than 102 mm per minute. The requirement concerning transmission of a flame front shall not apply to a surface created by cutting a test specimen for purposes of testing pursuant to S5. (b) If a material stops burning before it has burned for 60 seconds from the start of timing, and has not burned more than 51 mm from the point where the timing was started, it shall be considered to meet the burn-rate requirement of S4.3(a). S5.1 Conditions. S5.1.1 The test is conducted in a metal cabinet for protecting the test specimens from drafts. The interior of the cabinet is 381 mm long, 203 mm deep, and 356 mm high. It has a glass observation window in the front, a closable opening to permit insertion of the specimen holder,
and a hole to accommodate tubing for a gas burner. For ventilation, it has a 13 mm clearance space around the top of the cabinet, ten holes in the base of the cabinet, each hole 19 mm in diameter and legs to elevate the bottom of the cabinet by 10 mm, all located as shown in Figure 1. Figure 1 All dimensions in millimeters (mm) S5.1.2 Prior to testing, each specimen is conditioned for 24 hours at a temperature of 21° C, and a relative humidity of 50 percent, and the test is conducted under those ambient conditions. S5.1.3 The test specimen is inserted between two matching U-shaped frames of metal stock 25 mm wide and 10 mm high. The interior dimensions of the Ushaped frames are 51 mm wide by 330 mm long. A specimen that softens and bends at the flaming end so as to cause erratic burning is kept horizontal by supports consisting of thin, heat-resistant wires, spanning the width of the Ushaped frame under the specimen at 25 mm intervals. A device that may be used for supporting this type of material is an additional U-shaped frame, wider than the U-shaped frame containing the specimen, spanned by 10mil wires of heat-resistant composition at 25 mm intervals, inserted over the bottom U-shaped frame. S5.1.4 A bunsen burner with a tube of 10 mm inside diameter is used. The gas adjusting valve is set to provide a flame, with the tube vertical, of 38 mm in height. The air inlet to the burner is closed. S5.1.5 The gas supplied to the burner has a flame temperature equivalent to that of natural gas. S5.2 Preparation of specimens. S5.2.1 Each specimen of material to be tested shall be a rectangle 102 mm wide by 356 mm long, wherever possible. The thickness of the specimen is that of the single or composite material used in the vehicle, except that if the material's thickness exceeds 13 mm, the specimen is cut down to that thickness measured from the surface of the specimen closest to the occupant compartment air space. Where it is not possible to obtain a flat specimen because of surface curvature, the specimen is cut to not more than 13 mm in thickness at any point. The maximum available length or width of a specimen is used where either dimension is less than 356 mm or 102 mm, respectively, unless surrogate testing is required under S4.1.1. S5.2.2 The specimen is produced by cutting the material in the direction that provides the most adverse test results. The specimen is oriented so that the surface closest to the occupant compartment air space faces downward on the test frame. S5.2.3 Material with a napped or tufted surface is placed on a flat surface and combed twice against the nap with a comb having seven to eight smooth, rounded teeth per 25 mm. S5.3 Procedure. - (a) Mount the specimen so that both sides and one end are held by the U-shaped frame, and one end is even with the open end of the frame. Where the maximum available width of a specimen is not more than 51 mm, so that the sides of the specimen cannot be held in the U-shaped frame, place the specimen in position on wire supports as described in S5.1.3, with one end held by the closed end of the U-shaped frame. - (b) Place the mounted specimen in a horizontal position, in the center of the cabinet. - (c) With the flame adjusted according to S5.1.4, position the bunsen burner and specimen so that the center of the burner tip is 19 mm below the center of the bottom edge of the open end of the specimen. - (d) Expose the specimen to the flame for 15 seconds. - (e) Begin timing (without reference to the period of application of the burner flame) when the flame from the burning specimen reaches a point 38 mm from the open end of the specimen. - (f) Measure the time that it takes the flame to progress to a point 38 mm from the clamped end of the specimen. If the flame does not reach the specified end point, time its progress to the point where flaming stops. - (g) Calculate the burn rate from the formula: $B = 60 \times (D/T)$ Where: - $B \ = \ Burn \ rate \ in \ millimeters \ per \\ minute$ - D = Length the flame travels in millimeters, and - T = Time in seconds for the flame to travel D millimeters. [36 FR 22902, Dec. 2, 1971, as amended at 40 FR 14319, Mar. 31, 1975; 40 FR 42747, Sept. 16, 1975; 40 FR 56667, Dec. 4, 1975; 63 FR 28954, 28956, May 27, 1998; 63 FR 51003, Sept. 24, 1998] EFFECTIVE DATE NOTE: At 63 FR 28954, 28956, May 27, 1998, §571.302 was amended by revising S4.2, S4.2.2, including the Figure named "Illustrative Example—Occupant Compartment Air Space", S4.3, S5.1, S5.1.1, Figure 1, after S5.1.1, S5.1.2, S5.1.3, S5.1.4, S5.2.1, S5.2.3, and S5.3, effective May 27, 1999. At 63 FR 51003, Sept. 24, 1998, Figure 1, after S5.1.1 was revised, effective May 27, 1999. For the convenience of the user, the superseded text follows: #### § 571.302 Flammability of interior materials. * * * * * S4.2 Any portion of a single or composite material which is within $\frac{1}{2}$ inch of the occupant compartment air space shall meet the requirements of S4.3. * * * * * S4.2.2 Any material that adheres to other material(s) at every point of contact shall meet the requirements of S4.3 when tested as a composite with the other material(s). #### Illustrative Example Material A has a non-adhering interface with material B and is tested separately. Part of material B is within $\frac{1}{2}$ inch of the occupant compartment air space, and materials B and C adhere at every point of contact; therefore B and C are tested as a composite. The cut is in material C as shown, to make a specimen $\frac{1}{2}$ inch thick. S4.3(a) When tested in accordance with S5, material described in S4.1 and S4.2 shall not burn, nor transmit a flame front across its surface, at a rate of more than 4 inches per minute. However, the requirement concerning transmission of a flame front shall not apply to a surface created by the cutting #### § 571.302, Nt. of a test specimen for purposes of testing pursuant to ${\sf S5}.$ (b) If a material stops burning before it has burned for 60 seconds from the start of timing, and has not burned more than 2 inches from the point where timing was started, it shall be considered to meet the burn-rate requirement of S4.3(a). S5. Test procedure. S5.1 Conditions. S5.1.1 The test is conducted in a metal cabinet for protecting the test specimens from drafts. The interior of the cabinet is 15 inches long, 8 inches deep, and 14 inches high. It has a glass observation window in the front, a closable opening to permit insertion of the specimen holder, and a hole to accommodate tubing for a gas burner. For ventilation, it has a ½-inch clearance space around the top of the cabinet, ten ¾-inch-diameter holes in the base of the cabinet, and legs to elevate the bottom of the cabinet by three-eighths of an inch, all located as shown in Figure 1. S5.1.2 Prior to testing, each specimen is conditioned for 24 hours at a temperature of 70°F. and a relative humidity of 50 percent, and the test is conducted under those ambient conditions. S5.1.3 The test specimen is inserted between two matching U-shaped frames of metal stock 1-inch wide and % of an inch high. The interior dimensions of the U-shaped frames are 2 inches wide by 13 inches long. A specimen that softens and bends at the flaming end so as to cause erratic burning is kept horizontal by supports consisting of thin, heat-resistant wires, spanning the width of the U-shaped frame under the specimen at 1-inch intervals. A device that may be used for supporting this type of material is an additional U-shaped frame, wider than the U-shaped frame containing the specimen, spanned by 10-mil wires of heat-resistant composition at 1-inch intervals, inserted over the bottom U-shaped frame. S5.1.4 A bunsen burner with a tube of %-inch inside diameter is used. The gas adjusting valve is set to provide a flame, with the tube vertical, of $1\frac{1}{2}$ inches in height. The air inlet to the burner is closed. * * * * * S5.2.1 Each specimen of material to be tested shall be a rectangle 4 inches wide by 14 inches long, wherever possible. The thickness of the specimen is that of the single or composite material used in the vehicle, except that if the material's thickness exceeds ½ inch, the specimen is cut down to that thickness measured from the surface of the specimen closest to the occupant compartment air space. Where it is not possible to obtain a flat specimen because of surface curvature, the specimen is cut to not more than ½ inch in thickness at any point. The maximum available length or width of a specimen is used where either dimension is less than 14 inches or 4 inches, respectively, unless surrogate testing is required under \$\frac{5411}{5411} * * * * * * S5.2.3 Material with a napped or tufted surface is placed on a flat surface and combed twice against the nap with a comb having seven to eight smooth, rounded teeth per inch. S5.3 Procedure. (a) Mount the specimen so that both sides and one end are held by the U-shaped frame, and one end is even with the open end of the frame. Where the maximum available width of a specimen is not more than 2 inches, so that the sides of the specimen cannot be held in the U-shaped frame, place the specimen in position on wire supports as described in S5.1.3, with one end held by the closed end of the U-shaped frame. (b) Place the mounted specimen in a horizontal position, in the center of the cabinet. - (c) With the flame adjusted according to S5.1.4, position the bunsen burner and specimen so that the center of the burner tip is three-fourths of an inch below the center of the bottom edge of the open end of the specimen - (d) Expose the specimen to the flame for 15 seconds. - (e) Begin timing (without reference to the period of application of the burner flame) when the flame from the burning specimen reaches a point $1\frac{1}{2}$ inches from the open end of the specimen. - (f) Measure the time that it takes the flame to progress to a point $1\frac{1}{2}$ inches from the clamped end of
the specimen. If the flame does not reach the specified end point, time its progress to the point where flaming stops. - (g) Calculate the burn rate from the formula #### $B=60\times(D/T)$ Where: B=Burn rate in inches per minute,D=Length the flame travels in inches, and T=Time in seconds for the flame to travel D inches. # § 571.303 Standard No. 303; Fuel system integrity of compressed natural S1. *Scope.* This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG fuel systems of bi-fuel, dedicated, and dual fuel CNG vehicles. S2. *Purpose.* The purpose of this standard is to reduce deaths and injuries occurring from fires that result from fuel leakage during and after motor vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks and buses that have a gross vehicle weight rating (GVWR) of 10,000 pounds or less and use CNG as a motor fuel. This standard also applies to school buses regardless of weight that use CNG as a motor fuel. S4. Definitions. gas vehicles Bi-fuel CNG vehicle means a vehicle equipped with two independent fuel systems, one of which is designed to supply CNG and the second to supply a fuel other than CNG. CNG fuel container means a container designed to store CNG as motor fuel onboard a motor vehicle. *CNG fuel system* means all components used to store or supply CNG to a vehicle's engine. Dedicated CNG vehicle means a vehicle equipped with one fuel system and designed to operate on CNG. Dual-fuel CNG vehicle means a vehicle which is fueled by two fuels simultaneously, one of which is CNG and the second is a fuel other than CNG. High pressure portion of a fuel system means all the components from and including each CNG fuel container up to, but not including, the first pressure regulator Service pressure means the internal pressure of a CNG fuel container when filled to design capacity with CNG at 20° Celsius (68° Fahrenheit). S5. General requirements. S5.1 Vehicle requirements. S5.1.1 Vehicles with GVWR of 10,000 pounds or less. Each passenger car, multipurpose passenger vehicle, truck, and bus with a GVWR of 10,000 pounds or less that uses CNG as a motor fuel and that is manufactured on or after September 1, 1995 shall meet the requirements of S6, except S6.4. S5.1.2 Schoolbuses with a GVWR greater than 10,000 pounds. Each schoolbus with a GVWR greater than 10,000 pounds that uses CNG as a motor fuel and that is manufactured on or after September 1, 1995 shall meet the requirements of S6.4. S5.2 Fuel system pressure drop: barrier crash. (a) For all vehicles, the pressure drop in the high pressure portion of the fuel system, expressed in kiloPascals (kPa), in any fixed or moving barrier crash from vehicle impact through the 60 minute period following cessation of motion shall not exceed: - (1) 1062 kPa (154 psi), or - (2) 895 (T/V_{FS}); whichever is higher where T is the average temperature of the test gas in degrees Kelvin, stabilized to ambient temperature before testing, where average temperature (T) is calculated by measuring ambient temperature at the start of the test time and then every 15 minutes until the test time of 60 minutes is completed; the sum of the ambient temperatures is then divided by five to yield the average temperature (T); and where $V_{\rm FS}$ is the internal volume in liters of the fuel container and the fuel lines up to the first pressure regulator. (b) For bi-fuel or dual fuel CNG vehicles, the test requirement in S5.2(a) shall apply to the CNG fuel system, and the test requirement of Standard No. 301 shall apply to the other fuel system, if that standard is applicable. S5.3 Each CNG vehicle shall be permanently labeled, near the vehicle refueling connection, with the information specified in S5.3.1 and S5.3.2 of this section. The information shall be visible to a person standing next to the vehicle during refueling, in English, and in letters and numbers that are not less than 4.76 mm (3/16 inch) high. S5.3.2 The statement "See instructions on fuel container for inspection and service life." S5.4 When a motor vehicle is delivered to the first purchaser for purposes other than resale, the manufacturer shall provide the purchaser with a written statement of the information in S5.3.1 and S5.3.2 in the owner's manual, or, if there is no owner's manual, on a one-page document. The information shall be in English and in not less than 10 point type. S6. Test requirements: fuel system integrity. Each vehicle with a GVWR of 10,000 pounds or less shall meet the requirements of any applicable barrier crash test. A particular vehicle need not meet further requirements after having been subjected to a single barrier crash test. S6.1 Frontal barrier crash. When the vehicle traveling longitudinally forward at any speed up to and including 30 mph impacts a fixed collision barrier that is perpendicular to the line of travel of the vehicle, or at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, with 50th percentile test dummies as specified in part 572 of this chapter at each front outboard designated seating position and at any other position whose protection system is required to be tested by a dummy under the provisions of Standard No. 208, under the applicable conditions of S7, the fuel pressure drop shall not exceed the limits of S5.2. S6.2 Rear moving barrier crash. When the vehicle is impacted from the rear by a barrier moving at any speed up to and including 30 mph, with test dummies as specified in part 572 of this chapter at each front outboard designated seating position, under the applicable conditions of S7, the fuel pressure drop shall not exceed the limits of S5.2. S6.3 Lateral moving barrier crash. When the vehicle is impacted laterally on either side by a barrier moving at any speed up to and including 20 mph with 50th percentile test dummies as specified in part 572 of this chapter at positions required for testing to Standard No. 208, under the applicable conditions of S7, the fuel pressure drop shall not exceed the limits of S5.2. - S6.4 Moving contoured barrier crash. When the moving contoured barrier assembly traveling longitudinally forward at any speed up to and including 30 mph impacts the test vehicle (schoolbus with a GVWR exceeding 10,000 pounds) at any point and angle, under the applicable conditions of S7, the fuel pressure drop shall not exceed the limits of S5.2. - S7. Test conditions. The requirements of S5 and S6 shall be met under the following conditions. Where a range of conditions is specified, the vehicle must be capable of meeting the requirements at all points within the range. - S7.1 *General test conditions.* The following conditions apply to all tests. - S7.1.1 Each fuel storage container is filled to 100 percent of service pressure with nitrogen, N_2 . The gas pressure shall stabilize to ambient temperature before testing may be conducted. - S7.1.2 After each fuel storage container is filled as specified in S7.1.1, the fuel system other than each fuel storage container is filled with nitrogen, N_2 , to normal operating pressures. All manual shutoff valves are to be in the open position. - S7.1.3 In meeting the requirements of S6.1 through S6.4, if the vehicle has an electrically driven fuel pump that normally runs when the vehicle's electrical system is activated, it is operating at the time of the barrier crash. If the vehicle has any high pressure electric shutoff valve that is normally open when the electrical system is activated, it is open at the time of the barrier crash. Furthermore, if any electric shutoff valve prevents sensing of system pressure by the pressure transducer when closed, it must be open for both the initial pressure measurement and the pressure measurement 60 minutes after the vehicle ceases motion from impact. Any valve shall be open for a period of one minute to equalize the system pressure. - S7.1.4 The parking brake is disengaged and the transmission is in neutral, except that in meeting the requirements of S6.4, the parking brake is set. - S7.1.5 Tires are inflated to manufacturer's specifications. - S7.1.6 The vehicle, including test devices and instrumentation, is loaded as follows: - (a) A passenger car, with its fuel system filled as specified in S7.1.1 and S7.1.2, is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus the necessary test dummies as specified in S6, restrained only by means that are installed in the vehicle for protection at its seating position. - (b) A multipurpose passenger vehicle, truck, or bus with a GVWR of 10,000 pounds or less, whose fuel system is filled as specified in S7.1.1 and S7.1.2, is loaded to its unloaded vehicle weight, plus the necessary test dummies as specified in S6, plus 136.1 kilograms (kg.) (300 pounds (lb.)), or its rated cargo and luggage capacity weight, whichever is less, secured to the vehicle and distributed so that the weight on each axle as measured at the tireground interface is in proportion to its GAWR. Each dummy shall be restrained only by means that are installed in the vehicle for protection at its seating position. - (c) A schoolbus with a GVWR greater than 10,000 pounds, whose fuel system is filled as specified in S7.1.1 and S7.1.2, is loaded to its unloaded vehicle weight, plus 54.4 kg. (120 lb.) of unsecured weight at each designated seating position. - $\tilde{S7}.1.7$ The ambient temperature is not to vary more than 5.6 °C (10 °F) during the course of the test. - \$7.1.8 The pressure drop measurement specified in \$5.2 is to be made using a location on the high pressure side of the fuel system in accordance with the vehicle manufacturer's recommendation. - S7.2 Lateral moving barrier crash test conditions. The lateral moving barrier crash test conditions are those
specified in S8.2 of Standard No. 208, 49 CFR 571.208. - S7.3 Rear moving barrier test conditions. The rear moving barrier test conditions are those specified in S8.2 of Standard No. 208, 49 CFR 571.208, except for the positioning of the barrier and the vehicle. The barrier and test vehicle are positioned so that at impact— - (a) The vehicle is at rest in its normal attitude: (b) The barrier is traveling at any speed up to and including 30 mph with its face perpendicular to the longitudinal centerline of the vehicle; and (c) A vertical plane through the geometric center of the barrier impact surface and perpendicular to that surface coincides with the longitudinal centerline of the vehicle. S7.4 Moving contoured barrier test conditions. The moving contoured barrier crash test conditions are those specified in S7.5 of Standard No. 301, 49 CFR 571.301. [59 FR 19659, Apr. 25, 1994; as amended at 60 FR 2543, Jan. 10, 1995; 60 FR 57948, Nov. 24, 1995] # §571.304 Standard No. 304; Compressed natural gas fuel container integrity. S1. *Scope.* This standard specifies requirements for the integrity of compressed natural gas (CNG), motor vehicle fuel containers. S2. *Purpose*. The purpose of this standard is to reduce deaths and injuries occurring from fires that result from fuel leakage during and after motor vehicle crashes. S3. *Application*. This standard applies to containers designed to store CNG as motor fuel on-board any motor vehicle. S4. Definitions. Brazing means a group of welding processes wherein coalescence is produced by heating to a suitable temperature above 800 °F and by using a nonferrous filler metal, having a melting point below that to the base metals. The filler metal is distributed between the closely fitted surfaces of the joint by capillary attraction. Burst pressure means the highest internal pressure reached in a CNG fuel container during a burst test at a tem- perature of 21 $^{\circ}$ C (70 $^{\circ}$ F). CNG fuel container means a container designed to store CNG as motor fuel on-board a motor vehicle. Fill pressure means the internal pressure of a CNG fuel container attained at the time of filling. Fill pressure varies according to the gas temperature in the container which is dependent on the charging parameters and the ambient conditions. Full wrapped means applying the reinforcement of a filament or resin system over the entire liner, including the domes. Hoop wrapped means winding of filament in a substantially circumferential pattern over the cylindrical portion of the liner so that the filament does not transmit any significant stresses in a direction parallel to the cylinder longitudinal axis. Hydrostatic pressure means the internal pressure to which a CNG fuel container is taken during testing set forth in S5.4.1 *Liner* means the inner gas tight container or gas cylinder to which the overwrap is applied. Service pressure means the internal settled pressure of a CNG fuel container at a uniform gas temperature of $21\,^{\circ}$ C ($70\,^{\circ}$ F) and full gas content. It is the pressure for which the container has been constructed under normal conditions. Stress ratio means the stress in the fiber at minimum burst pressure divided by the stress in the fiber at service pressure. S5 Container and material requirements. S5.1 *Container designations.* Container designations are as follows: S5.1.1 *Type 1—Non-composite metallic container* means a metal container. S5.1.2 Type 2—Composite metallic hoop wrapped container means a metal liner reinforced with resin impregnated continuous filament that is "hoop wrapped." S5.1.3 Type 3—Composite metallic full wrapped container means a metal liner reinforced with resin impregnated continuous filament that is "full wrapped." S5.1.4 Type 4—Composite non-metallic full wrapped container means resin impregnated continuous filament with a non-metallic liner "full wrapped." S5.2 Material designations. S5.2.1 Steel containers and liners. (a) Steel containers and liners shall be of uniform quality. Only the basic oxygen or electric furnace processes are authorized. The steel shall be aluminum killed and produced to predominantly fine grain practice. The steel heat analysis shall be in conformance with one of the following grades: TABLE ONE-STEEL HEAT ANALYSIS | Grade element | Chrome-Molybdenum percent | Carbon-Boron percent | Carbon-Manganese percent | |---------------------|---------------------------|-----------------------|--------------------------| | Carbon | | 0.27 to 0.37 | | | ManganesePhosphorus | | | | | Sulfur | | 0.010 max
0.30 max | | | Chromium | 0.80 to 1.15 | N/A | N/A | | Molybdenum | 0.15 to 0.25
N/A | 0.0005 to 0.003 | N/A
N/A | | Aluminum | 0.02 to 0.07 | 0.02 to 0.07 | 0.02/0.07 | ^{1 &}quot;N/A" means not applicable. (b) Incidental elements shall be within the limits specified in the Standard Specification for Steel, Sheet and Strip, Alloy, Hot-Rolled and Cold-Rolled, General Requirements for ASTM A 505 (1987). S5.2.1.1 When carbon-boron steel is used, the test specimen is subject to a hardenability test in accordance with the Standard Method for End-Quench Test For Hardenability of Steel, ASTM A 255 (1989). The hardness evaluation is made 7.9 mm (5/16 inch) from the quenched end of the Jominy quench bar. S5.2.1.2 The test specimen's hardness shall be at least Rc (Rockwell Hardness) 33 and no more than Rc 53. S5.2.2 Aluminum containers and aluminum liners. (Type 1, Type 2 and Type 3) shall be 6010 alloy, 6061 alloy, and T6 temper. The aluminum heat analysis shall be in conformance with one of the following grades: TABLE TWO-ALUMINUM HEAT ANALYSIS | Grade element | 6010 alloy
percent | 6061 alloy
percent | |------------------|--------------------------|-----------------------------| | Magnesium | 0.6 to 1.0
0.8 to 1.2 | 0.8 to 1.2.
0.40 to 0.8. | | Copper | 0.15 to 0.6 | 0.15 to 0.40. | | Chromium | 0.10 max | 0.04 to 0.35. | | Iron | 0.50 max | 0.7 max. | | Titanium | 0.10 max | 0.15 max. | | Manganese | 0.20 to 0.8 | 0.15 max. | | Zinc | 0.25 max | 0.25 max. | | Others, Each 1 | 0.05 max | 0.05 max. | | Others, Total 12 | 0.15 max | 0.15 max. | | Aluminum min | Remainder | Remainder. | ^{1&}quot;Others" includes listed elements for which no specific hit is shown as well as unlisted metallic elements. The pro-1"Others" includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the registration or specification. However, such analysis is not required and may not cover all metallic "other" elements. Should any analysis by the producer or purchaser establish that an "others" element exceeds the limit of "Each" or that the aggregate of several "others" elements exceeds the limit of "Total," the material shall be considered non-conforming. 2 The sum of those "Others" metallic elements 0.010 percent or more each, expressed to the second decimal before determining the sum. determining the sum. (Registration Record of Aluminum Association Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys, The Aluminum Association, Inc. Rev. Dec. 1993) S5.2.3 Structural reinforcing filament material shall be commercial grade E-glass, commercial grade S-glass, aramid fiber or carbon fiber. Filament strength shall be tested in accordance with the Standard Test Method for Tensile Properties of Glass Fiber Strands, Yarns, and Rovings Used in Reinforced Plastics, ASTM D 2343 (1967, Reapproved 1985), or SACMA Recommended Test Method for Tow Tensile Testing of Carbon Fibers, SRM 16-90, 1990. Fiber coupling agents (sizing) shall be compatible with the resin system. If carbon fiber reinforcement is used the design shall incorporate means to prevent galvanic corrosion of metallic components of the fuel container. S5.2.4 The resin system shall be epoxy, modified epoxy, polyester, vinyl ester or thermoplastic. S5.2.4.1 The resin system is tested on a sample coupon representative of the composite overwrap in accordance with the Standard Test Method for Apparent Interlaminar Shear Strength of Parallel Fiber Composites by Short-Beam Method, ASTM D 2344, (1984, Reapproved 1989) following a 24-hour water boil. S5.2.4.2 The test specimen shall have a shear strength of at least 13.8 MPa (2,000 psi). S5.2.5 For nonmetallic liners, the permeation of CNG through the finished container's wall at service pressure is less than 0.25 normal cubic centimeters per hour per liter water capacity of the container. S5.3 Manufacturing processes for composite containers. S5.3.1 Composite containers with metallic liners. The CNG fuel container shall be manufactured from a metal liner overwrapped with resin impregnated continuous filament windings, applied under controlled tension to develop the design composite thickness. After winding is complete, composites using thermoset resins shall be cured by a controlled temperature process. S5.3.1.1 *Type 2 containers.* Type 2 containers shall have a hoop wrapped winding pattern. S5.3.1.2 Type 3 containers. Type 3 containers shall have a full wrapped "helical or in plane" and a "hoop" wrap winding pattern. S5.3.2 Type 4 containers. Composite containers with nonmetallic liners shall be fabricated from a nonmetallic liner overwrapped with resin impregnated continuous filament windings. The winding pattern shall be "helical or in plane" and "hoop" wrap applied pattern under controlled tension to develop the design composite thickness. After winding is complete, the composite shall be cured by a controlled temperature process. S5.3.3 Brazing. Brazing is prohibited. S5.3.4 Welding. Welding shall be done in accordance with the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section IX, Article II, QW-304 and QW-305 (1992). Weld efficiencies shall be in accordance with ASME Boiler and Pressure Vessel Code, Section VIII, UW-12 (1989). Any weld
shall be subject to full radiographic requirements in accordance with ASME Boiler and Pressure Vessel Code, Section VIII, UW-51 thru UW-53 (1989). For Type 2 and Type 3 liners, longitudinal welds and nonconsumable backing strips or rings shall be prohibited. S5.4 Wall thickness. S5.4.1 Type 1 Containers. (a) The wall thickness of a Type 1 container shall be at least an amount such that the wall stress at the minimum prescribed hydrostatic test presure does not exceed 67 percent of the minimum tensile strength of the metal as determined by the mechanical properties specified in S5.7 and S5.7.1. (b) For minimum wall thickness calculations, the following formula is used: $$S = \frac{P(1.3D^2 + 0.4d^2)}{(D^2 - d^2)}$$ Where: S = Wall stress in MPa (psi). P = Minimum hydrostatic test pressure in Mpa (psi). D = Outside diameter in mm (inches). d = Inside diameter in mm (inches). S5.4.2 Type 2 containers. S5.4.2.1 The wall thickness of a liner to a Type 2 container shall be at least an amount such that the longitudinal tensile stress at the minimum design burst pressure does not exceed the ultimate tensile strength of the liner material as determined in S5.7 and S5.7.1. S5.4.2.2 The wall thickness of a liner to a Type 2 container shall be at least an amount such that the compressive stress in the sidewall of the finished container at zero pressure shall not exceed 95 percent of the yield strength of the liner as determined in S5.7 and S5.7.1 or 95 percent of the minimum design yield strength shown in S5.7.3. The maximum tensile stress in the liner at service pressure shall not exceed 66 percent of the yield strength. S5.4.2.3 Stresses at the end designs at internal pressures between no more than 10 percent of service pressure and service pressure shall be less than the maximum stress limits in the sidewall as prescribed above. S5.4.3 Type 3 containers. The wall thickness of a liner to a Type 3 container shall be such that the compressive stress in the sidewall of the finished container at zero pressure shall not exceed 95 percent of the minimum yield strength of the liner as determined in S5.7 and S5.7.1 or 95 percent of the minimum design yield strength shown in S5.7.3 S5.4.4 *Type 4 containers.* The wall thickness of a liner to a Type 4 container shall be such that the permeation rate requirements of this specification are met. S5.5 Composite reinforcement for Type 2, Type 3, and Type 4 Containers. S5.5.1 Compute stresses in the liner and composite reinforcement using National Aeronautics and Space Administration (NASA), Computer Program for the Analysis of Filament Reinforced Metal-Wound Pressure Vessels, N67-12097 (NASA CR-72124) (May 1966), or its equivalent. S5.5.2 The composite overwrap shall meet or exceed the following composite reinforcement stress ratio values shown in Table 3. S5.6 Thermal treatment. S5.6.1 Steel containers or liners. S5.6.1.1 After all metal forming and welding operations, completed containers or liners shall be uniformly and properly heat treated under the same conditions of time, temperature and atmosphere prior to all tests. S5.6.1.2 All containers or liners of steel grades "Chrome-Molybdenum" or "Carbon Boron" shall be quenched in a medium having a cooling rate not in excess of 80 percent that of water. "Carbon-Manganese" steel grades shall be normalized and do not require tempering after normalizing. S5.6.1.3 All steel temperature on quenching shall not exceed 926° C (1700° F). S5.6.1.4 All containers or liners or steel grades "Chrome-Molybdenum" or "Carbon Boron" shall be tempered after quenching at a temperature below the transformation ranges, but not less than 482° C (900° F) for "Carbon-Boron" steel or 565° C (1050° F) for "Chrome-Molybdenum" steel. "Carbon Manganese" steel grades do not require tempering after normalizing. S5.6.2 Aluminum containers or liners (seamless and welded). After all forming and welding operations, aluminum containers or liners shall be solution heat treated and aged to the T6 temper. The liner and composite overwrap shall meet the cycle life and strength requirements set forth in S7.1 and S7.2 of this standard. S5.7 Yield strength, tensile strength, material elongation (metal containers and metal liners only). To determine yield strength, tensile strength, and elongation of the material, cut two specimens from one container or liner. The specimen either has (a) a gauge length of 50 mm (2 inches) and a width not over 38 mm (1.5 inches), or (b) a gauge length of four times the specimen diameter, provided that a gauge length which is at least 24 times the thickness with a width not over 6 times the thickness is permitted when the liner wall is not over 5 mm (3/16 inch) thick. The specimen shall not be flattened, except that grip ends may be flattened to within 25 mm (1 inch) of each end of the reduced section. Heating of specimens is prohibited. S5.7.1 *Yield strength.* The yield strength in tension shall be the stress corresponding to a permanent strain of 0.2 percent based on the gauge length. S5.7.1.1 The yield strength shall be determined by either the "offset" method or the "extension under load" method as prescribed by *Standard Test Methods for Tension Testing of Metallic Materials*, ASTM E8 1993. "extension S5.7.1.2 In using the under load" method, the total strain or 'extension under load'' corresponding to the stress at which the 0.2 percent permanent strain occurs may be determined by calculating the elastic extension of the gauge length under appropriate load and adding thereto 0.2 percent of the gauge length. Elastic extension calculations shall be based on an elastic modulus of 69 GPa (10,000,000 psi) for aluminum, or 207 GPa (30,000,000 psi) for steel. If the elastic extension calculation does not provide a conclusive result, the entire stress strain diagram shall be plotted and the yield strength determined from the 0.2 percent offset. S5.7.1.3 For the purpose of strain measurement, the initial strain is set while the test specimen is under a stress of 41 MPa (6,000 psi) for aluminum, and 83 MPa (12,000 psi) for steel. The strain indicator reading is set at the calculated corresponding strain. S5.7.1.4 Cross-head speed of the testing machine is 3.2 mm (1/8 inch) per minute or less during yield strength determination. S5.7.2 Elongation. Elongation of material, when tested in accordance with S5.7, shall be at least 14 percent for aluminum or at least 20 percent for steel; except that an elongation of 10 percent is acceptable for both aluminum and steel when the authorized specimen size is 24t gauge length x 6t wide, where "t" equals specimen thickness. S5.7.3 *Tensile strength.* Tensile strength shall not exceed 725 MPa (105,000 psi) for "Carbon Manganese" and 966 MPa (140,000 psi) for "Chrome-Molybdenum" and "Carbon-Boron." S6 General requirements. S6.1 Each passenger car, multipurpose passenger vehicle, truck, and bus that uses CNG as a motor fuel shall be equipped with a CNG fuel container that meets the requirements of S7 through S7.4. S6.2 Each CNG fuel container manufactured on or after March 27, 1995 shall meet the requirements of S7 through S7.4. S7 Test requirements. Each CNG fuel container shall meet the applicable requirements of S7 through S7.4. S7.1 Pressure cycling test at ambient temperature. Each CNG fuel container shall not leak when tested in accordance with S8.1. S7.2 Hydrostatic burst test. S7.2.1 Each Type 1 CNG fuel container shall not leak when subjected to burst pressure and tested in accordance with S8.2. Burst pressure shall be not less than 2.25 times the service pressure for non-welded containers when analyzed in accordance with the stress ratio requirements of S5.4.1, and shall not be less than 3.5 times the service pressure for welded containers. S7.2.2 Each Type 2, Type 3, or Type 4 CNG fuel container shall not leak when subjected to burst pressure and tested in accordance with S8.2. Burst pressure shall be no less than the value necessary to meet the stress ratio requirements of Table 3, when analyzed in accordance with the requirements of S5.5.1. TABLE THREE.—STRESS RATIOS | Material Type 2 Type 3 Type | aterial | Material | Mat | Type 2 | Type 3 | Type 4 | |-----------------------------|---------|----------|--------------|--------|------------|---------------------------| | S-Glass | | issid | Blass
mid | | 3.5
3.0 | 3.5
3.5
3.0
2.25 | S7.3 Bonfire test. Each CNG fuel container shall be equipped with a pressure relief device. Each CNG fuel container shall completely vent its contents through a pressure relief device or shall not burst while retaining its entire contents when tested in accordance with S8.3. S7.4 Labeling. Each CNG fuel container shall be permanently labeled with the information specified in paragraphs (a) through (h) of this section. Any label affixed to the container in compliance with this section shall remain in place and be legible for the manufacturer's recommended service life of the container. The information shall be in English and in letters and numbers that are at least 6.35 mm (1/4 inch) high. (a) The statement: "If there is a question about the proper use, installation, or maintenance of this container, contact______," inserting the CNG fuel container manufacturer's name, address, and telephone number. (b) The statement: "Manufactured in _____," inserting the month and year of manufacture of the CNG fuel container. (c) The statement: "Service pressure kPa, (_____psig)." (d) The symbol DOT, constituting a certification by the CNG container manufacturer that the container complies with all requirements of this standard. (e) The container designation (e.g., Type 1, 2, 3, 4). (f) The statement: "CNG Only." (g) The statement: "This container should be visually inspected after a motor vehicle accident or fire and at least every 36 months or 36,000 miles, whichever comes first, for damage and deterioration. (h) The statement: "Do Not Use After _____" inserting the month
and year that mark the end of the manufacturer's recommended service life for the container. S8 Test conditions: fuel container integrity. S8.1 *Pressure cycling test.* The requirements of S7.1 shall be met under the conditions of S8.1.1 through S8.1.4. S8.1.1 Hydrostatically pressurize the CNG container to the service pressure, then to not more than 10 percent of the service pressure, for 13,000 cycles. S8.1.2 After being pressurized as specified in S8.1.1, hydrostatically pressurize the CNG container to 125 percent of the service pressure, then to not more than 10 percent of the service pressure, for $5,000 \; \mathrm{cycles}$. S8.1.3 The cycling rate for S8.1.1 and S8.1.2 shall be any value up to and including 10 cycles per minute. S8.1.4 The cycling is conducted at ambient temperature. S8.2 Hydrostatic burst test. The requirements of S7.2 shall be met under the conditions of S8.2.1 through S8.2.2. S8.2.1 Hydrostatically pressurize the CNG fuel container, as follows: The pressure is increased up to the minimum prescribed burst pressure determined in S7.2.1 or S7.2.2, and held constant at the minimum burst pressure for 10 seconds. S8.2.2 The pressurization rate throughout the test shall be any value up to and including 1,379 kPa (200 psi) per second. S8.3 Bonfire test. The requirements of S7.3 shall be met under the conditions of S8.3.1 through S8.3.10. S8.3.1 The CNG fuel container is filled with compressed natural gas and tested at (1) 100 percent of service pressure and (2) 25 percent of service pressure. Manufacturers may conduct these tests using the same container or with separate containers. S8.3.2 The CNG fuel container is positioned so that its longitudinal axis is horizontal. Attach thermocouples to measure temperature on the container's bottom side along a line parallel to the container longitudinal centerline. Attach one at the midpoint of the container, and one at each end at the point where the dome end intersects the container sidewall. Subject the entire length to flame impingement, except that the flame shall not be allowed to impinge directly on any pressure relief device. Shield the pressure relief device with a metal plate. S8.3.3 If the test container is 165 cm (65 inches) in length or less, place it in the upright position. Attach three thermocouples to measure temperature on the container's bottom side along a line which intersects the container longitudinal centerline. Attach one at the midpoint of the bottom of the container, and one each at the point where the dome end intersects the container sidewall. Subject the container to total fire engulfment in the vertical. The flame shall not be allowed to impinge directly on any pressure relief device. For containers equipped with a pressure relief device on one end, the container is positioned with the relief device on top. For containers equipped with pressure relief devices on both ends, the bottom pressure relief device shall be shielded with a metal plate. S8.3.4 The lowest part of the container is suspended at a distance above the fire such that the container bottom surface temperatures specified in S8.3.6 are achieved. S8.3.5 The CNG fuel container is tested with the valve and pressure relief device or devices in place. S8.3.6 The fire is generated by any fuel that maintains a flame temperature between 850 and 900 C for the duration of the test, as verified by each of the three thermocouples in S8.3.2 or S8.3.3. S8.3.7 The fuel specified in S8.3.6 is such that there is sufficient fuel to burn for at least 20 minutes. To ensure that the sides of the fuel container are exposed to the flame, the surface area of the fire on a horizontal plane is such that it exceeds the fuel container projection on a horizontal plane by at least 20 cm (8 inches) but not more than 50 cm (20 inches). S8.3.8 Time-pressure readings are recorded at 30 second intervals, beginning when the fire is lighted and continuing until the container is completely tested. S8.3.9 The CNG fuel container is exposed to the bonfire for 20 minutes or until its contents are completely vented. S8.3.10 The average wind velocity at the container is any velocity up to and including 2.24 meters/second (5 mph). [59 FR 49021, Sept. 26, 1994; 59 FR 66776, Dec. 28, 1994; 60 FR 37843, July 24, 1995; 60 FR 57948, Nov. 24, 1995; 61 FR 19204, May 1, 1996; 61 FR 47089, Sept. 6, 1996] ### §571.500 Standard No. 500; Low-speed vehicles. S1. *Scope.* This standard specifies requirements for low-speed vehicles. S2. *Purpose.* The purpose of this standard is to ensure that low-speed vehicles operated on the public streets, roads, and highways are equipped with the minimum motor vehicle equipment appropriate for motor vehicle safety. S3. Applicability. This standard applies to low-speed vehicles. S4. [Reserved.] S5. Requirements. (a) When tested in accordance with test conditions in S6 and test procedures in S7, the maximum speed attainable in 1.6 km (1 mile) by each low-speed vehicle shall not more than 40 kilometers per hour (25 miles per hour). (b) Each low-speed vehicle shall be equipped with: (1) Headlamps, - (2) Front and rear turn signal lamps, - (3) Taillamps, (4) Stop lamps, - (5) Reflex reflectors: one red on each side as far to the rear as practicable, and one red on the rear, - (6) An exterior mirror mounted on the driver's side of the vehicle and either an exterior mirror mounted on the passenger's side of the vehicle or an interior mirror, (7) A parking brake, - (8) A windshield of AS-1 or AS-5 composition, that conforms to the American National Standard Institute's "Safety Code for Safety Glazing Materials for Glazing Motor Vehicles Operating on Land Highways," Z-26.1-1977, January 28, 1977, as supplemented by Z26.1a, July 3, 1980 (incorporated by reference; see 49 CFR 571.5), - (9) A VIN that conforms to the requirements of part 565 *Vehicle Identification Number* of this chapter, and - (10) A Type 1 or Type 2 seat belt assembly conforming to Sec. 571.209 of this part, Federal Motor Vehicle Safety Standard No. 209, Seat belt assemblies, installed at each designated seating position. S6. General test conditions. Each vehicle must meet the performance limit specified in S5(a) under the following test conditions. S6.1. Ambient conditions. S6.1.1. Ambient temperature. The ambient temperature is any temperature between 0 $^{\circ}$ C (32 $^{\circ}$ F) and 40 $^{\circ}$ C (104 $^{\circ}$ F). S6.1.2. Wind speed. The wind speed is not greater than 5 m/s (11.2 mph). S6.2. Road test surface. S6.2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction coefficient (PFC) of 0.9 when measured using a standard reference test tire that meets the specifications of American Society for Testing and Materials (ASTM) E1136, "Standard Specification for A Radial Standard Reference Test Tire," in accordance with ASTM Method E 1337–90, "Standard Test Method for Determining Longitudinal Peak Braking Coefficient of Paved Surfaces Using a Standard Reference Test Tire," at a speed of 64.4 km/h (40.0 mph), without water delivery (incorporated by reference; see 49 CFR 571.5). S6.2.2. *Gradient*. The test surface has not more than a 1 percent gradient in the direction of testing and not more than a 2 percent gradient perpendicular to the direction of testing. S6.2.3. *Lane width.* The lane width is not less than 3.5 m (11.5 ft). S6.3. Vehicle conditions. S6.3.1. The test weight for maximum speed is unloaded vehicle weight plus a mass of 78 kg (170 pounds), including driver and instrumentation. S6.3.2. No adjustment, repair or replacement of any component is allowed after the start of the first performance test. S6.3.3. *Tire inflation pressure.* Cold inflation pressure is not more than the maximum permissible pressure molded on the tire sidewall. S6.3.4. *Break-in.* The vehicle completes the manufacturer's recommended break-in agenda as a minimum condition prior to beginning the performance tests. S6.3.5. Vehicle openings. All vehicle openings (doors, windows, hood, trunk, convertible top, cargo doors, etc.) are closed except as required for instrumentation purposes. S6.3.6. Battery powered vehicles. Prior to beginning the performance tests, propulsion batteries are at the state of charge recommended by the manufacturer or, if the manufacturer has made no recommendation, at a state of charge of not less than 95 percent. No further charging of any propulsion battery is permissible. S7. Test procedure. Each vehicle must meet the performance limit specified in S5(a) under the following test procedure. The maximum speed performance is determined by measuring the maximum attainable vehicle speed at any point in a distance of $1.6\ km$ ($1.0\ mile$) from a standing start and repeated in the opposite direction within $30\ minutes.$ [63 FR 33216, June 17, 1998] ## PART 572—ANTHROPOMORPHIC TEST DEVICES #### Subpart A—General | Sec | ٥. | | |-----|----|--| | ~~~ | | | - 572.1 Scope. - 572.2 Purpose. - 572.3 Application. - 572.4 Terminology. #### Subpart B-50th Percentile Male - 572.5 General description. - 572.6 Head. - 572.7 Neck. - 572.8 Thorax. - 572.9 Lumbar spine, abdomen, and pelvis. - 572.10 Limbs. - 572.11 Test conditions and instrumentation. #### Subpart C-3-Year-Old Child - 572.15 General description. - 572.16 Head. - 572.17 Neck. - 572.18 Thorax. - 572.19 Lumbar spine, abdomen and pelvis. - 572.20 Limbs. - 572.21 Test conditions and instrumentation. #### Subpart D-6-Month-Old Infant 572.25 General description. #### Subpart E—Hybrid III Test Dummy - 572.30 Incorporated materials. - 572.31 General description. - 572.32 Head. - 572.33 Neck. - 572.34 Thorax. - 572.35 Limbs. - 572.36 Test conditions and instrumentation. #### Subpart F—Side Impact Dummy 50th Percentile Male - 572.40 Incorporated materials. - 572.41 General description. - 572.42 Thorax. - 572.43 Lumbar spine and pelvis. - 572.44 Instrumentation and test conditions. APPENDIX A TO SUBPART F #### Subparts G-H
[Reserved] #### Subpart I-6-Year-Old Child 572.70 Incorporation by reference. - 572.71 General description. - 572.72 Head assembly and test procedure. - 572.73 Neck assembly and test procedure. - 572.74 Thorax assembly and test procedure. - 572.75 Lumbar spine, abdomen, and pelvis assembly and test procedure. - 572.76 Limbs assembly and test procedure. - 572.77 Instrumentation. - 572.78 Performance test conditions. FIGURES TO SUBPART I #### Subpart J-9-Month Old Child - 572.80 Incorporated materials. - 572.81 General description. - 572.82 Head. - 572.83 Head-neck. - 572.84 Thorax. - 572.85 Lumbar spine flexure. - 572.86 Test conditions and dummy adjustment. #### Subpart K-Newborn Infant - 572.90 Incorporation by reference. - 572.91 General description. #### Subpart L-Free Motion Headform - 572.100 Incorporation by reference. - 572.101 General description. - 572.102 Drop test. - 572.103 Test conditions and instrumenta- ### Subpart M—Side Impact Hybrid Dummy 50th Percentile Male. - 572.110 Materials incorporated by reference. - 572.111 General description. - 572.112 Head assembly. - 572.113 Neck assembly. - 572.114 Thorax. - 572.115 Lumbar spine and pelvis. - 572.116 Instrumentation and test conditions. AUTHORITY: 49 U.S.C. 322, 30111, 30115, 30117 and 30166; delegation of authority at 49 CFR 1.50. EDITORIAL NOTE: For compliance provisions relating to a vehicle's conformance with the performance requirements of Standard No. 208 (§571.208) relating to the part 572 test dummy, see the "Effective Date Note" at subpart E of this part. #### Subpart A—General #### § 572.1 Scope. This part describes the anthropomorphic test devices that are to be used for compliance testing of motor vehicles and motor vehicle